SN75ALS125, SN75ALS127 SEVEN-CHANNEL LINE RECEIVERS

D2239, APRIL 1987-REVISED AUGUST 1989

Meets IBM 360/370 I/O Specification

- Input Resistance . . . 7 k Ω to 20 k Ω
- Output Compatible with TTL
- IMPACT™ Low-Power Schottky Technology
- Operates from Single 5-V Supply
- High Speed . . . Low Propagation Delay
- Ratio Specification for Propagation Delay Time, Low-to-High/High-to-Low
- Glitch-Free Power-Up and Power-Down
- Seven Channels in One 16-Pin Package
- Standard V_{CC} and Ground Positioning on SN75ALS127

description

The SN75ALS125 and SN75ALS127 are monolithic seven-channel line receivers designed to satisfy the requirements of the IBM System 360/370 input/output interface specifications. Employing the IMPACT™ process allows low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs.

The SN75ALS125 and SN75ALS127 are characterized for operation from 0 °C to 70 °C.

SN75ALS125 . . . D, J, OR N PACKAGE (TOP VIEW)

SN75ALS127 . . . D, J, OR N PACKAGE (TOP VIEW)

logic symbols†

SN75ALS125 16_ 1Y 1A 2 9 2Y 2A 14_ 3Y 3 **3A** 13 41 12 5 5Y 6 11 **6Y** 6A 10 7Y 7Δ

	SN75ALS127	
1A 1	D	15 1Y
2A 2		14 2Y 13 3Y
3A 3 4A 4		12 4Y
5A 5		11 5Y
6A 6		10 6Y
7A		7

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

IMPACT is a trademark of Texas Instruments Incorporated

schematic (each receiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	٧
Input voltage range	V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2):	
D package	٧
J package	٧
N package	٧
Operating free-air temperature range	С
Storage temperature range65°C to 150°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °c	С
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 or	С

NOTES: 1. All voltage values are with respect to network ground terminal.

 For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW/ °C at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	٧
High-level input voltage, V _{IH}	1.7		,	٧
Low-level input voltage, VIL			0.7	V
High-level output current, IOH			-0.4	V
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage	V _{CC} = 4.5 V, V _{IL} = 0.7 V,	$l_{OH} = -0.4 \text{ mA}$	2.4	3.1		V
VOL	Low-level output voltage	V _{CC} = 4.5 V, V _{IH} = 1.7 V,	IOL = 16 mA	Ι	0.4	0.5	V
l _{IH}	High-level input current	V _{CC} = 5.5 V, V _I = 3.11 V			0.3	0.42	mA
I _{IL}	Low-level input current	V _{CC} = 5.5 V, V _I = 0.15 V				30	μА
los	Short-circuit output current [‡]	V _{CC} = 5.5 V, V _O = 0		-18		- 60	mA
ri	Input resistance	$V_{CC} = 4.5 \text{ V}, 0, \text{ or open},$ $\Delta V_{I} = 0.15 \text{ V to } 4.15 \text{ V}$		7		20	kΩ
		V _{CC} = 5.5 V, I _{OH} = -0.4 mA, All inputs at 0.7 V			15	25	mA
lcc	Supply current	V _{CC} = 5.5 V, I _{OL} = 16 mA, All inputs at 4 V			28	47	mA

switching characteristics over recommended operating temperature range (unless otherwise noted), VCC = 5 V

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output		7	14	25	ns
tPHL	Propagation delay time, high-to-low-level output		10	18	30	ns
tPLH tPHL	Ratio of propagation delay times	$R_L = 400 \Omega$, $C_L = 50 pF$, See Figure 1	0.5	0.8	1.3	
tTLH	Transition time, low-to-high-level output		1	7	12	ns
tTHL	Transition time, high-to-low-level output		1	3	12	ns

 $^{^{\}dagger}$ All typical values are at VCC = 5 V, TA = 25 °C. ‡ Not more than one output should be shorted at a time.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_{out} \approx 50~\Omega$, PRR $\leq 5~MHz$.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

FIGURE 1