SLLS154A - MARCH 1993 - REVISED MAY 1995

KAGE

- Meet or Exceed Standards EIA/TIA-422-B, RS-485, CCITT Recommendation V.11
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirement 50 mA Max
- Driver Positive- and Negative-Current Limiting
- Driver Common-Mode Output Voltage Range of -7 V to 12 V
- Thermal Shutdown Protection
- Driver 3-State Outputs Active-High Enable
- Receiver Common-Mode Input Voltage Range of -12 V to 12 V
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Hysteresis . . . 50 mV Typ
- Receiver High Input Impedance
 12 kΩ Min
- Receiver 3-State Outputs Active-Low Enable for SN75ALS1177 Only
- Operate From Single 5-V Supply

description

The SN75ALS1177 and SN75ALS1178 dual differential drivers and receivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet standards EIA/TIA-422-B, RS-485, and CCITT Recommendation V.11.

The SN75ALS1177 combines dual 3-state differential line drivers and dual 3-state differential input line receivers, both of which operate from a single 5-V power supply. The drivers and receivers have active-high and active-low enables, respectively, which can be externally connected together to function as direction control. The SN75ALS1178 drivers each have an individual active-high enable. Fail-safe design ensures that when the receiver inputs are open, the receiver outputs are always high.

The SN75ALS1177 and SN75ALS1178 are characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN75ALS1177		. N OR N P VIEW	
1B 1A 1R 2R 2A 2B GND	1 2 3 4 5 6 7 8	16 15 14 13 12 11 10 9	Vcc 1D 1Y 1Z DE 2Z 2Y 2D

SN75ALS1178 ... N OR NS[†] PACKAGE (TOP VIEW)

1B [1A [1R [1DE [2R [2A]	1 2 3 4 5 6	υ	16 15 14 13 12 11] V _{CC}] 1D] 1Y] 1Z] 2DE] 2Z
				E

[†] The NS package is only available in left-end taped and reeled (SN75ALS1177NSLE and SN75ALS1178SNLE).

SLLS154A – MARCH 1993 – REVISED MAY 1995

Function Tables

SN75ALS1177, SN75ALS1178 (each driver)

INPUT	ENABLE	ουτι	PUTS
D	DE	Y	Z
Н	Н	Н	L
L	Н	L	Н
Х	L	z	Z

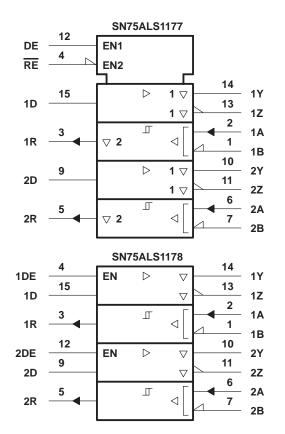
SN75ALS1177 (each receiver)

	-	
DIFFERENTIAL A – B	ENABLE RE	OUTPUT Y
$V_{ID} \ge 0.2 V$	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
Х	н	Z
Open	L	Н

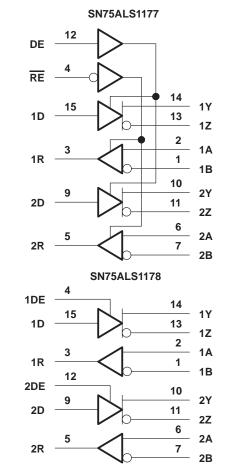
SN75ALS1178 (each receiver)

DIFFERENTIAL A – B	OUTPUT Y
$V_{ID} \ge 0.2 V$	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
$V_{ID} \le -0.2 V$	L
Open	Н

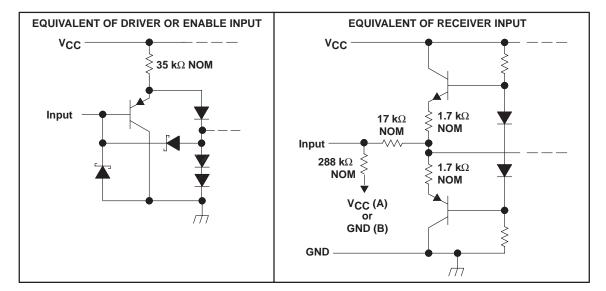
H = high level, L = low level,


? = indeterminate, X = irrelevant,

Z = high impedance (off)

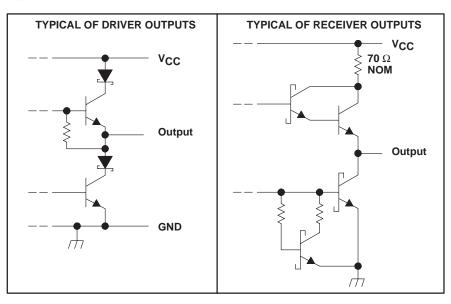

logic diagram (positive logic)

SLLS154A - MARCH 1993 - REVISED MAY 1995



logic symbol[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


equivalent schematics

SLLS154A – MARCH 1993 – REVISED MAY 1995

schematics of outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Input voltage, VI (DE, RE, and D inputs)	
Output voltage range, V _O (Driver)	
Input voltage range, Receiver	\ldots –14 V to 14 V
Receiver differential-input voltage range (see Note 2)	$\dots \dots -14$ V to 14 V
Receiver low-level output current	50 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

2. Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.

DISSIPATION RATING TABLE							
$\label{eq:package} \begin{array}{cc} T_A \leq 25^\circ C & \text{OPERATING FACTOR} & T_A = 70^\circ C \\ \text{POWER RATING} & \text{ABOVE } T_A = 25^\circ C & \text{POWER RATIN} \end{array}$							
N	1150 mW	9.2 mW/°C	736 mW				
NS	625 mW	4.0 mW/°C	445 mW				

SLLS154A - MARCH 1993 - REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Differential input voltage, VID	Receiver			±12	V
Common-mode output voltage, VOC	Driver	-7†		12	V
Common-mode input voltage, V_{IC}	Receiver			±12	V
High-level input voltage, V _{IH}	DE, RE, D	2			V
Low-level input voltage, VIL	DE, RE, D			0.8	V
Lich lovel output ourrest love	Driver			-60	mA
ligh-level input voltage, V _{IH} ow-level input voltage, V _{IL} ligh-level output current, I _{OH}	Receiver			-400	μΑ
	Driver	60		60	~ ^
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA		0		70	°C

[†] The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage level only.

SLLS154A - MARCH 1993 - REVISED MAY 1995

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		MIN TYP [†] MAX			UNIT	
VIK	Input clamp voltage	lj = – 18 mA				-1.5	V
VOH	High-level output voltage	V _{IH} = 2 V,	$V_{IL} = 0.8 V$, $I_{OH} = -33 mA$		3.3		V
V _{OL}	Low-level output voltage	V _{IH} = 2 V,	V _{IL} = 0.8 V, I _{OL} = 33 mA		1.1		V
VOD1	Differential output voltage	IO = 0	-	1.5		6	V
VOD2 Differential output voltage	$V_{CC} = 5 V,$ R _L = 100 Ω	See Figure 1	1/2 V _{OD1}			V	
1 0021		R _L = 54 Ω		1.5		5	
IVOD3	Differential output voltage	See Note 3		1.5		5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage (see Note 4)					±0.2	V
VOC	Common-mode output voltage	$R_L = 54 \Omega \text{ or}$	-1‡		3	V	
$\Delta V_{OC} $	Change in magnitude of common-mode output voltage (see Note 4)				±0.2	V	
lO(OFF)	Output current with power off	V _{CC} = 0,	$V_{O} = -7 V$ to 12 V			±100	μA
I _{OZ}	High-impedance-state output current	$V_{O} = -7 V$ to	12 V			±100	μA
IIН	High-level input current	V _{IH} = 2.7 V				100	μA
IIГ	Low-level input current	VIL = 0.4 V				-100	μA
		$V_{O} = -7 V$				-250	
1	Short-circuit output current	VO = ACC			250	mA	
los	Short-circuit output current	V _O = 12 V		250		250	
		$V_0 = 0 V$				150	
	Supply current (total package)	No load	Outputs enabled		35	50	mA
ICC		$\begin{array}{c} \text{Irrent} & V_{O} = -7 \ \text{V to } 12 \ \text{V} \\ & V_{IH} = 2.7 \ \text{V} \\ & V_{IL} = 0.4 \ \text{V} \\ & V_{O} = -7 \ \text{V} \\ & V_{O} = -7 \ \text{V} \\ & V_{O} = V_{CC} \\ & V_{O} = 12 \ \text{V} \\ & V_{O} = 0 \ \text{V} \end{array}$	50	11/A			

[†] All typical values are at $V_{CC} = 5$ V and $T_A = 25^{\circ}C$.

[‡] The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.

NOTES: 3. See EIA Standard RS-485 Figure 3.5, test termination measurement 2.

4. Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST	MIN	TYP	MAX	UNIT	
t _{PLH}	Propagation delay time, high- to low-level output			9	15	22	ns
^t PHL	Propagation delay time, low- to high-level output	$R_L = 60 \Omega$, See Figure 3	$C_{L1} = C_{L2} = 100 \text{ pF},$	9	15	22	ns
t _{sk}	Output-to-output skew	occ riguie o		0	2	8	ns
^t PZH	Output enable time to high level	C _L = 100 pF,	See Figure 4	30	35	50	ns
^t PZL	Output enable time to low level	C _L = 100 pF,	See Figure 5	5	15	25	ns
^t PHZ	Output disable time from high level	C _L = 15 pF,	See Figure 4	7	15	30	ns
^t PLZ	Output disable time from low level	C _L = 15 pF,	See Figure 5	7	15	30	ns

SLLS154A - MARCH 1993 - REVISED MAY 1995

RECEIVER SECTION

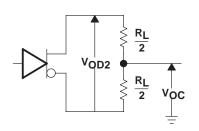
electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIT+	Positive-going input threshold voltage		V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.2	V
VIT-	Negative-going input threshold voltage		V _O = 0.5 V,	I _O = 8 mA	-0.2‡			V
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT} –)					50		mV
VIK	Enable input clamp voltage	SN75ALS1177	II = -18 mA				-1.5	V
Vон	High-level output voltage	-	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \ \mu A$,	2.7			V
VOL	Low-level output voltage		$V_{ID} = 200 \text{ mV}, \qquad I_{OL} = 8 \text{ mA},$ See Figure 2				0.45	V
I _{OZ}	High-impedance-state output current	SN75ALS1177	$V_{O} = 0.4 \text{ V to } 2.4 \text{ V}$				±20	μA
1.	Line input surrent (see Note E)			V _I = 12 V			1	A
1	Line input current (see Note 5)		Other input at 0 V	$V_{I} = -7 V$			-0.8	mA
IIН	High-level input current, RE	SN75ALS1177	V _{IH} = 2.7 V				20	μA
IIL	Low-level input current, RE	SN75ALS1177	V _{IL} = 0.4 V				-100	μA
r _i	Input resistance				12			kΩ
los	Short-circuit output current		V _O = 0 V,	See Note 6	-15		-85	mA
ICC	Supply current (total package)		No load,	Outputs enabled		35	50	mA

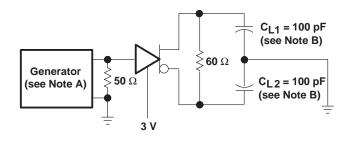
[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. [‡] The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.

NOTES: 5. Refer to EIA standards RS-422-A, RS-423-A, and RS-485-A for exact conditions.

6. Not more than one output should be shorted at a time.


switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

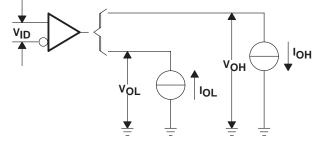
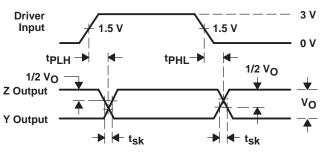
PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _{PLH}	LH Propagation delay time, low- to high-level output		0 45 -5		15	25	37	ns
^t PHL	Propagation delay time, high- to low-level outp	ut	C _L = 15 pF,	See Figure 6	15	25	37	ns
^t PZH	Output enable time to high level	SN75ALS1177	C _L = 100 pF,	See Figure 7	10	20	30	ns
^t PZL	Output enable time to low level	SN75ALS1177	C _L = 100 pF,	See Figure 7	10	20	30	ns
^t PHZ	Output disable time from high level	SN75ALS1177	CL = 15 pF,	See Figure 7	5	12	16	ns
^t PLZ	Output disable time from low level	SN75ALS1177	C _L = 15 pF,	See Figure 7	5	12	16	ns

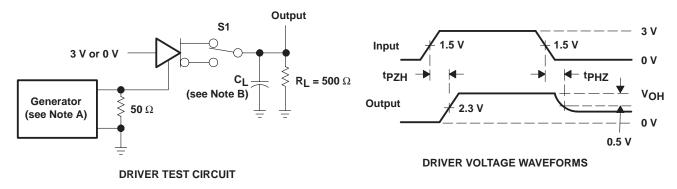


SLLS154A – MARCH 1993 – REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

DRIVER TEST CIRCUIT


Figure 2. Receiver Test Circuit, VOH and VOL

DRIVER VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns. t_f \leq 10 ns. B. C_L includes probe and jig capacitance.

Figure 3. Driver Propagation Delay Times

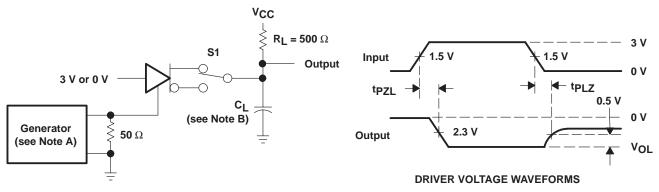
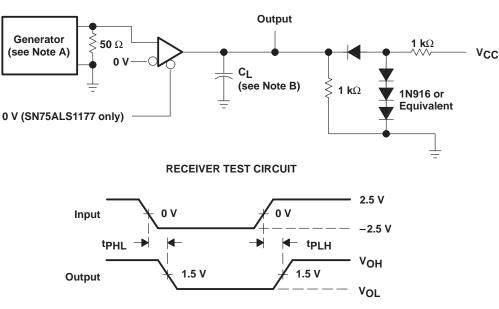

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 10 ns, t_f \leq 10 ns. B. C_L includes probe and jig capacitance.

Figure 4. Driver Enable and Disable TImes

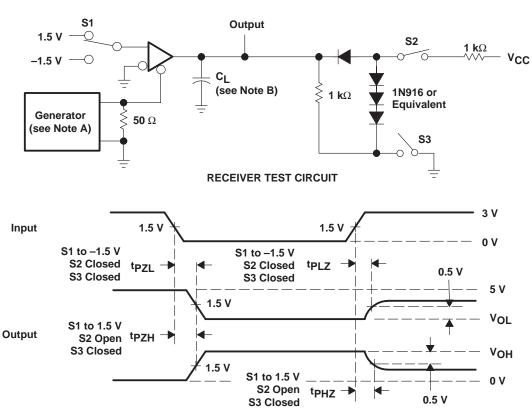



SLLS154A – MARCH 1993 – REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

DRIVER TEST CIRCUIT

Figure 5. Driver Enable and Disable Times


DRIVER VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns. t_f \leq 10 ns. B. C_L includes probe and jig capacitance.

Figure 6. Receiver Propagation Delay Times

SLLS154A – MARCH 1993 – REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns. B. C_L includes probe and jig capacitance.

Figure 7. Receiver Output Enable and Disable Times

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated