DGG OR DL PACKAGE

(TOP VIEW)

SCES022E - JULY 1995 - REVISED FEBRUARY 1999

- Member of the Texas Instruments Widebus+™ Family
- EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- UBE™ (Universal Bus Exchanger) Allows Synchronous Data Exchange
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 9-bit, 4-port universal bus exchanger is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH16409 allows synchronous data exchange between four different buses. Data flow is controlled by the select (SEL0–SEL4) inputs. A data-flow state is stored on the rising edge of the clock (CLK) input if the select-enable (SELEN) input is low. Once a data-flow state has been established, data is stored in the flip-flop on the rising edge of CLK if SELEN is high.

The data-flow control logic is designed to allow glitch-free data transmission.

When preset (PRE) transitions high, the outputs are disabled immediately, without waiting for a clock pulse. To leave the high-impedance state, both PRE and SELEN must be low and a clock pulse must be applied.

To ensure the high-impedance state during power up or power down, \overline{PRE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16409 is characterized for operation from -40°C to 85°C.

PRE 56 CLK 55 SELEN SEL0 2 1A1 🛮 3 54**∏** 1B1 GND [] 4 53 **∏** GND 1A2 **∏** 5 52**∏** 1B2 1A3 🛮 6 51 1B3 50 V_{CC} V_{CC} \square 7 1A4 🛮 8 49**∏** 1B4 1A5 🛮 9 48 **1** 1B5 1A6 10 47 1B6 GND [] 11 46 | GND 45**∏** 1B7 1A7 | 12 1A8 🛮 13 44 🛮 1B8 43 1B9 1A9 🛮 14 15 42 2B1 2A1 🛮 2A2 16 41 **∏** 2B2 2A3 | 1 17 40 **∏** 2B3 GND [] 18 39 GND 38 2B4 2A4 1 19 2A5 **∏** 20 37 **∏** 2B5 2A6 21 36 2B6 V_{CC} **□** 22 35 V_{CC} 2A7 23 34 🛮 2B7 2A8 🛮 24 33 **∏** 2B8 GND [] 25 32 **∏** GND 2A9 26 31 **∏** 2B9 SEL1 [] 27 30 SEL4

SEL2 28

29 **∏** SEL3

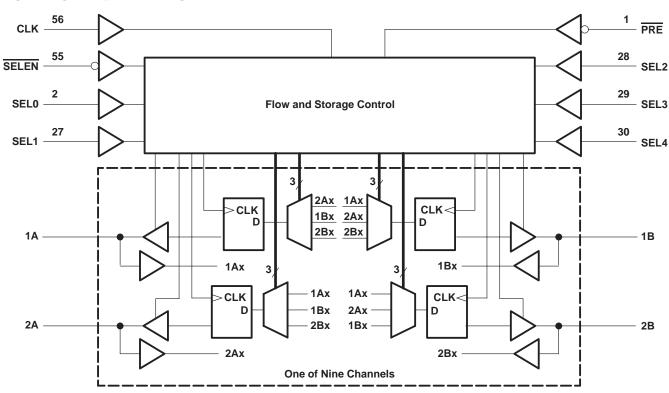
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC, UBE, and Widebus+ are trademarks of Texas Instruments Incorporated.

Function Tables

	INPUTS	OUTPUT
CLK	SEND PORT	RECEIVE PORT
Х	X	_{B0} †
Х	L	L
Х	Н	Н
1	L	L
\uparrow	Н	Н
Н	X	в ₀ †
L	X	_{B0} †

[†] Output level before the indicated steady-state input conditions were established


