
SK 30 GB 067

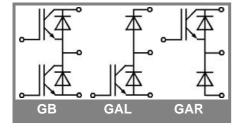
SEMITOP® 2

IGBT Module

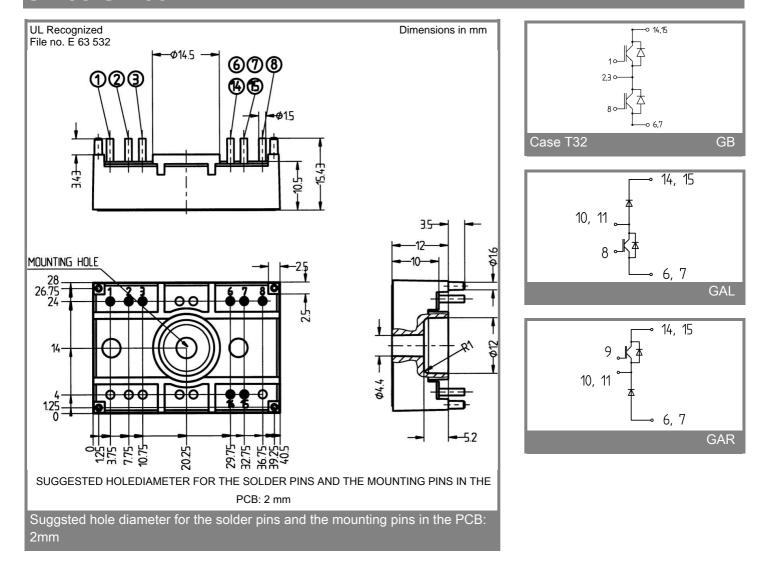
SK 30 GB 067 SK 30 GAR 067 SK 30 GAL 067

Target Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · Hyper fast NPT IGBT
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Positive Vcesat temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low threshold voltage

Typical Applications


- Switching (not for linear use)
- High Frequencies Applications
- Welding Generator
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	$T_s = 25 (80) ^{\circ}C;$	45 (30)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	90 (60)	Α				
T _j	·	- 40 + 150	°C				
Inverse/Freewheeling Diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	45 (30)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	90 (60)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T _s = 25 °	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$egin{array}{l} V_{\text{CE(sat)}} \ V_{\text{GE(th)}} \ C_{\text{ies}} \ R_{\text{th(j-s)}} \ \end{array}$	$\begin{split} &I_{C} = 60 \text{ A, T}_{j} = 25 \text{ (125) }^{\circ}\text{C} \\ &V_{CE} = V_{GE}; I_{C} = 0,0014 \text{ A} \\ &V_{CE} = 25 \text{ V; V}_{GE} = 0 \text{ V; 1 MHz} \\ &\text{per IGBT} \\ &\text{per module} \end{split}$	3	2,8 (3,5) 4 3	5 0,85	V V nF K/W	
$\begin{aligned} &t_{d(on)} \\ &t_r \\ &t_{d(off)} \\ &t_f \\ &E_{on} + E_{off} \end{aligned}$	under following conditions: $V_{CC} = 400 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 60 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 11 \Omega$ Inductive load		32 20 340 30 3,4		ns ns ns ns mJ	
	reewheeling Diode					
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$			(1,25) (1) (9)	2	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 30 \text{ A}; V_R = 400 \text{ V}$ $dI_F/dt = -100 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 \text{ °C}$		18 1,5		Α μC mJ	
Mechanic	cal data					
M1	mounting torque			2	Nm	
w			19		g	
Case	SEMITOP® 2		T 32			

SK 30 GB 067

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.