SCES071D – JUNE 1996 – REVISED JANUARY 1999

	IIBT M (Universal Bus Transceiver)	SN54AI VTH16501	wr	
	Combines D-Type Latches and D-Type	SN74ALVTH16501 DG	G, DGV	, OR DL PACKAGE
	Flip-Flops for Operation in Transparent	(TOP	VIEW)	
	Latched, Clocked, or Clock-Enabled Mode	<u>г</u> т	\mathcal{T}	
	State of the Art Advanced BiCMOS		56	GND
	Technology (ABT) Widebus M Design for	LEAB 2	55	CLKAB
	2 5-V and 3 3-V Operation and Low Static	A1 🛛 3	54	B1
	Power Dissination	GND 4	53	GND
	Support Mixed Mode Signal Operation (5.)	A2 L 5	52	B2
	Support Mixed-Mode Signal Operation (5-V	A3 L 6	51	B3
	and Output voltages with 2.3-V to		50	V _{CC}
-	3.0-V VCC)		49	B4
•	Typical V _{OLP} (Output Ground Bounce)	A5 L 9	48	B5
	<0.8 V at V_{CC} = 3.3 V, T_A = 25°C	A6 L 10	47	B6
٠	High Drive (–24/24 mA at 2.5-V and		46	GND
	–32/64 mA at 3.3-V V _{CC})		45	B7
•	Power Off Disables Outputs, Permitting		44	B8
	Live Insertion		43	B9
	High-Impedance State During Power Up		42	B10
	and Power Down Prevents Driver Conflict		41	B11
•	Use Bus Hold on Data Innuts in Place of		40	B12
•	External Pullun/Pulldown Resistors to		39	GND
	Prevent the Bus From Floating		38	B13
	Auto2-State Eliminates Rus Current		37	B14
	Loading When Output Exceeds $V_{0.0} \pm 0.5$ V		36	B15
•			35	VCC
•	Flow-Inrougn Architecture Facilitates		34	B10
	Printed Circuit Board Layout		33	
•	Distributed V _{CC} and GND Pin Configuration		32	
	Minimizes High-Speed Switching Noise		31	
٠	Package Options Include Plastic Shrink		30	
	Small-Outline (DL), Thin Shrink		29	
	Small-Outline (DGG), Thin Very			

description

The 'ALVTH16501 devices are 18-bit universal bus transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UBT and Widebus are trademarks of Texas Instruments Incorporated.

Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

Copyright © 1999, Texas Instruments Incorporated

description (continued)

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OEBA} should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH16501 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16501 is characterized for operation from -40°C to 85°C.

	INP	UTS		OUTPUT
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
Н	Н	Х	L	L
Н	Н	Х	Н	н
Н	L	=	L	L
Н	L	\uparrow	Н	н
Н	L	Н	Х	в ₀ ‡
Н	L	L	Х	в ₀ §
1				

[†] A-to-<u>B data</u> flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

[‡]Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

§ Output level before the indicated steady-state input conditions were established

SCES071D - JUNE 1996 - REVISED JANUARY 1999

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	-0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state. Vo (see Note 1)	0.5 V to 7 V
Output current in the low state Io: SN54AI VTH16501	96 mA
SN74ALVTH16501	128 mA
Output current in the high state, I _O : SN54ALVTH16501	–48 mA
SN74ALVTH16501	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DGV package	86°C/W
DL package	74°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

SCES071D - JUNE 1996 - REVISED JANUARY 1999

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH1	6501	SN74ALVTH16501			
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage		1.7			1.7			V
VIL	Low-level input voltage				0.7			0.7	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
ЮН	High-level output current				-6			-8	mA
	Low-level output current				6			8	~^^
OL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz			18			24	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
Тд	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6501	SN74	ALVTH1	6501	LINUT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
ЮН	High-level output current				-24			-32	mA
	Low-level output current				24			32	m۸
OL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz			48			64	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES071D - JUNE 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