DATA-FLOW CONTROL

PRE	SELEN	CLK	SEL0	SEL1	SEL2	SEL3	SEL4	DATA FLOW
Н	Х	Χ	Х	Χ	Х	Х	Х	All outputs disabled
L	Н	\uparrow	X	X	X	X	X	No change
L	L	1	0	0	0	0	0	None, all I/Os off
L	L	\uparrow	0	0	0	0	1	Not used
L	L	\uparrow	0	0	0	1	0	Not used
L	L	\uparrow	0	0	0	1	1	Not used
L	L	1	0	0	1	0	0	Not used
L	L	\uparrow	0	0	1	0	1	Not used
L	L	1	0	0	1	1	0	Not used
L	L	\uparrow	0	0	1	1	1	Not used
L	L	1	0	1	0	0	0	2A to 1A and 1B to 2B
L	L	\uparrow	0	1	0	0	1	2A to 1A
L	L	1	0	1	0	1	0	2B to 1B
L	L	\uparrow	0	1	0	1	1	2A to 1A and 2B to 1B
L	L	1	0	1	1	0	0	1A to 2A and 1B to 2B
L	L	\uparrow	0	1	1	0	1	1A to 2A
L	L	1	0	1	1	1	0	1B to 2B
L	L	\uparrow	0	1	1	1	1	1A to 2A and 2B to 1B
L	L	1	1	0	0	0	0	1A to 1B and 2B to 2A
L	L	\uparrow	1	0	0	0	1	1A to 1B
L	L	1	1	0	0	1	0	2A to 2B
L	L	\uparrow	1	0	0	1	1	1A to 1B and 2A to 2B
L	L	\uparrow	1	0	1	0	0	1B to 1A and 2A to 2B
L	L	\uparrow	1	0	1	0	1	1B to 1A
L	L	1	1	0	1	1	0	2B to 2A
L	L	\uparrow	1	0	1	1	1	1B to 1A and 2B to 2A
L	L	1	1	1	0	0	0	2B to 1A and 2A to 1B
L	L	\uparrow	1	1	0	0	1	1B to 2A
L	L	1	1	1	0	1	0	2B to 1A
L	L	\uparrow	1	1	0	1	1	2B to 1A and 1B to 2A
L	L	1	1	1	1	0	0	1A to 2B and 1B to 2A
L	L	\uparrow	1	1	1	0	1	1A to 2B
L	L	1	1	1	1	1	0	2A to 1B
L	L	\uparrow	1	1	1	1	1	1A to 2B and 2A to 1B

