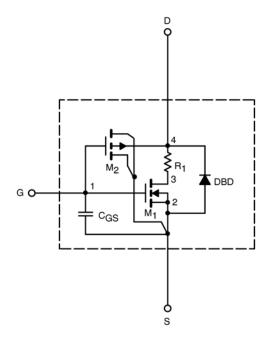


SPICE Device Model Si7636DP Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

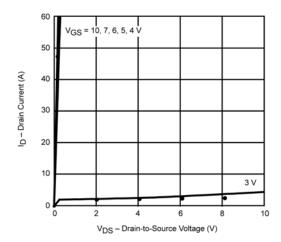
SUBCIRCUIT MODEL SCHEMATIC

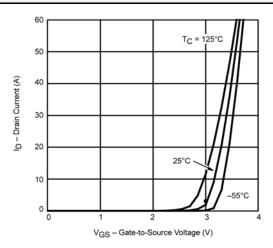
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

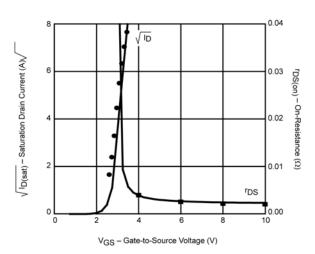
www.vishay.com Document Number: 72791 S-60145-Rev. B, 13-Feb-06

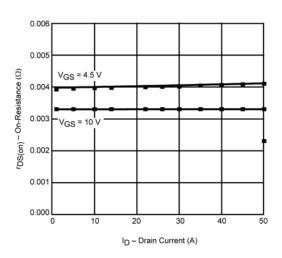
SPICE Device Model Si7636DP

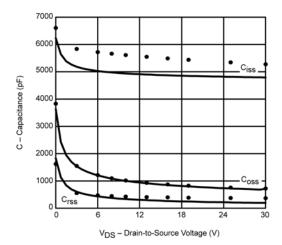
Vishay Siliconix

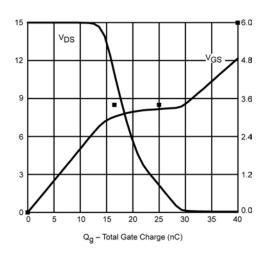

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 10 V	1882		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 25 A	0.0033	0.0033	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 19 \text{ A}$	0.0040	0.0040	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 25 A	95	110	S
Forward Voltage ^a	V _{SD}	$I_S = 2.9 \text{ A}, V_{GS} = 0 \text{ V}$	0.83	0.72	V
Dynamic ^b			-		-
Total Gate Charge	Q_g	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 20 A	37	32	nC
Gate-Source Charge	Q_{gs}		16.5	16.5	
Gate-Drain Charge	Q_{gd}		8.5	8.5	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong 1 \text{ A, } V_{GEN}$ = 10 V, R_G = 6 Ω	22	24	ns
Rise Time	t _r		13	16	
Turn-Off Delay Time	t _{d(off)}		70	90	
Fall Time	t_f		55	32	


- Notes a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7636DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.