
5A Ultra Low Dropout Voltage Regulator Fast Response, Adjustable & Fixed

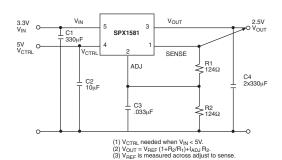
FEATURES

- ■Low Dropout Voltage 500mV at 5A Full Load Current
- Adjustable Ouput Down to 1.2V from ATX Power Supply
- Fixed Output Voltages of 3.3V, 2.8V and 2.5V
- Extremely Tight Load and Line Regulation
- Standard 5-Terminal Low Cost TO-220 and TO-263

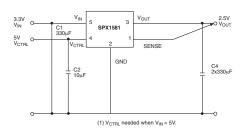
APPLICATIONS

- ■3.3V to 2.8V ATX Power Supplies
- ■3.3V to 2.9V for Portable PENTIUM[™] Processor
- ■5V to 3.5V VRE Supply
- High efficiency "Green" Computer Systems

Now Available in Lead Free Packaging


DESCRIPTION

The SPX1581 is a 5A Low Dropout Regulator with extremely low dropout voltage. The adjustable version requires only two external resistors to set the output voltage. The fixed version has a preset output of 3.3V, 2.8V or 2.5V and does not require any external resistors. The SPX1581 features a low dropout of 400mV(Typ.) and offers fast transient response. This device is suitable for Pentium applications requiring 2.8V, 2.5V from 3.3V ATX power supplies, where a low current input voltage 1V greater than the output voltage is needed. With an external sense pin the load regulation is less than 1mV. This device is an excellent choice for the use of powering low voltage microprocessors that require a lower dropout, fast transient response to regulate from 3.3V and 5V supplies. The SPX1581 is also an excellent choice as a post regulator for switching supplies applications.


The SPX1581 offers protection against over-current faults, reversed input polarity, over temperature operation and positive and negative transient voltage.

The SPX1581 is offered in a 5 pin TO-220 and TO-263 compatible with industry standard 5-terminal regulators. For 7A, 3A and 1.5A ultra low dropout versions refer to SPX1580, SPX1582 and SPX1583 data sheets respectively.

TYPICAL APPLICATIONS CIRCUIT

Typical Fixed Regulator

ABSOLUTE MAXIMUM RATINGS

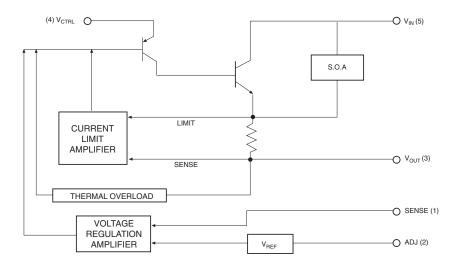
Power Dissipation	. Internally Limited
Lead Temp. (Soldering, 10 Seconds)	
Storage Temperature Range	65°C to +150°C
Operating Junction Temperature Range	
SPX1581 Control Section	0°C to +125°C
SPX1581 Power Transistor	0°C to +150°C

Input Supply Voltage	6V
V _{CTPI} Input Voltage	13V

ELECTRICAL CHARACTERISTICS

Electrical characteristics at $V_{OUT} = V_{SENSE}$, $V_{ADJ} = 0V$, $T_A = 25^{\circ}C$, $C_{CTL} = C_{PWR} = C_{OUT} = 33 \mu F$ tantalum cap otherwise specified. The \spadesuit denotes the specifications which apply over full temperature range -40°C to +85°C, unless otherwise specified.