SCES022E - JULY 1995 - REVISED FEBRUARY 1999

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	
Output voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH16409 9-BIT, 4-PORT UNIVERSAL BUS EXCHANGER WITH 3-STATE OUTPUTS SCES022E – JULY 1995 – REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		1.65	3.6	V
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
	$V_{\text{IH}} \text{High-level input voltage} \qquad \begin{array}{c} V_{\text{CC}} = 1.0 \\ V_{\text{CC}} = 2.0 \\ V_{\text{CC}} = 2.0 \\ V_{\text{CC}} = 1.0 \\ V_{\text{CC}} = 1.0 \\ V_{\text{CC}} = 2.0 \\$	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
VI	Input voltage		0	Vcc	V
٧o	Output voltage		0	VCC	V
V _I Input voltage V _O Output voltage IOH High-level output current IOL Low-level output current		V _{CC} = 1.65 V		-4	
	High-level output current	V _{CC} = 2.3 V		-12	A
		$V_{CC} = 2.7 \text{ V}$		-12	mA
	V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4	
la.	Low level output ourrent	V _{CC} = 2.3 V	12 12		mA
IOL	Low-level output current	V _{CC} = 2.7 V			
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate			10	ns/V
TA	Operating free-air temperature	-	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES022E - JULY 1995 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0).2		
$VOH \begin{tabular}{ll} I_{OH} = -100 \ \mu A \\ \hline I_{OH} = -4 \ mA \\ \hline I_{OH} = -6 \ mA \\ \hline \\ I_{OH} = -6 \ mA \\ \hline \\ I_{OH} = -12 \ mA \\ \hline \\ I_{OH} = -24 \ mA \\ \hline \\ I_{OL} = 100 \ \mu A \\ \hline \\ I_{OL} = 4 \ mA \\ \hline \\ I_{OL} = 6 \ mA \\ \hline \\ I_{OL} = 12 \ mA \\ \hline \\ I_{OL} = 24 \ mA \\ \hline \\ I_{OL} = 24 \ mA \\ \hline \\ I_{OL} = 12 \ mA \\ \hline \\ I_{OL} = 107 \ V \\ \hline \\ V_{I} = 0.58 \ V \\ \hline \\ V_{I} = 1.07 \ V \\ \hline \\ V_{I} = 0.8 \ V \\ \hline \\ V_{I} = 0.8 \ V \\ \hline \\ V_{I} = 0 \ to \ 3.6 \ V^{\ddagger} \\ \hline \\ I_{OZ} \\ \hline \\ I_{OZ} \\ \hline \\ I_{OZ} \\ \hline \\ V_{O} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ \hline \\ V_{I} = V_{CC} \ or \ GND \\ \hline \\ I_{OZ} \\ I_{OZ} \\ \hline \\ I_{OZ} \\ \hline \\ I_{OZ} \\ I_{OZ$	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
	$I_{OH} = -6 \text{ mA}$	2.3 V	2			
Voн		2.3 V	1.7			V
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2			
		3 V	2.4			
	$I_{OH} = -24 \text{ mA}$	3 V	2			
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.2	
	I _{OL} = 4 mA	1.65 V			0.45	
VOL	I _{OL} = 6 mA	2.3 V			0.4	V
	1- 40 mA	2.3 V			0.7	V
	IOL = 12 mA	2.7 V			0.4	
	I _{OL} = 24 mA	3 V			0.55	
Ц	V _I = V _{CC} or GND	3.6 V			±5	μΑ
	V _I = 0.58 V	1.65 V	25			
	V _I = 1.07 V	1.65 V	-25			
	V _I = 0.7 V	2.3 V	45			
II(hold)	V _I = 1.7 V	2.3 V	-45			μΑ
	V _I = 0.8 V	3 V	75			
	V _I = 2 V	3 V	-75			
	$V_1 = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$	3.6 V			±500	
loz§	$V_O = V_{CC}$ or GND	3.6 V			±10	μΑ
		3.6 V			40	μΑ
	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
		3.3 V		4		pF
		3.3 V		8		pF

 $[\]dagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

 $[\]mbox{\$ For I/O ports, the parameter I}_{\mbox{OZ}}$ includes the input leakage current.

SN74ALVCH16409 9-BIT, 4-PORT UNIVERSAL BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES022E - JULY 1995 - REVISED FEBRUARY 1999

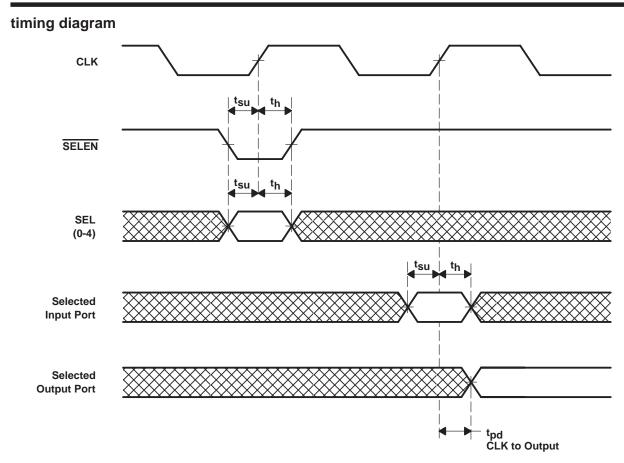
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} =	1.8 V	V _{CC} =		VCC =	2.7 V	V _{CC} =		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency			†		120		120		120	MHz
t _W	Pulse duration, CLK high or low		†		4.2		4.2		3		ns
	Setup time	A or B before CLK↑	†		1.9		1.9		1.4		ns
		SEL before CLK↑	†		5.1		4.2		3.5		
t _{su}		SELEN before CLK↑	†		2.5		2.5		1.8		
		PRE before CLK↑	†		1		1		0.7		
	Hold time	A or B after CLK↑	†		0.8		0.8		1		ns
th		SEL after CLK↑	†		0		0		0		
		SELEN after CLK↑	†	·	0.5		0.5		0.8		

[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

	PARAMETER	FROM	FROM TO (INPUT) (OUTPUT)		1.8 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
		(IIVFOT)	(001701)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
	f _{max}			†		120		120		120		MHz
	^t pd	CLK	A or B		†	1.5	6		5.7	1.5	5.1	ns
Г	t _{en}	CLK	A or B		†	2.4	6.9		6.3	2	5.7	ns
Γ	4	CLK	A or B		†	2.3	7.1		6	2	5.7	no
^t dis	PRE	AOIB		†	2.8	7.5		6.5	2.5	6.1	ns	


[†] This information was not available at the time of publication.

operating characteristics, T_A = 25°C

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
<u> </u>	capacitance	All outputs enabled	C. FO. F. 4 40 MHz	†	60	60	pF
C _{pd}		All outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	†	60	60	

 $[\]overline{^{\dagger}}$ This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V$

VCC

0 V

VCC

0 V

VCC

VOH

- 0 V

CC/2

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

NOTES: A. C_L includes probe and jig capacitance.

Output

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.

S1 at GND

(see Note B)

D. The outputs are measured one at a time with one transition per measurement.

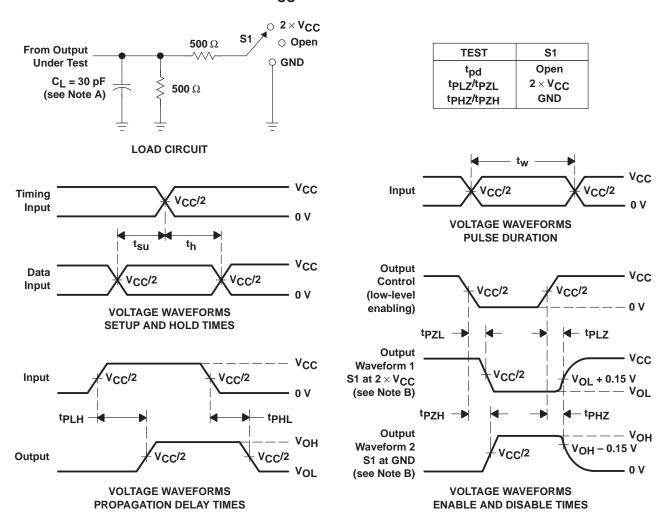
V_{CC}/2

VOL

tpl 7 and tpH7 are the same as tdis.

V_{CC}/2

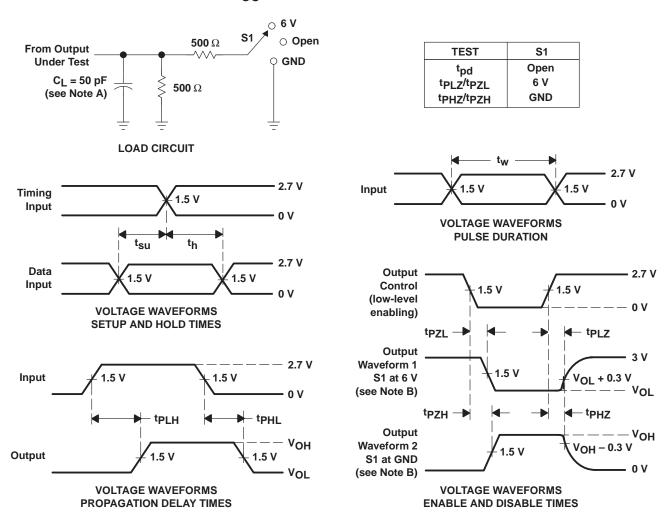
VOLTAGE WAVEFORMS


PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCES022E - JULY 1995 - REVISED FEBRUARY 1999

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{\Omega} = 50 \Omega$, $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpZL and tpZH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated