INTRODUCTION The S1T8501 is a speech network integrated circuit which includes the following components: transmit amp, receive amp, DTMF amp, voltage regulator, line equalizer, and voltage comparator. It handles the voice signal, performing the 2/4 wires interface and changing the gain on both sending and receiving amplifiers to compensate the line current. The S1T8501 can work in fixed gain mode. # 16-DIP-300A #### **FEATURES** - · Adjusts sending and receiving attenuation length - Regulated voltage output for external dialer - Linear interface for DTMF - Suitable for ceramic transducers - Mute function ### **ORDERING INFORMATION** | Device | Package | Operating Temperature | | | | |-----------------|-------------|-----------------------|--|--|--| | S1T8501X01-D0B0 | 16-DIP-300A | -45°C — +70C | | | | ### **PIN CONFIGURATION** ## **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Value | Unit | |-------------------------------|------------------|---------------|------| | Line Voltage (3msec max) | V _L | 22 | V | | Forward Line Current | I _{LF} | 150 | mA | | Reverse Line Current | I _{LR} | -150 | mA | | Power Dissipation (Ta = 70°C) | P _D | 1 | W | | Operating Temperature | T _{OPR} | - 45 — + 70 | °C | | Storage Temperature | T _{STG} | - 65 — + 150 | °C | # **ELECTRICAL CHARACTERISTICS (TA = 25°C)** | Characteris | tic | Symbol | Test Conditions | | | Min. | Тур. | Max. | Unit | | |---------------------------------|---|-----------------------|--|--|------------------------|--------------------|------|------|-------|--| | | | V _L | Ta = 25°C | I _L = 12mA | | 3.9 | _ | 4.7 | 5.5 V | | | Line Voltage | I _L = 20mA | | | | - | _ | 5.5 | | | | | | | | | I _L = 80mA | | _ | _ | 12.2 | | | | Common Mode Reject | ion Ratio | CMRR | f = 1kHz, I _L : | = 12 to 80mA | | 50 | _ | _ | dB | | | Line Matching Impeda | nce | Z _L | $V_{RI} = 0.3V$, $I_{L} = 12$ to 80mA f = 1kHz | | 500 | 600 | 700 | Ω | | | | TX Gain | G _{V (TX)} | | $I_{L} = 25mA$ $I_{L} = 52mA$ | | 48 | 49 | 50 | dB | | | | | | f = 1kHz
VMI = 2mV | | | 44 | 45 | 46 | | | | | | | | I _L = 25 to 52 | I _L = 25 to 52mA | | 48 | 49 | 50 | | | | TX Gain Flatness | | Δ G _{V (TX)} | $V_{MI} = 2mV$ | f _{ref} = 1kHz, I _L | = 12 to 80mA | _ | _ | ± 1 | dB | | | TX Distortion | | | f = 1kHz | V _{SO} = 1V | | 2 | | 2 | | | | | | THD _{TX} | $I_L = 16 \text{ to}$
80mA | V _{SO} = 1.3V | | - | _ | 10 | % | | | TX Noise | | V _{NO (TX)} | V _{MI} = 0V, I _L = 40mA | | _ | _ | -70 | dBm | | | | Side Tone | | G _{V (ST)} | Ta = 25°C, f | a = 25°C, f= 1kHz, I _L = 25 to 52mA | | _ | _ | 36 | dB | | | MIC Input Impedance | Input Impedance $Z_{I \text{ (MIC)}}$ $V_{MI} = 2\text{mV}, I_{L} = 12 \text{ to } 80\text{mA}$ | | 40 | _ | - | kΩ | | | | | | Tx Loss in MF Operation | | G _{V (LOSS)} | V _{MI} =2mV | I _L = 25mA | | -30 | _ | - | - dB | | | | | | | I _L = 52mA | | -30 | _ | - | | | | RX Gain | | G _{V (RX)} | | I _L = 25mA | | 7 | 8 | 9 | | | | | | | $V_{RI} = 0.3V$
f = 1kHz | I _L = 52mA | | 2.5 | 3.5 | 4.5 | dB | | | | | | I _L = 25 to 52mA | | 7 | 8 | 9 | | | | | RX Gain Flatness | | ΔG _{V (RX)} | $V_{RI} = 0.3V$, $f_{ref} = 1kHz$, $I_{L} = 12$ to 80mA | | _ | _ | ± 1 | dB | | | | | | | f =1kHz | I _L = 12mA | V _{RO} = 1.6V | _ | _ | 2 | . % | | | RX Distortion | | THDRX | | | V _{RO} = 1.9V | _ | _ | 10 | | | | TO DISTORION | | | | I _L = 50mA | V _{RO} = 1.8V | - | _ | 2 | | | | | | | | | V _{RO} = 2.1V | _ | _ | 10 | | | | RX Noise | | V _{NO (RX)} | $V_{RI} = 0V, I_{L} = 12 \text{ to } 80\text{mA}$ | | - | _ | 100 | μV | | | | RX Output Impedance F | | R _{O (RX)} | $V_{RO} = 50 \text{mV}, I_L = 40 \text{mA}$ | | - | _ | 100 | Ω | | | | MF Supply Voltage | | V _{DD (MF)} | I _L = 12 to 80mA | | 2.4 | 2.5 | - | V | | | | MF Supply Current | Standby | I _{SB (MF)} | I _L = 12 to 80mA | | 0.5 | _ | - | mA | | | | | Operation | I _{DD (MF)} | | | 2 | _ | - | | | | | MF Amplifier Gain | | G _{V (MF)} | $I_L = 12 \text{ to } 80\text{mA } f_{MF} = 1\text{kHz}, V_{MF} = 80\text{mV}$ | | 15 | _ | 17 | dB | | | | DC Input Voltage Level (pin 14) | | V _{I (MF)} | V _{MF} = 80mV | | _ | 0.3V _{DD} | - | V | | | | Input Impedance (pin 14) | | Z _{I (MF)} | V _{MF} = 80mV | | 40 | - | - | kΩ | | | | Distortion | | THD _{MF} | V _{MF} = 110mV, I _L = 12 to 80mA | | _ | _ | 2 | % | | | 3 # **ELECTRICAL CHARACTERISTICS (TA = 25°C)** (Continued) | Characteris | tic | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------------------|-----------|------------------------|-----------------------------|------|------|------|------| | Starting Delay Time | | t _{D (ST)} | I _L = 12 to 80mA | _ | _ | 5 | mS | | Muting Threshold Voltage (pin 3) | | V _{TH(MUTE)} | | _ | _ | 1 | V | | | | | | 1.6 | _ | _ | | | Muting Current | Standby | I _{SB (MUTE)} | I _L = 12 to 80mA | _ | _ | - 10 | μΑ | | | Operation | I _{DD (MUTE)} | I _L = 12 to 80mA | _ | _ | + 10 | | ## **APPLICATION CIRCUIT** 5 # **NOTES**