

Data Sheet

FEATURES:

- High Gain:
 - Typically 32 dB gain across 2.4–2.5 GHz over temperature 0°C to +85°C
- · High linear output power:
 - >29 dBm P1dB
 - Please refer to "Absolute Maximum Stress Ratings" on page 4
 - Meets 802.11g OFDM ACPR requirement up to 25 dBm
 - Added EVM~4% up to 23 dBm for 54 Mbps 802.11g signal
 - Added EVM~3.5% up to 23 dBm for application over 2.3–2.4 GHz or 2.5–2.6 GHz WiBro/WiMax frequency bands
 - Meets 802.11b ACPR requirement up to 25 dBm
- High power-added efficiency/Low operating current for both 802.11g/b applications
 - $\sim 26\%/300 \text{ mA } @ P_{OUT} = 24 \text{ dBm for } 802.11g$
 - $\sim 27\%/350 \text{ mA}$ @ $P_{OUT} = 25 \text{ dBm for } 802.11 \text{ b}$
- Built-in Ultra-low I_{REF} power-up/down control
 - I_{BFF} ~2 mA
- Low idle current
 - ~70 mA I_{CQ}

• High-speed power-up/down

- Turn on/off time (10%-90%) <100 ns
- Typical power-up/down delay with driver delay included <200 ns
- · High temperature stability
 - ~1 dB gain/power variation between 0°C to +85°C
 - ~1 dB detector variation over 0°C to +85°C
- Low shut-down current (< 0.1 μA)
- · On-chip power detection
- 25 dB dynamic range on-chip power detection
- Simple input/output matching
- Packages available
 - 16-contact VQFN (3mm x 3mm)
- All non-Pb (lead-free) devices are RoHS compliant

APPLICATIONS:

- WLAN (IEEE 802.11g/b)
- Home RF
- · Cordless phones
- 2.4 GHz ISM wireless equipment

PRODUCT DESCRIPTION

The SST12LP15A is a high-power and high-gain power amplifier based on the highly-reliable InGaP/GaAs HBT technology.

The SST12LP15A can be easily configured for high-power applications with superb power-added efficiency while operating over the 2.4-2.5 GHz frequency band. It typically provides 32 dB gain with 26% power-added efficiency @ $P_{OUT} = 24$ dBm for 802.11g and 27% power-added efficiency @ $P_{OUT} = 25$ dBm for 802.11b.

The SST12LP15A has excellent linearity, typically ~4% added EVM at 23 dBm output power which is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask at 25 dBm. This device can be configured for applications with an added EVM of approximately 3.5%, up to 23 dBm over 2.3–2.4 GHz or 2.5–2.6 GHz WiBro/WiMax frequency bands. SST12LP15A also has widerange (>25 dB), temperature-stable (~1 dB over 85°C), single-ended/differential power detectors which lower users' cost on power control.

The power amplifier IC also features easy board-level usage along with high-speed power-up/down control. Ultra-low reference current (total I_{REF} ~2 mA) makes the SST12LP15A controllable by an on/off switching signal directly from the baseband chip. These features coupled with low operating current make the SST12LP15A ideal for the final stage power amplification in battery-powered 802.11g/b WLAN transmitter applications.

The SST12LP15A is offered in 16-contact VQFN package. See Figure 2 for pin assignments and Table 1 for pin descriptions.

