- Three Differential Transceivers in One Package
- Signaling Rates ${ }^{1}$ Up to $\mathbf{3 0} \mathbf{M b p s}$
- Low Power and High Speed
- Designed for TIA/EIA-485, TIA/EIA-422, ISO 8482, and ANSI X3.277 (HVD SCSI Fast-20) Applications
- Common-Mode Bus Voltage Range -7 V to 12 V
- ESD Protection on Bus Terminals Exceeds 12 kV
- Driver Output Current up to $\pm 60 \mathrm{~mA}$
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Power-Up, Power-Down Glitch-Free Operation
- Pin-Compatible With the SN75ALS171
- Available in Shrink Small-Outline Package

description

The SN65LBC171 and SN75LBC171 are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. Potential applications include serial or parallel data transmission, cabled peripheral buses with twin axial, ribbon, or twisted-pair cabling. These devices are suitable for FAST-20 SCSI and can transmit or receive data pulses as short as 25 ns , with skew less than 3 ns .
These devices combine three 3 -state differential line drivers and three differential input line receivers, all of which operate from a single $5-\mathrm{V}$ power supply.
The driver differential outputs and the receiver differential inputs are connected internally to form three differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or $\mathrm{V}_{\mathrm{CC}}=0$. These ports feature a wide common-mode voltage range making the device suitable for party-line applications over long cable runs.
The SN75LBC171 is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The SN65LBC171 is characterized for operation over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

1 The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

AVAILABLE OPTIONS ${ }^{\dagger}$

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	
	PLASTIC SMALL-OUTLINE (JEDEC MS-013)	PLASTIC SHRINK SMALL-OUTLINE (JEDEC MO-150)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75LBC171DW	SN75LBC171DB
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65LBC171DW	SN65LBC171DB

\dagger Add R suffix for taped and reel
Function Tables

EACH DRIVER					
INPUT	ENABLE		OUTPUTS		
D	DE	CDE	A	B	
H	H	H	H	L	
L	H	H	L	H	
OPEN	H	H	L	H	
X	L	X	Z	Z	
X	X	L	Z	Z	
X	OPEN	X	Z	Z	
X	X	OPEN	Z	Z	

DIFFERENTIAL INPUT $\left(\mathbf{V}_{\mathbf{A}}-\mathbf{V}_{\mathbf{B}}\right)$	ENABLE $\overline{\mathbf{R E}}$	OUTPUT \mathbf{R}
$\mathrm{V}_{\text {ID }} \geq 0.2 \mathrm{~V}$	L	H
$-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.2 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\text {ID }} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z
OPEN	L	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off), ? = indeterminate
equivalent input and output schematic diagrams

SN65LBC171, SN75LBC171
 TRIPLE DIFFERENTIAL TRANSCEIVERS

absolute maximum ratings \dagger

Voltage range at any bus I/O terminal (steady state) .. -10 V to 15 V
Voltage input range, A and B, (transient pulse through 100Ω, see Figure 12) $\ldots \ldots \ldots \ldots .$.

Electrostatic discharge: Human body model (A, B, GND) (see Note 2) 12 kV
All pins .. 5 kV
Charged-device model (all pins) (see Note 3) 1 kV
Continuous total power dissipation See Power Dissipation Rating Table

Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.
3. Tested in accordance with JEDEC Standard 22, Test Method C101.

POWER DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=\mathbf{7 0}{ }^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DB	995 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	635 mW	515 mW
DW	1480 mW	$11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	950 mW	770 mW

\ddagger This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
Voltage at any bus I/O terminal	A, B	-7		12	V
High-level input voltage, V_{IH}	DE, CDE, RE	2		V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$		0		0.8	
Differential input voltage, $\mathrm{V}_{\text {ID }}$	A with respect to B	-12		12	V
Output current	Driver	-60		60	mA
	Receiver	-8		8	
Operating free-air temperature, T_{A}	SN75LBC171	0		70	${ }^{\circ} \mathrm{C}$
	SN65LBC171	-40		85	