PARAMETER MIN TYP MAX UNITS ◆ CONDITIONS 2.5V Version Output Voltage 2.450 2.5 2.550 V V _{CTRL} = 6.0V to 12V, V _{IN} = 3.0V to 5.0V, V _{IN} = 0.0V to 12V, V _{IN} =	
Output Voltage 2.450 2.5 2.550 V V _{CTRL} = 6.0V to 12V, V _{IN} = 3.0V to 5.0V, 2.400 2.600 ♦ I _O = 10mA to 5A 2.8V Version Output Voltage 2.744 2.8 2.856 V V _{CTRL} = 6.3V to 12V, V _{IN} =3.3V to 12V, I	
2.400 2.600 ♦ I _O = 10mA to 5A 2.8V Version Output Voltage 2.744 2.8 2.856 V V _{CTRL} = 6.3V to 12V, V _{IN} =3.3V to 12V, I	
Output Voltage 2.744 2.8 2.856 V V _{CTRL} = 6.3V to 12V, V _{IN} =3.3V to 12V, I	_O =10mA
	_O =10mA
2.000 2.912 ▼ 10 = 10111A to 9A	
3.3V Version	
Output Voltage $\begin{vmatrix} 3.234 & 3.3 & 3.366 & V & V_{CTRL} = 6.3V \text{ to } 12V, V_{IN} = 3.3V + 0.8V, \\ 3.168 & 3.3 & 3.432 & $	I _O =10mA
All Voltage Options	
Reference Voltage 1.238 1.25 1.263 V $V_{CTRL} = 2.75V$, $V_{IN} = 2.00V$, $I_{O} = 10mA$ $V_{CTRL} = 2.75V$ to 12V, $V_{IN} = 2.05V$ to 5.5V, $I_{IN} = 2.05V$	-
Line Regulation	
Load Regulation (Note 1) 1.0 5.0 mV \blacklozenge $V_{CTRL} = 2.75V$, $V_{IN} = 2.1V$, $I_{O} = 10$ mA to 5.	$A, V_{ADJ} = 0V$
Dropout Voltage Min. V_{CTRL} 1.10 1.25 V $V_{ADJ} = 0V$	
(Note 2) ($V_{CTRL} - V_{OUT}$) $V_{IN} = 2.05V$, $I_O = 1A$	
Dropout Voltage Min. V_{IN} 0.40 0.50 V $V_{ADJ} = 0V$	
(Note 2) $(V_{IN} - V_{OUT})$ $V_{IN} = 2.75V$, $I_O = 5A$	
Current Limit 5.1 A $V_{CTRL} = 2.75V$, $V_{IN} = 2.05V$, $\Delta V_{OUT} = 100$	$\overline{0mV}$, $V_{ADJ} = 0V$
Minimum Load Current 5 10 mA ♦ V _{CTRL} = 5V, V _{IN} =3.3V, V _{ADJ} =0V	
Thermal Regulation 0.002 0.02 %/W 30ms Pulse	
Ripple Rejection 60 80 dB $V_{CTRL} = 3.75V$, $V_{IN} = 3.75V$, $I_{O} = 2.5A$, $V_{A} = 3.75V$, $V_{IN} = 3.75V$, $V_{IO} = 2.5A$, $V_{A} = 3.75V$, $V_{IN} = 3.75V$, $V_{IO} = 2.5A$, $V_{A} = 3.75V$, $V_{IN} = 3.75V$, $V_{IO} $	√D∩=0Λ
Control Pin Current 60 120 mA ♦ V _{ADJ} = 0V	
$V_{CTRL} = 2.75V, V_{IN} = 2.05V, I_{O} = 5A$	
Adjustble Pin Current 50 μA $V_{CTRL} = 2.75V, V_{IN} = 2.05V, V_{ADJ} = 0V, I_{O}$	= 10mA
Thermal Resistance 3 °C/W Junction to Case (θ_{JC})	
TO-220-5 50 °C/W Junction to Ambient (θ _{JA})	
Thermal Resistance 3 °C/W Junction to Case (θ _{JC})	
TO-263-5 60 °C/W Junction to Ambient (θ _{JA})	


Note 1: Low duty cycle pulse testing with Kelvin connections is required to order to maintain accurate data.

Note 2: Dropout voltage is defined as the minimum differential between V_{IN} and V_{OUT} or V_{CTRL} and V_{OUT} required to maintain regulation at V_{OUT} 95% Nominal V_{OUT}.

Note 3: V_{REF} is measured across Adjust pin to Sense pin.

PIN NUMBER	PIN NAME	DESCRIPTION
1	SENSE	Allows Kelvin sense of V_{OUT} at the load. (Positive side of the reference voltage of the device).
2	ADJ	Negative side of the reference voltage for the device. Adding a small bypass capacitor from the ADJ pin to ground will improve the transient response.
3	V _{OUT}	Power output of the device.
4	V _{CTRL}	Supply pin for the control circuitry of the device. The current flow into this pin will be about 1% of the output current. V _{CTRL} must be between 1.0V and 1.3V greater than the output voltage for the device to regulate.
5	V _{IN}	Output load current is supplied through this pin. V_{IN} must be between 0.1V and 0.8V greater than the output voltage for this device to regulate.

FUNCTIONAL DIAGRAM

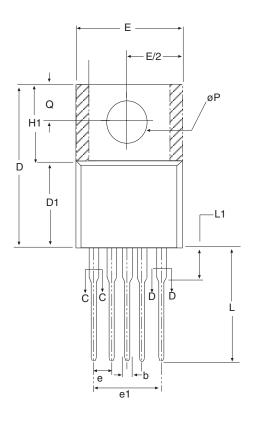
APPLICATION NOTES

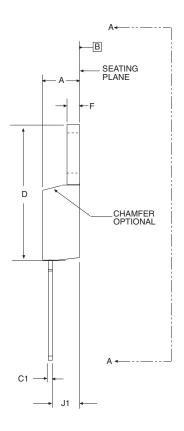
The SPX1581 is designed as a high performance and low cost solution for application requiring a lower dropout than traditional NPN regulators.

The SPX1581 uses a separate input voltage V_{CTRL} ($V_{CTRL} \ge V_{OUT} + 1.3V$) to minimize the dropout voltage. This allows the 2.5V power for the load to come from a 3.3V system supply.