Data Sheet

FUNCTIONAL BLOCKS

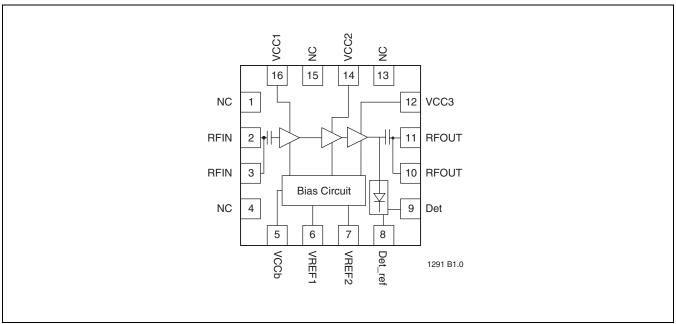


FIGURE 1: Functional Block Diagram

PIN ASSIGNMENTS

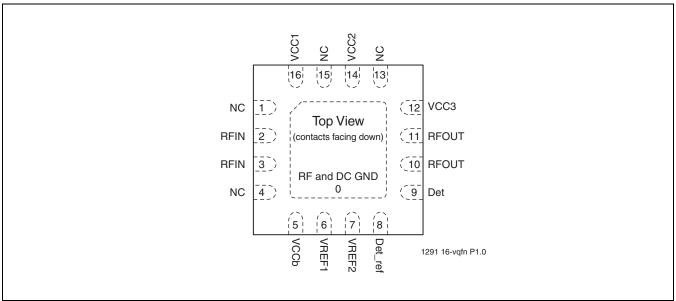


FIGURE 2: Pin Assignments for 16-contact VQFN

PIN DESCRIPTIONS

TABLE 1: Pin Description

Symbol	Pin No.	Pin Name	Type ¹	Function		
GND	0	Ground		The center pad should be connected to RF ground with several low inductance, low resistance vias.		
NC	1	No Connection		Unconnected pins.		
RFIN	2		ı	RF input, DC decoupled		
RFIN	3		I	RF input, DC decoupled		
NC	4	No Connection		Unconnected pins.		
VCCb	5	Power Supply	PWR	Supply voltage for bias circuit		
VREF1	6		PWR	1st and 2nd stage idle current control		
VREF2	7		PWR	3rd stage idle current control		
Det_ref	8		0	On-chip power detector reference		
Det	9		0	On-chip power detector		
RFOUT	10		0	RF output		
RFOUT	11		0	RF output		
VCC3	12	Power Supply	PWR	Power supply, 3rd stage		
NC	13	No Connection		Unconnected pins.		
VCC2	14	Power Supply	PWR	Power supply, 2nd stage		
NC	15	No Connection		Unconnected pins.		
VCC1	16	Power Supply	PWR	Power supply, 1st stage		

1. I=Input, O=Output

T1.0 1291

Data Sheet

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Table 2 for the DC voltage and current specifications. Refer to Figures 3 through 12 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pins 2 and 3 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+28 dBm
Supply Voltage at pins 5, 12, 14, 16 (V _{CC})	0.3V to +4.6V
Reference voltage to pins 6 (V _{REF1}) and pin 7 (V _{REF2})	0.3V to +3.6V
DC supply current (I _{CC})	500 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	260°C for 10 seconds

^{1.} Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the maximum rating of average output power could cause permanent damage to the device.

Operating Range

Range	Ambient Temp	V _{CC}		
Industrial	-40°C to +85°C	3.3V		

TABLE 2: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V _{CC}	Supply Voltage at pins 5, 12, 14, 16	3.0	3.3	4.2	V	
I _{CC}	Supply Current					
	for 802.11g, 24 dBm		300		mA	
	for 802.11b, 25 dBm		350		mA	
I _{CQ}	Idle current for 802.11g to meet EVM<4% @ 23dBm		70		mA	
I _{OFF}	Shut down current			0.1	μΑ	
V _{REG1}	Reference Voltage for 1st Stage, with 169 Ω resistor	2.85	2.90	2.95	V	
V_{REG2}	Reference Voltage for 2nd Stage, with 140Ω resistor	2.85	2.90	2.95	V	

T2.1 1291

Data Sheet

TABLE 3: AC Electrical Characteristics for Configuration

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range in 802.11b/g applications (see Figure 13)	2400		2485	MHz
F _{L-U}	Frequency range in 2.3-2.4 GHz applications (see Figure 14)	2300		2400	MHz
F _{L-U}	Frequency range in 2.5-2.6 GHz applications (see Figure 15)	2500		2600	MHz
Pout	Output power				
	@ PIN = -10 dBm 11b signals		23		dBm
	@ PIN = -10 dBm 11g signals		23		dBm
G	Small signal gain	31	32		dB
G _{VAR1}	Gain variation over each band (2400-2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (Gain variation over 20 MHz)		0.2		dB
Output VSWR Ruggedness	Survivable time @ 25 dBm (to 50Ω) 54 Mbps OFDM signal when VSWR=10:1 all phases	10			second
ACPR	Meet 11b spectrum mask	24	25		dBm
	Meet 11g OFDM 54 MBPS spectrum mask	24	25		dBm
Added EVM	@ 23 dBm output with 11g OFDM 54 MBPS signal		3.5		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without trapping capacitors			-40	dBc

T3.2 1291

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CONDITIONS: $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$

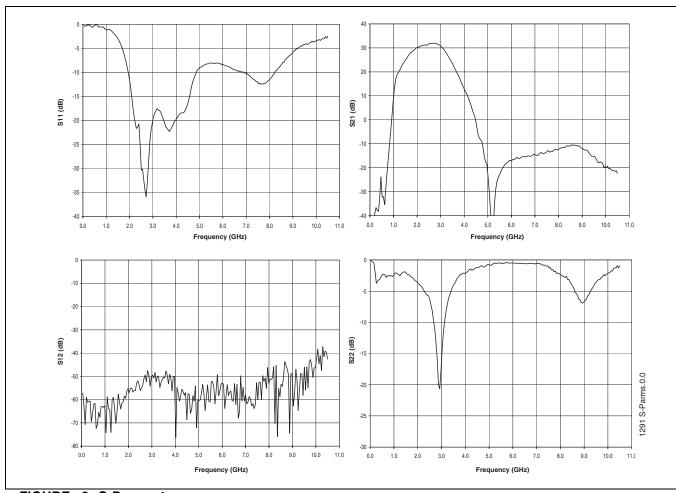


FIGURE 3: S-Parameters

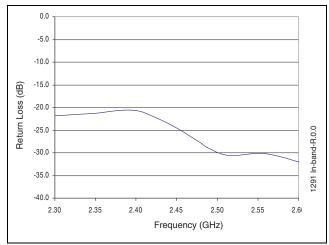


FIGURE 4: In-band Return Loss

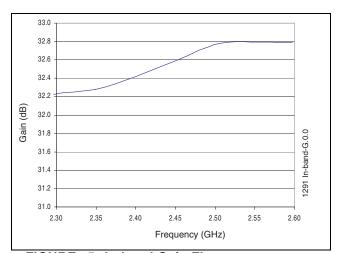


FIGURE 5: In-band Gain Flatness

TYPICAL PERFORMANCE CHARACTERISTICS TEST CONDITIONS: F1 = 2.45 GHz, F2 = 2.451 GHz, V_{CC} = 3.3V, T_A = 25°C

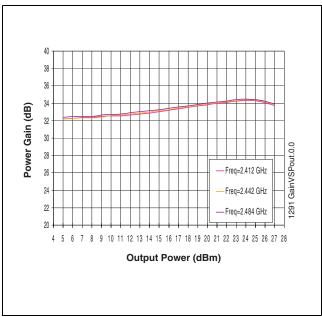


FIGURE 6: Gain vs Pout

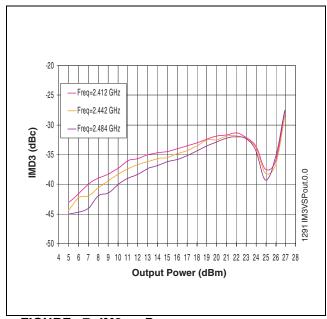


FIGURE 7: IM3 vs Pout

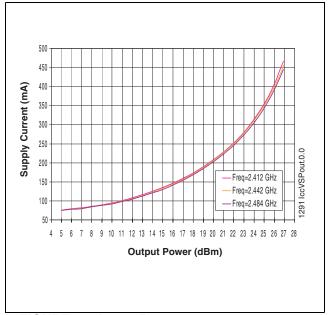


FIGURE 8: I_{CC} vs P_{OUT}

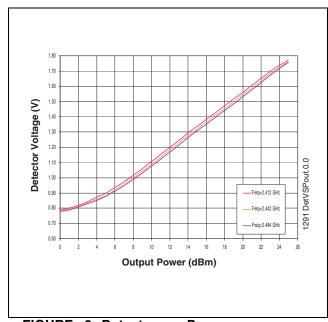


FIGURE 9: Detectors vs Pout

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CONDITIONS: V_{CC} = 3.3V, T_A = 25°C, 54 MBPS 802.11G OFDM SIGNAL

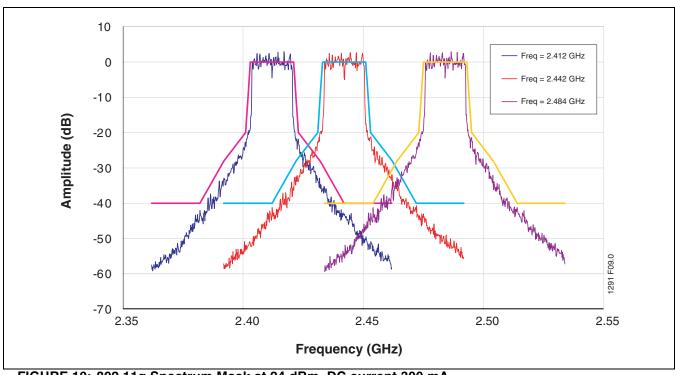


FIGURE 10: 802.11g Spectrum Mask at 24 dBm, DC current 300 mA

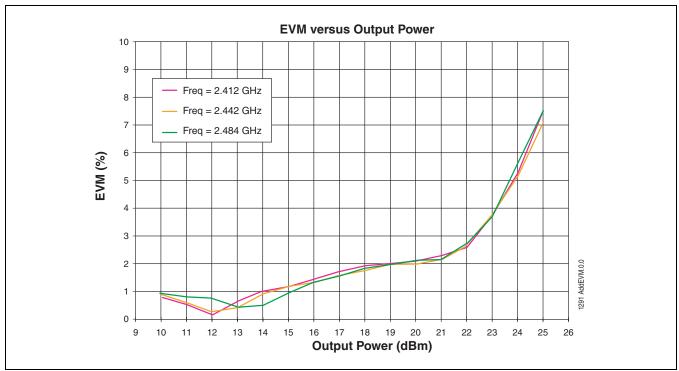


FIGURE 11: 802.11g Spectrum Mask at 23/24 dBm, DC current 240/290 mA

TYPICAL PERFORMANCE CHARACTERISTICS TEST CONDITIONS: $V_{CC} = 3.3V$, $T_{A}=25^{\circ}C$, 1 MBPS 802.11B CCK SIGNAL

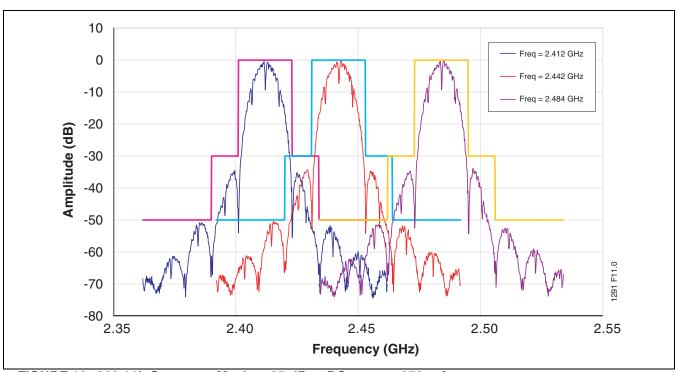


FIGURE 12: 802.11b Spectrum Mask at 25 dBm, DC current 350 mA

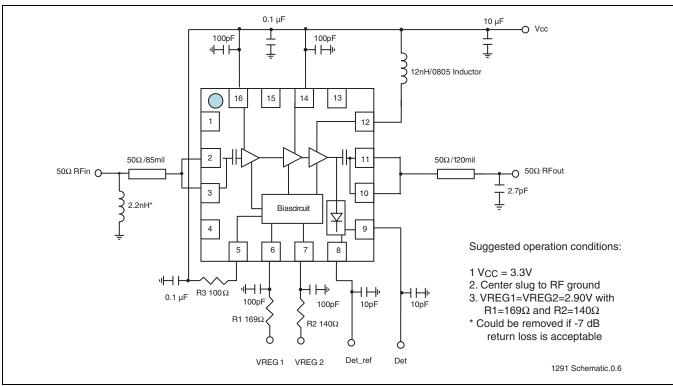


FIGURE 13: Typical Schematic for High-Power, High-Efficiency 802.11b/g Applications

Data Sheet

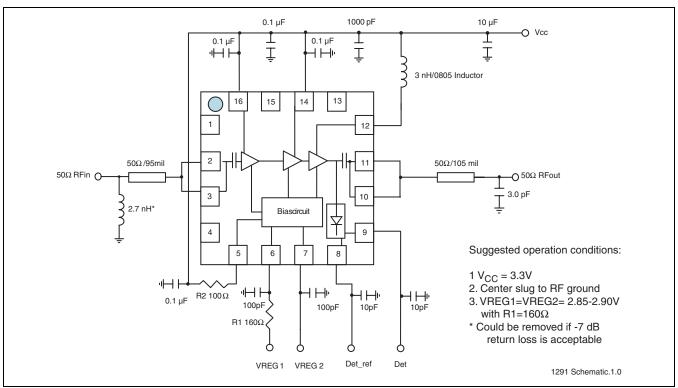


FIGURE 14: Typical Schematic for High-Power, High-Efficiency 2.3-2.4 GHz Applications

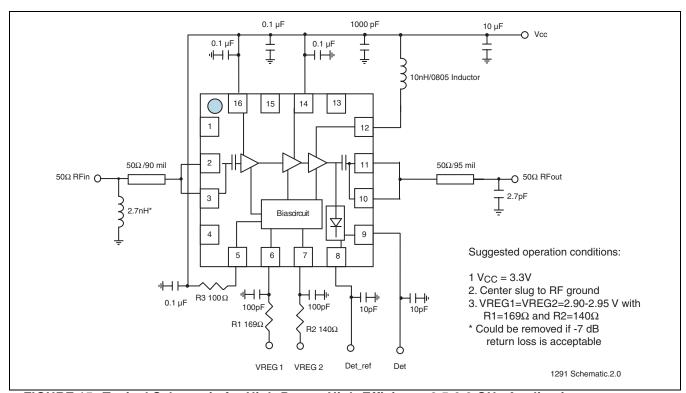
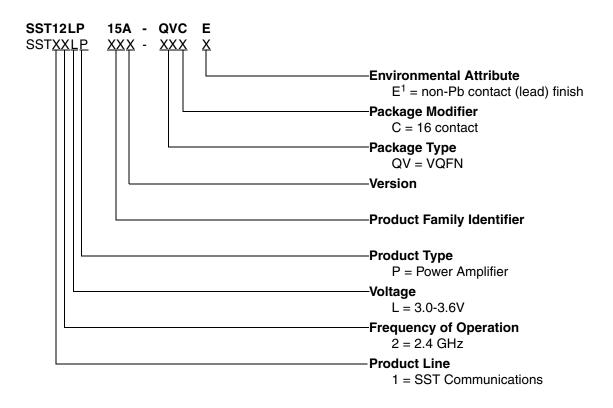



FIGURE 15: Typical Schematic for High-Power, High-Efficiency 2.5-2.6 GHz Applications

PRODUCT ORDERING INFORMATION

Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

Valid combinations for SST12LP15A

SST12LP15A-QVCE

SST12LP15A Evaluation Kits

SST12LP15A-QVCE-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Data Sheet

PACKAGING DIAGRAMS

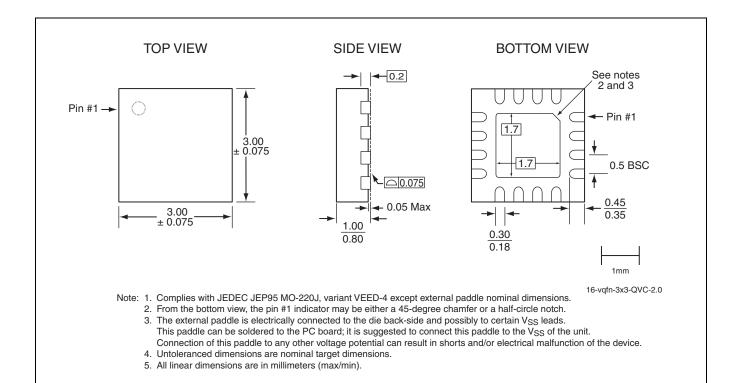


FIGURE 16: 16-contact Very-thin Quad Flat No-lead (VQFN)
SST Package Code: QVC

TABLE 4: Revision History

Revision		Description		
00	•	Initial release of data sheet	Mar 2005	
01	•	Updated values for gain and efficiency on page 1	Mar 2006	
	•	Updated values for VREG1 and VREG2 in Table 2 on page 4		
	Removed stability parameter from Table 3 on page 5			
	•	Updated the typical application schematic on page 9		
	•	Updated QVC package drawing.		
	•	Updated "Absolute Maximum Stress Ratings" on page 4		
02	•	Added information for 2.3-2.4 and 2.5-2.6 applications	Jul 2006	
	•	Removed leaded part numbers		

Data Sheet

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600

Fax: 310-577-3600

Sales

NORTH AMERICA

Silicon Storage Technology, Inc.

Les Crowder

Technical Sales Support - North America

Tel: 949-495-6437 Fax: 949-495-6364

E-mail: lcrowder@sst.com

EUROPE

Silicon Storage Technology Ltd.

Ralph Thomson Applications Manager Mark House

9-11 Queens Road Hersham KT12 5LU UK Tel: +44 (0) 1869 321 431

Cell: +44 (0) 7787 508 919 E-mail: rthomson@sst.com

JAPAN

SST Japan

Kiyomi Akaba Senior Sales Manager

9F Toshin-Tameike Bldg, 1-1-14 Akasaka,

Minato-ku, Tokyo, Japan 107-0052

Tel: (81) 3-5575-5515 Fax: (81) 3-5575-5516 Email: kakaba@sst.com

ASIA PACIFIC NORTH

SST Macao

H. H. Chang

Senior Director, Sales Room N. 6th Floor.

Macao Finance Center, No. 202A-246,

Rua de Pequim, Macau Tel: (853) 706-022 Fax: (853) 706-023

E-mail: hchang@sst.com

ASIA PACIFIC SOUTH

SST Communications Co.

Sunny Tzeng Sales Manager

4F-2, No. 24, Lane 123, Sec.6,

Min Chuan E. Rd

Taipei 114, Taiwan, R.O.C. Tel: +886-22795-6877 Ext. 163

Fax: +886-9792-1241 E-mail: stzeng@sst.com

KOREA

SST Korea

Charlie Shin

Country Manager

Rm# 1101 DonGu Root Bldg, 16-2 Sunae-Dong,

Bundang-Gu, Sungnam, Kyunggi-Do

Korea, 463-020

Tel: (82) 31-715-9138 Fax: (82) 31-715-9137 Email: cshin@sst.com

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com