

This product is obsolete.

This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit

http://products.zarlink.com/obsolete_products/

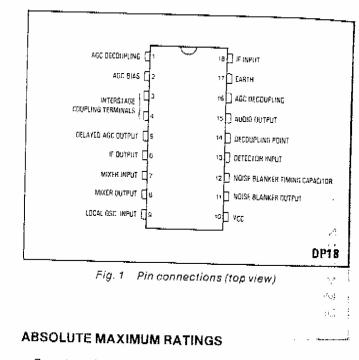
SL6700C

IF AMPLIFIER AND AM DETECTOR

The SL6700C is a single or double conversion IF amplifier and detector for AM radio applications. Its low power consumption makes it ideal for hand held applications. Normally the SL6700C will be fed with a first IF signal of 10.7MHz or 21.4MHz; there is a mixer for conversion to the first or second IF, a detector, an AGC generator with optional delayed output and a noise blanker monostable.

FEATURES

High Sensitivity: 10µV minimum


- Low Power: 8mA Typical at 6V
- Linear Detector

APPLICATIONS

Low Power AM/SSB Receivers

- Supply Voltage: 4.5V
 - Input Dynamic Range: 100dB Typical

Supply voltage: 7.5V Storage temperature: --55 C to +125 C

17 T

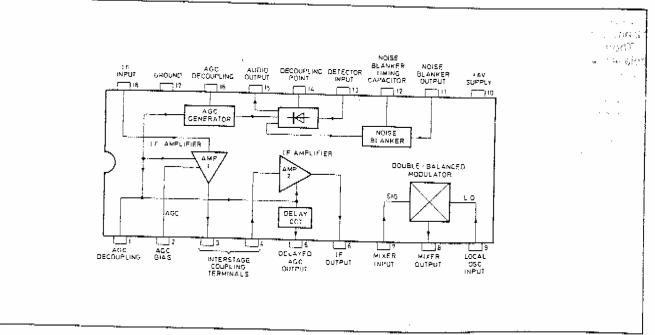


Fig. 2 SL6700C block diagram

SL6700C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

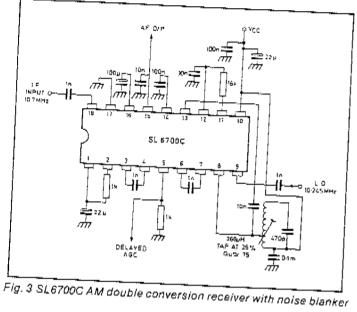
Supply voltage 4.5V

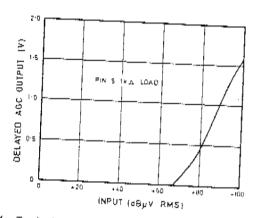
TAmb -30°C to +85°C

	Value					
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Supply voltage	4		7	v	Optimum performance at 4.5V	
Supply current		4.5	6	mA		
S/N ratio		40		dB	1mV input 80% mod @ 1kHz	
TH distortion		1	5	%	1mV input 80 % mod @ 1kHz	
Sensitivity	10	5		μV	10dB S + n/N ratio, 30 % mod 1kHz	
Audio output level change		6	10	dB	10µV to 50mV input 80% mod 1kHz	
AGC threshold		5		μV		
AGC range		80		dB		
AF output level		25		mV rms	30 % modulation 1kHz	
Delayed AGC threshold	[10		mV rms	80 % modulation	
Dynamic range		100		dB	Noise floor to overload	
IF frequency response	40	50		MHz	3dB gain reduction	
IF amplifier gain	40	50	60	dB	10.7MHz (both amplifiers cascaded)	
Detector gain	40	46	55	dB	455kHz 80 % AM 1kHz	
Detector Zin pin 13	2	4	6.8	kΩ		
IF amplifier Z _m pin 18	1.8	3	4.5	kΩ		
Noise blank level	2.7			V	Logic 1	
			0.6	V	Logic 0	
Noise blank duration		300		μs	C pin 12 = 30 nF	
Mixer conversion gain	1.0R	1.2R	1.5R	kΩ	R is load resistor in $k\Omega$	
Mixer Zin (signal)	2	3	5	kΩ		
Mixer Zm (LO)	3	5	8	kΩ		
Mixer LO injection	20	50	150	mV rms	fc — 10.245MHz	
Detector output voltage change	6	8	8.2	dB	1mV rms input, 1kHz modulation	
					increased from 30 % to 80 %	

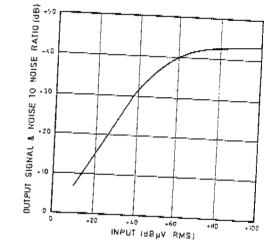
OPERATING NOTES

The noise blank duration can be varied from the suggested value of 300μ s using the formula: Duration time = 0.7CR, where R is value of resistor between pins 11 and 12 and C is value of capacitor from pin 12 to ground.


There is no squelch in the SL6700C and the delay in the delayed AGC is too large to make this output suitable. Squelch is best obtained from a comparator on the AGC decoupling point, pin 16.


The IF amplifiers may be operated at 455kHz giving a single conversion system.

The mixer may also be used as a product detector. Further application information is available in Application Note AN1001.


TYPICAL DC PIN VOLTAGES (Supply 4.5V, input 1mV)

Pin	Voltage	Pin	Voltage	
1	2.25V	10	4.5V	
2	2.09V	11	3.7V	
3	3.68V	12	OV	
4	0.7V	13	0.77V	
5	0.6V	14	1.5V	
6	3.7V	15	1.0V	
7	1.5V	16	0.7V	
8	4.3V	17	OV	
9	1.5V	18	0.7V	

Typical delayed AGC output variation with input signal (f≕10,7MHz, 30% modulation) Fig, 4

Typical signal to noise ratio (S+N/N) with input signal (f∽10.7MHz, 30% modulation) Fig. 5

SL6700C

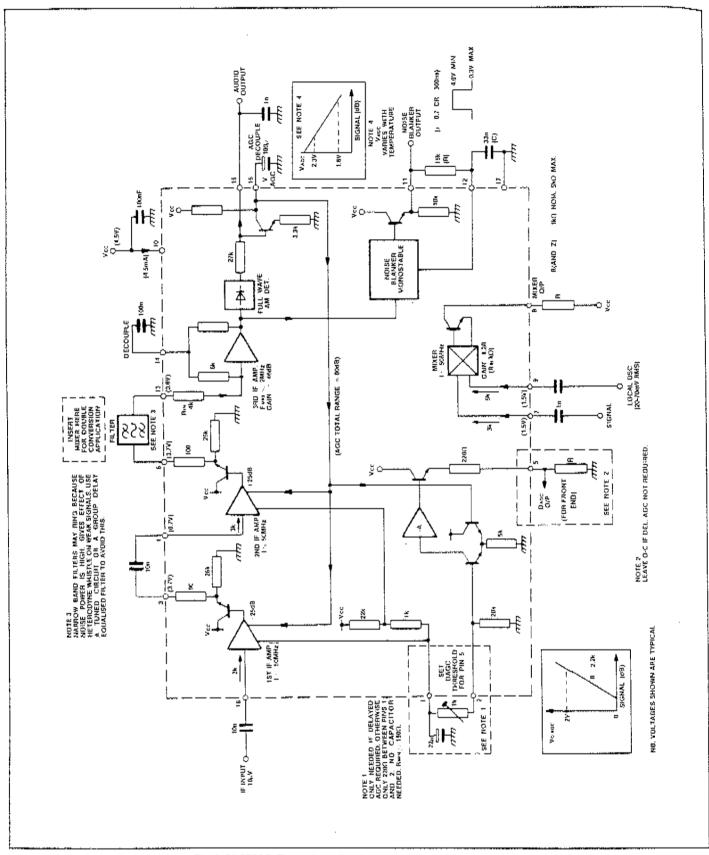


Fig.6 SL6700C Typical application circuit showing interfacing