As added benefit this will reduce the heat dissipation*, and lower heatsink and cooling fan cost. A typical application would use 5V for V_{IN} and 3.3V for V_{CTRL} from a motherboard power supply to provide a nominal 2.5V output. Using the sense pin allows Kelvin measure the output, reducing resistance-associated errors.

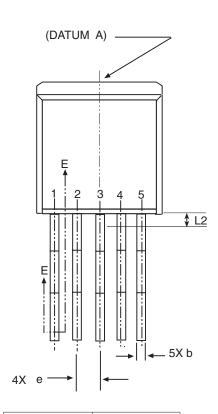
The SPX1581 can power the 2.5V core voltage for microprocessors such as a PentiumTM, P55CTM, AMD5k86TM and K6TM and the IBM PowerPCTM 603EV and 604EV processors.

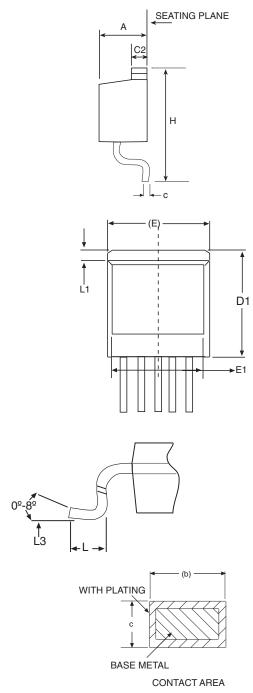

^{*} The reduction of heat dissipation is a result of the increase of the regulator efficiency (efficiency = V_{OLT}/V_{IN}).


Adjustable Regulator Design

1.25V reference voltage is being developed between the SENSE pin and the ADJ pin of the SPX1581. Adding two external resistors (see fig 1.) will allow setting the output voltage from 1.25V to 6V. R_1 is chosen so that this current is specified minimum load current of 10mA. R_2 is given by the formula: $V_{OUT} = V_{REF} (1 + R_2/R_1) + I_{ADJ} (R_2)$. The current flowing from the ADJ pin is typicaly 50 μ A. This ADJ pin contributes to the final V_{OUT} but is usually neglected. Connecting the sense pin to the top of the resistor divider will improve load regualtion.

Lowering Noise


Using the SENSE pin to Kelvin the load will increase accuracy of the output voltage during load regulation. For the fixed voltage device, adding a capacitor at the GND pin will improve transient response. This capacitor is chosen in the range of $1\mu F$ to $0.1\mu F$ and will depend on the amount of output capacitance in the system.



5 PIN TO-220	Dimensions in (inches)		
	MIN	NOM	MAX
Α	.160	-	.190
b	.015	-	.040
C1	.014	-	.022
D	.560	-	.590
E	.385	-	.415
е	.385	-	.415
e1	.062	-	.072
F	.045	-	.055
H1	.234	-	.258
J1	.090	-	.115
L	.540	-	.560
L1		-	.250
ΔΡ	.146	-	.156
Q	.103	-	.113
U	-	.30	-
V	-	.24	-

5 PIN TO-220

5 PIN TO-263 JEDEC TO-263 (BB) Variation	Dimensions in (mm)		
	MIN	NOM	MAX
A	.160	-	.190
A1	0	-	.010
b	.020	-	.039
С	.015	-	.029
c2	.045	-	.023
D1	.270	-	-
E	.380	-	.420
E1	.245	-	-
е	.067 BSC		
Н	.575	-	.625
L	.070	-	.110
L1	-	-	.066
L2	-	-	.070
L3	.010 BSC		

5 PIN TO-263

Part Number	Accuracy	Output Voltage	Packages
SPX1581U5	2.0%	Adj	5-Pin TO-220
SPX1581U5-2.5	2.0%	2.5V	5-Pin TO-220
SPX1581U5-2.8	2.0%	2.8V	5-Pin TO-220
SPX1581U5-3.3	2.0%	3.3V	5-Pin TO-220
SPX1581T5	2.0%	Adj	5-Pin TO-263
SPX1581T5/TR	2.0%	Adj	5-Pin TO-263
SPX1581T5-2.5	2.0%	2.5V	5-Pin TO-263
SPX1581T5-2.5/TR	2.0%	2.5V	5-Pin TO-263
SPX1581T5-2.8	2.0%	2.8V	5-Pin TO-263
SPX1581T5-2.8/TR	2.0%	2.8V	5-Pin TO-263
SPX1581T5-3.3	2.0%	3.3V	5-Pin TO-263
SPX1581T5-3.3/TR	2.0%	3.3V	5-Pin TO-263

Available in lead free packaging. To order add "-L" suffix to part number.

Example: SPX1581T5-3.3/TR = standard; SPX1581T5-L-3.3/TR = lead free

/TR = Tape and Reel

Pack quantity is 500 for TO-263.

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.