SIEMENS

IRED in TO-Package

- InGaAsP/InP - IRED
- Designed for application in fiber-optic
- Datacom systems
- Transmitter for the $2^{\text {nd }}$ optical window (1300 nm)
- Suitable for bit rates up to $50 \mathrm{Mbit} / \mathrm{s}$
- $200 \mathrm{Mbit} / \mathrm{s}$ with appropriate pulse shaping of the modulation current
- High output power with double heterostructure
- High coupling efficiency into multimode fibers
- No z-adjustment necessary (optimum coupling on cap surface)
- Hermetically sealed 3-pin metal case

Type	Ordering Code	Connector/Flange
STL 39002Z	Q62702-P3009	TO, with optics

Maximum Ratings

Parameter	Symbol	Values	Unit
Forward current (DC)	I_{F}	60	mA
Forward current $(\tau \leq 10 \mu \mathrm{~s}, \mathrm{D} \leq 1)$	I_{FSM}	100	mA
Reverse voltage	V_{R}	0.5	V
Operating and storage temperature	$T_{\mathrm{A}}, T_{\mathrm{stg}}$	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Soldering time (wave / dip soldering), distance between solder point and base plate $\geq 2 \mathrm{~mm}, 260^{\circ} \mathrm{C}$	t_{S}	10	s

Characteristics

All optical data refer to an ambient temperature of $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Values	Unit	Notes
Emission wavelength	λc	1310 ± 30	nm	1
Spectral bandwidth at 50% of $\Phi_{\text {max }}$	$\Delta \lambda$	130 ± 30	nm	1
Opt. power coupled into $62.5 \mu \mathrm{~m}$ multimode fiber, $N A=0.27$	Φ_{e}	- 17.5 ... - 13.5	dBm	1.2
Opt. power coupled into $50 \mu \mathrm{~m}$ multimode fiber, NA $=0.2$	Φ_{e}	- 20.5 ... - 16.5	dBm	1.2
Forward voltage, $I_{F}=50 \mathrm{~mA} \mathrm{DC}$	V_{F}	$1.2(\leq 1.5)$	V	
Rise and fall time ($10 \%-90 \%$) $R_{\mathrm{L}}=50 \Omega, I_{\mathrm{F}}=50 \mathrm{~mA}$	$t_{r} ; t_{\text {f }}$	3; 4	ns	
Capacitance $V_{\mathrm{R}}=0, f=1 \mathrm{MHz}$	C_{0}	100	pF	
Temp. coefficient of forward voltage, $I_{\mathrm{F}}=50 \mathrm{~mA}$	$T C_{V F}$	-1.3	mV/K	
Temp. coefficient of wavelength, $I_{\mathrm{F}}=50 \mathrm{~mA}$	$T C_{\lambda}$	0.5	nm/K	
Temp. coefficient of opt. power, $I_{\mathrm{F}}=50 \mathrm{~mA}$	$T C_{\Phi}$	-0.7	\%/K	

Operating Instructions

In order to achieve an operating lifetime $>10^{5} \mathrm{~h}$, which is required for Telcom applications, a forward current of $I_{F}=50 \mathrm{mADC}$ is recommended.
Notes: 1) Driving current is a square wave, 50% duty cycle, $60 \mathrm{~mA}_{\mathrm{pk}}$ current at 1 MHz . Φ_{e} is the average optical power coupled into the specified fiber.
2) Optimum coupling on cap surface, no adjustment in z-axis necessary.

Rel. Spectral Emission
$\Phi_{\mathrm{e}}=\Phi_{\mathrm{e}}(\lambda)$

Forward Current $\mathbf{C W}$

$I_{F}=I_{F}\left(T_{A}\right)$

Package Outlines (Dimensions in mm)

STL 39002Z