DRIVER SECTION

electrical characteristics over recommended operating conditions

PARAMETER		TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Input clamp voltage D, DE, CDE	$\mathrm{I}=18 \mathrm{~mA}$		-1.5	-0.7		V
V_{O}	Open-circuit output voltage (single-ended)	A or B, No load		0		V_{CC}	V
\| $\mathrm{V}_{\mathrm{OD}(\mathrm{SS})}{ }^{\text {l }}$	Steady-state differential output voltage magnitude \ddagger	No load		3.8	4.3	V_{CC}	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$,	See Figure 1	1	1.6	2.4	V
		With common-mode loading, See Figure 2		1	1.6	2.4	V
$\Delta \mathrm{V}_{\text {OD }}$	Change in differential output voltage magnitude, $\left\|\mathrm{V}_{\mathrm{OD}(\mathrm{H})}\right\|-\left\|\mathrm{V}_{\mathrm{OD}(\mathrm{L})}\right\|$	$\begin{aligned} & R_{\mathrm{L}}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	See Figure 1	-0.2		0.2	V
VOC(SS)	Steady-state common-mode output voltage			2	2.4	2.8	V
$\Delta \mathrm{VOC}(\mathrm{SS})$	Change in steady-state common-mode output voltage (VOC(H) - $\mathrm{VOC}_{\mathrm{OC}}(\mathrm{L})$)			-0.2		0.2	V
1	Input current	D, DE, CDE		-100		100	$\mu \mathrm{A}$
10	Output current with power off	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}$ to 12 V	-700		900	$\mu \mathrm{A}$
Ios	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}$ to 12 V ,	See Figure 7	-250		250	mA
ICC	Supply current (driver enabled)	D at 0 V or V_{CC},	CDE, DE, $\overline{R E}$ at $V_{C C}$, No load		14	20	mA

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The minimum $V_{O D}$ may not fully comply with TIA/EIA-485-A at operating temperatures below $0^{\circ} \mathrm{C}$. System designers should take the possibly lower output signal into account in determining the maximum signal-transmission distance.

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
tplH	Differential output propagation delay, low-to high	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ & \text { See Figure 3 } \end{aligned} \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$	4	8.5	12	ns	
tPHL	Differential output propagation delay, high-to-low		4	8.5	11		
tr_{r}	Differential output rise time		3	7.5	11		
$\mathrm{tf}_{\text {f }}$	Differential output fall time		3	7.5	11		
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew \| (tPLH - tPHL)					2	
$\mathrm{t}_{\text {sk(0) }}$	Output skew§				1.5		
$\mathrm{t}_{\text {sk }}(\mathrm{pp})$	Part-to-part skewII				2		
tPLH	Differential output propagation delay, low-to high	See Figure 4, (HVD SCSI double-terminated load)	3	7	10	ns	
tPHL	Differential output propagation delay, high-to-low		3	7.5	10		
tr_{r}	Differential output rise time		3	7.5	12		
$\mathrm{tf}^{\text {f }}$	Differential output fall time		3	7.5	12		
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew \| (tPLH - tPHL)					3	
$\mathrm{t}_{\text {sk }}(0)$	Output skew§				1.5		
$\mathrm{t}_{\text {sk }}(\mathrm{pp})$	Part-to-part skew ${ }^{11}$				2.5		
tPZH	Output enable time to high level	See Figure 5		15	25	ns	
tPHZ	Output disable time from high level			18	25		
tPZL	Output enable time to low level	See Figure 6		10	25	ns	
tplZ	Output disable time from low level			17	25		

\S Output skew ($\mathrm{t}_{\mathrm{sk}(\mathrm{o})}$) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.
II Part-to-part skew ($\mathrm{t}_{\mathrm{sk}}(\mathrm{pp})$) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.

RECEIVER SECTION

electrical characteristics over recommended operating conditions

PARAMETER		TEST CONDITIONS		MIN	TYPt	MAX	UNIT
$\mathrm{V}_{\text {IT }+}$	Positive-going differential input voltage threshold					0.2	
$\mathrm{V}_{\text {IT- }}$	Negative-going differential input voltage threshold			-0.2			
$\mathrm{V}_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\text {IT }+}-\mathrm{V}_{\text {IT-}}$)				40		mV
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}, \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$, see Figure 10		4	4.7	V_{CC}	V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV}, \mathrm{IOL}=-8 \mathrm{~mA}$, see Figure 10		0	0.2	0.4	
1	Line input current	Other input $=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$			0.9	mA
			$\mathrm{V}_{1}=-7 \mathrm{~V}$	-0.7			
1	Input current	$\overline{\mathrm{RE}}$		-100		100	$\mu \mathrm{A}$
R_{1}	Input resistance	A, B		12			$\mathrm{k} \Omega$
ICC	Supply current (receiver enabled)	A, B, D open, $\overline{\text { R }}$	E, and CDE at 0 V			16	mA