	DAMETED	TEST CO	NDITIONS	SN54	ALVTH1	6501	SN74	ALVTH1	6501	LINUT
	RAMETER	TEST CC	INDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 2.3 V,	lj = -18 mA			-1.2			-1.2	V
		V_{CC} = 2.3 V to 2.7 V,	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0.	2		
∨он			I _{OH} = -6 mA	1.8						V
VOL VRST [‡] II Control inputs A or B ports	VCC - 2.3 V	I _{OH} = -8 mA				1.8				
		V_{CC} = 2.3 V to 2.7 V,	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 6 mA			0.4				
VOL			I _{OL} = 8 mA						0.4	V
		$V_{CC} = 2.3 V$	I _{OL} = 18 mA			0.5				1
			I _{OL} = 24 mA						0.5	
V _{RST} ‡		$V_{CC} = 2.7 V$	$I_{O} = 1 \text{ mA},$ $V_{I} = V_{CC} \text{ or GND}$			0.55			0.55	V
	Control inputo	V _{CC} = 2.7 V,	$V_I = V_{CC} \text{ or } GND$			±1			±1	
	Control inputs	V _{CC} = 0 or 2.7 V,	V _I = 5.5 V			10			10	
li .			V _I = 5.5 V			10			10	μΑ
	A or B ports	V _{CC} = 2.7 V	$V_{I} = V_{CC}$			1			1	
			$V_{I} = 0$			-5			-5	
loff		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$						±100	μΑ
I _{BHL} §		V _{CC} = 2.3 V,	V _I = 0.7 V		115			115		μΑ
I _{BHH} ¶		V _{CC} = 2.3 V,	V _I = 1.7 V		-10			-10		μΑ
IBHLO#	Ł	V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	300			300			μA
Івнно		V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	-300			-300			μΑ
IEX☆		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μΑ
IOZ(PU	/PD)□	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} = \frac{0.5 \text{ V}}{0.5 \text{ V}}$ V _I = GND or V _{CC} , \overline{OE} =	to V _{CC} , don't care			±100			±100	μΑ
		$V_{CC} = 2.7 V_{.}$	Outputs high		0.04	0.1		0.04	0.1	mA
ICC		$I_{O} = 0,$	Outputs low		2.5	4.5		2.5	4.5	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.04	0.1		0.04	0.1	
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0							pF
Cio		$V_{\rm CC} = 2.5 V,$	V _O = 2.5 V or 0							pF

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}C$.

[‡] Data must not be loaded into the flip-flops/latches after applying power.

S The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 \star Current into an output in the high state when V_O > V_{CC}

