

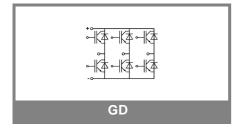
SEMITOP® 3

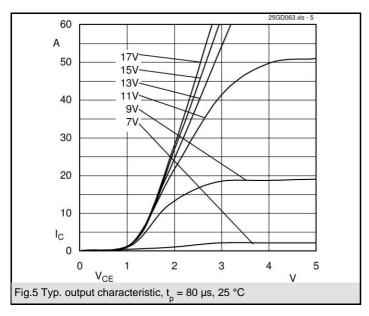
IGBT Module

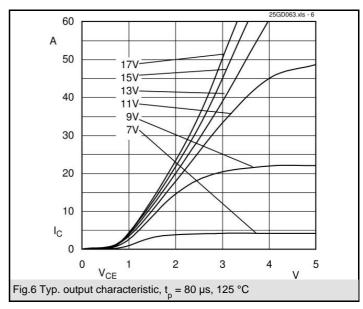
SK 25 GD 063

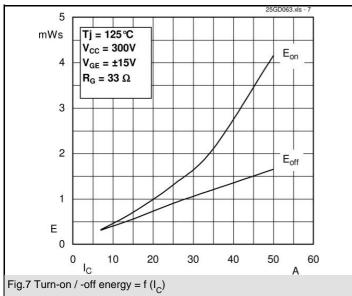
Preliminary Data

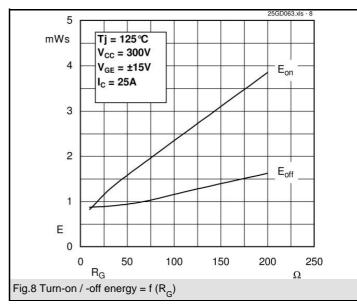
Features

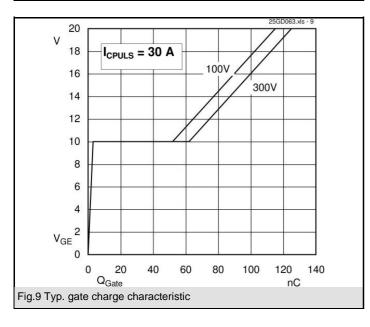

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63 532

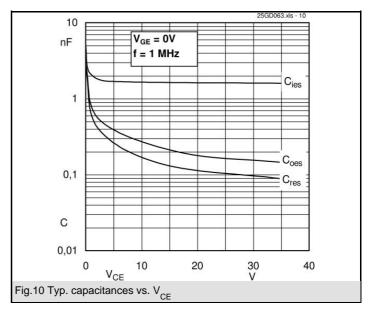

Typical Applications

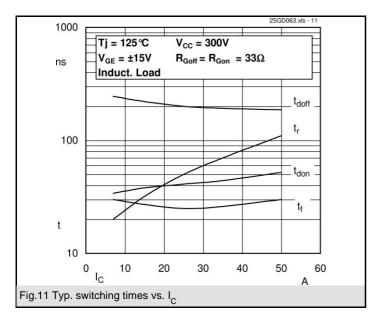

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

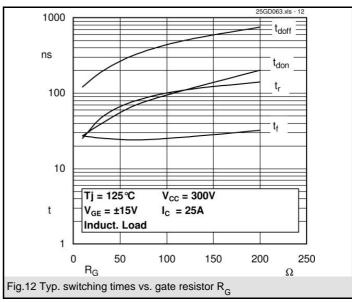

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT			•				
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	30 (21)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	60 (42)	Α				
T_j		- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	36 (24)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	72 (48)	Α				
T_j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

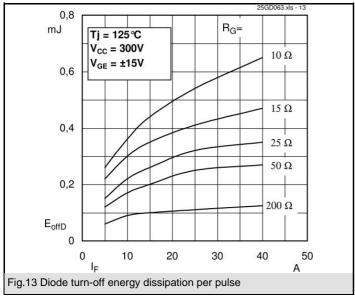

Characteristics		$T_s = 25$ °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT			71				
V _{CE(sat)} V _{GE(th)} C _{ies} R _{th(j-s)}	$I_C = 20 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = V_{GE}; I_C = 0,0007 \text{ A}$ $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$ per IGBT per module	4,5	1,8 (1,9) 5,5 1,6	2,2 (2,4) 6,5 1,4	V V nF K/W		
	<u> </u>				TC/ V V		
$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f}	under following conditions: V_{CC} = 300 V , V_{GE} = ±15 V I_{C} = 25 A, T_{j} = 125 °C R_{Gon} = R_{Goff} = 33 Ω		40 50 200 25		ns ns ns		
E _{on} + E _{off}	Inductive load		2,2		mJ		
Inverse/Freewheeling CAL diode							
$V_{F} = V_{EC}$ $V_{(TO)}$ r_{T} $R_{th(j-s)}$	$I_F = 25 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$		1,45 (1,4) (0,85) (22)	1,7 (1,75) (0,9) (32) 1,7	V V mΩ K/W		
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 25 \text{ A}$; $V_R = 300 \text{ V}$ $dI_F/dt = -500 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}$; $T_J = 125 \text{ °C}$		16 2 0,25		Α μC mJ		
Mechanic	al data	•			•		
M1	mounting torque			2,5	Nm		
w			30		g		
Case	SEMITOP® 3		T12				

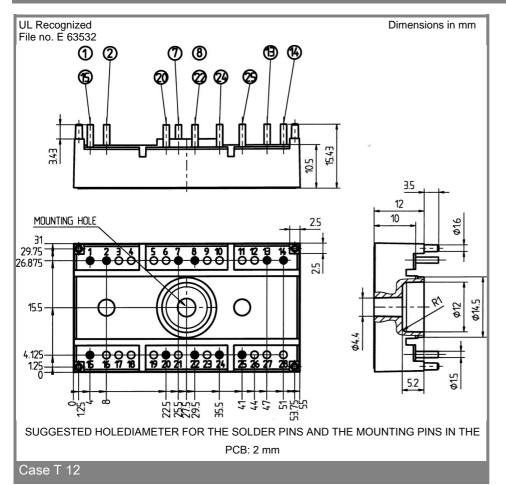


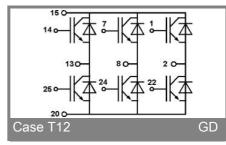












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.