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT	
tplH	Propagation delay time, low-to-high level output	$V_{\text {ID }}=-3 \mathrm{~V}$ to 3 V , See Figure 9	7	16	ns	
tPHL	Propagation delay time, high-to-low level output		7	16	ns	
t_{r}	Receiver output rise time			1.3 3	ns	
$\mathrm{tf}^{\text {f }}$	Receiver output fall time			1.3 3	ns	
tPZH	Receiver output enable time to high level	See Figure 10		$26 \quad 40$	ns	
tPHZ	Receiver output disable time from high level			40		
tPZL	Receiver output enable time to low level	See Figure 11		$29 \quad 40$	ns	
tpLZ	Receiver output enable time to high level			40		
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\| (tpLH - tpHL)			2	ns
$\mathrm{t}_{\text {sk }(0)}$	Output skew ${ }^{\ddagger}$			1.5	ns	
$\mathrm{t}_{\text {sk }}(\mathrm{pp})$	Part-to-part skew§			3	ns	

\ddagger Output skew ($\mathrm{tsk}_{\mathrm{sk}}(0)$) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together.
§ Part-to-part skew $\left(\mathrm{t}_{\mathrm{sk}}(\mathrm{pp})\right.$) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.

†Includes probe and jig capacitance
Figure 1. Driver Test Circuit, V_{OD} and V_{OC} Without Common-Mode Loading

Figure 2. Driver Test Circuit, V_{OD} With Common-Mode Loading

\dagger PRR $=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$ \ddagger Includes Probe and Jig Capacitance

Figure 3. Driver Switching Test Circuit and Waveforms, 485-Loading

PARAMETER MEASUREMENT INFORMATION

\dagger PRR $=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
\ddagger Includes Probe and Jig Capacitance
Figure 4. Driver Switching Test Circuit and Waveforms, HVD SCSI-Loading (double terminated)

$\dagger 3 \mathrm{~V}$ if testing A output, 0 V if testing B output
$\ddagger \mathrm{PRR}=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
§ Includes Probe and Jig Capacitance

Figure 5. Driver Enable/Disable Test, High Output

$\dagger 0 \mathrm{~V}$ if testing A output, 3 V if testing B output
$\ddagger \mathrm{PRR}=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
§ Includes Probe and Jig Capacitance
Figure 6. Driver Enable/Disable Test, Low Output

Figure 7. Driver Short-Circuit Test

\dagger PRR $=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
\ddagger Includes Probe and Jig Capacitance

Figure 8. Receiver DC Parameters

Figure 9. Receiver Switching Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION

\dagger PRR $=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
\ddagger Includes Probe and Jig Capacitance
Figure 10. Receiver Enable/Disable Test, High Output

Figure 11. Receiver Enable/Disable Test, Low Output

Figure 12. Test Circuit and Waveform, Transient Over Voltage Test

TYPICAL CHARACTERISTICS

Figure 13

DRIVER PROPAGATION DELAY
VS
FREE-AIR TEMPERATURE

Figure 15

DIFFERENTIAL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

Figure 14

SUPPLY CURRENT
vs
SIGNALING RATE

Figure 16

TYPICAL CHARACTERISTICS

Figure 17

RECEIVER PROPAGATION DELAY TIME
VS
FREE-AIR TEMPERATURE

Figure 18

Figure 19. Circuit Diagram for Signaling Characteristics

TYPICAL CHARACTERISTICS

Figure 20. Signal Waveforms at $\mathbf{3 0} \mathbf{~ M b p s}$

Figure 21. Eye Patterns, Pseudorandom Data at 30 Mbps

TYPICAL CHARACTERISTICS

Figure 22. Signal Waveforms at $\mathbf{5 0} \mathbf{~ M b p s}$

Figure 23. Eye Patterns, Pseudorandom Data at 50 Mbps

MECHANICAL DATA

DB (R-PDSO-G**)
28 PINS SHOWN

DIM	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC171DB | ACTIVE | SSOP | DB | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC171DBR | ACTIVE | SSOP | DB | 20 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC171DW | ACTIVE | SOIC | DW | 20 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC171DWG4 | ACTIVE | SOIC | DW | 20 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC171DWR | ACTIVE | SOIC | DW | 20 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC171DWRG4 | ACTIVE | SOIC | DW | 20 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC171DB | ACTIVE | SSOP | DB | 20 | 70 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC171DBR | ACTIVE | SSOP | DB | 20 | 2500 | TBD | Call TI | Call TI |
| SN75LBC171DBRG4 | ACTIVE | SSOP | DB | 20 | 2500 | TBD | Call TI | Call TI |
| SN75LBC171DW | ACTIVE | SOIC | DW | 20 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC171DWG4 | ACTIVE | SOIC | DW | 20 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC171DWR | ACTIVE | SOIC | DW | 20 | 2500 | TBD | Call TI | Call TI |
| SN75LBC171DWRG4 | ACTIVE | SOIC | DW | 20 | 2500 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check $\mathrm{http}: / / \mathrm{www} . t \mathrm{ti} . \mathrm{com} /$ productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^0]Copyright © 2006, Texas Instruments Incorporated

[^0]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