□High-impedance state during power up or power down

SCES071D – JUNE 1996 – REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

				SN54	ALVTH1	6501	SN74	ALVTH1	6501		
	RAMEIER	IESICO	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		V _{CC} = 3 V,	lj = -18 mA			-1.2			-1.2	V	
		V _{CC} = 3 V to 3.6 V,	I _{OH} = −100 μA	V _{CC} -0.	2		V _{CC} -0.	.2			
∨он			I _{OH} = -24 mA	2						V	
		vCC = 3 v	I _{OH} = -32 mA				2				
		V _{CC} = 3 V to 3.6 V,	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 16 mA						0.4		
V _{OL}			I _{OL} = 24 mA			0.5				, v	
		V _{CC} = 3 V	I _{OL} = 32 mA						0.5	v	
			I _{OL} = 48 mA			0.55				1	
			I _{OL} = 64 mA						0.55		
V _{RST} ‡		V _{CC} = 3.6 V	$I_{O} = 1 \text{ mA},$ $V_{I} = V_{CC} \text{ or GND}$			0.55			0.55	V	
	Quarteral Linear to	V _{CC} = 3.6 V,	$V_{I} = V_{CC} \text{ or } GND$			±1			±1		
	Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V			10			10		
Ц		ts $V_{CC} = 3.6 V$	V _I = 5.5 V			10			10	μA	
lj	A or B ports		$V_{I} = V_{CC}$			1			1		
			$V_{I} = 0$			-5			-5		
loff		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$						±100	μA	
IBHL§		V _{CC} = 3 V,	V _I = 0.8 V	75			75			μA	
I _{BHH} ¶		V _{CC} = 3 V,	$V_{I} = 2 V$	-75			-75			μA	
IBHLO [#]	ŧ	V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500			500			μA	
Івнно		V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	-500			-500			μA	
IEX☆		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μA	
IOZ(PU	/PD) ^[]	$V_{CC} \le 1.2 \text{ V}, V_O = 0.5 \text{ V}$ V _I = GND or V _{CC} , \overline{OE} =	/ to V _{CC} , don't care			±100			±100	μA	
		$V_{CC} = 3.6 V_{c}$	Outputs high		0.06	0.1		0.06	0.1		
ICC		$I_{O} = 0,$	Outputs low		3.5	5		3.5	5	mA	
		$V_{I} = V_{CC} \text{ or } GND$	Outputs disabled		0.06	0.1		0.06	0.1		
∆ICC◊		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$, One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND				0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0							pF	
C _{io}		V _{CC} = 3.3 V,	V _O = 3.3 V or 0							pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] Data must not be loaded into the flip-flops/latches after applying power.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and _ then raising it to VIL max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 \star Current into an output in the high state when V_O > V_{CC}

 \Box High-impedance state during power up or power down

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES071D - JUNE 1996 - REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

				SN54ALVT	H16501	SN74ALVT	H16501	
				MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency							MHz
	Dulas duration	LE high						
τw	Puise duration	CLK high or low						ns
	Setup time	A or B before CLK	Data high					ns
			Data low					
^t su		A or B before LE \downarrow	CLK high					
			CLK low					
			Data high					
		A or B after CLK	Data low					ns
Γĥ	Hold time	A or B after LE↓ C	CLK high					
			CLK low					

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

				SN54ALVT	H16501	SN74ALVTH16501		LINUT	
				MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency	-						MHz	
	Dulas duration	LE high							
۱W		CLK high or low						ns	
	Setup time	A or B before CLK1	Data high					ns	
			Data low						
^I SU		A or B before LE↓	CLK high						
			CLK low						
			Data high						
		A or B after CLK	Data low					ns	
ι'n	Hola time		CLK high						
		A or B aπer LE↓	CLK low						

PRODUCT PREVIEW

SCES071D - JUNE 1996 - REVISED JANUARY 1999

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	SN54ALVTH16501	SN74ALVTH16501		
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX		
fmax					MHz	
^t PLH	P or A	A or B			20	
^t PHL	BOIA				115	
^t PLH	LEBA or LEAB	A or B			200	
^t PHL		A GI D			115	
^t PLH		A or B			ne	
^t PHL	CLKBA OF CLKAB				115	
^t PZH		A or P			50	
^t PZL	OEDA OI OEAD	AUD			115	
^t PHZ		A or B			ns	
^t PLZ	OLDA UI ÜEAD	7010			115	

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DADAMETED	FROM	то	SN54ALVTH	16501	SN74ALVT	LINUT	
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX		MIN MAX		
fmax							MHz
^t PLH	P or A	D an A					ne
^t PHL	BUIA	A OF D					
^t PLH	LEBA or LEAB						ne
^t PHL	LEDA UI LEAD	A OI D					113
^t PLH		A or B					200
^t PHL		AUB					115
^t PZH		A or P					200
tPZL	OEBA OI OEAB	AUB					115
^t PHZ		A or B					ne
tPLZ		A OL R					115

SCES071D - JUNE 1996 - REVISED JANUARY 1999

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES071D - JUNE 1996 - REVISED JANUARY 1999

NOTES: A. C₁ includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated