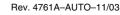

Features

- Input Comparator with Schmitt-trigger Characteristic
- Input Clamping Current Capability of ±10 mA
- Integrated Protection Cells (EMC, ESD, RF) Dedicated to All Input Stages
- Shutdown by Junction-temperature Monitor
- · Reset with Hysteresis at Low Voltage
- ESD Protection Acording to Human Body Model: ±2000 V (C = 100 pF, R = 1.5 kΩ)
- Output Stage:
 - Short-circuit Protected
 - Load-dump Protected at 1 kΩ
 - Jump Start Possible

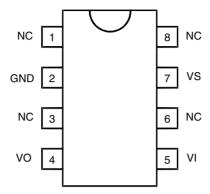
Description

The singel-channel driver IC includes one non-inverted and current-limited output stage with an open collector. Thermal shutdown protects the output against critical junction temperatures. The output can sink a current of 20 mA. The digital input has Schmitt-trigger function with pull-up resistors to 5 V.


Figure 1. Block Diagram

Single-channel Driver IC with Thermal Monitoring

T6801



Pin Configuration

Figure 2. Pinning SO8

Pin Description

Pin	Symbol	Function
1	NC	Not connected
2	GND	Ground
3	NC	Not connected
4	VO	Output
5	VI	Input
6	NC	Not connected
7	VS	Supply voltage 5 V
8	NC	Not connected

Basic Circuitry

The integrated circuit T6801 requires a stabilized supply voltage ($V_S = 5 \text{ V} \pm 5\%$) to comply with its electrical characteristics. An external buffer capacitor of C = 100 nF is recommended. An integrated 14 V Zener diode between V_S and ground protects the supply pin.

The input stage is provided with an integrated 250 k Ω pull-up resistor and can be directly connected to a microcontroller.

The output stage is an open collector, capable of sinking 20 mA. Recommended external components:

- Pull-up resistor, $R = 1 \text{ k}\Omega$
- Capacitor to GND, C = 470 pF, see Figure 3

Functional Description

General

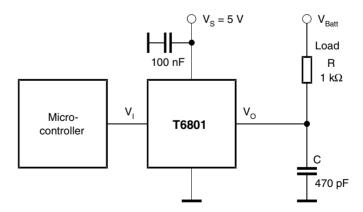
ON state: Low level at the input stage activates the output stage.

OFF state: The internal pull-up resistor provides high level to the input comparator and deactivates the output stage.

A 7 V Zener diode between input pin and GND is capable of ±10 mA clamping current.

Current Limitation of the Output Stages and Overtemperature Shutdown

A temperature-dependent current limitation in the range of 25 to 100 mA protects the stage in case of a short circuit. Additionally, the chip temperature is monitored. For $T_{\text{Chip}} > 148^{\circ}\text{C}$, the output is disabled and automatically enabled with a hysteresis of $T_{\text{Chip}} > 5^{\circ}\text{C}$.


Transients and Load Dump

An integrated 28 V Zener diode protects the output stage against transients and load-dump (Schaffner pulses). With the help of an external 1 k Ω resistor, the output transistor is capable of handling the corresponding current which flows during each of these conditions. Apart from that, the output is short-circuit and overload protected.

Low-voltage Detection

When the supply voltage is switched on, a power-on reset pulse is generated internally which disables the output stage until a defined supply-voltage level is reached. The low-voltage detection is provided with a hysteresis of $V_{hyst} = 0.5 \text{ V}$ typically.

Figure 3. Application Schematic

Absolute Maximum Ratings

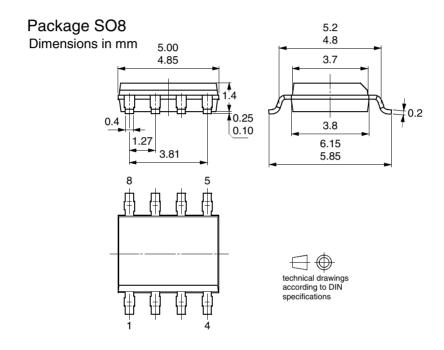
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V _S	7.0	V
Ambient temperature range	T _{amb}	-40 to +125	°C
Storage temperature range	T _{stg}	-50 to +150	°C
Maximum junction temperature	T _i	+150	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R_{thJA}	160	K/W

Electrical Characteristics


 $V_S = 5 \text{ V} \pm 5\%$, $T_{amb} = 27^{\circ}\text{C}$, reference point pin 2 (GND), unless otherwise specified, see Figure 1 on page 1 and Figure 3 on page 3.

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Supply, Pin 7		·				
Supply voltage		V _S	4.75		5.25	V
Supply current	Input open Input closed to GND	I _S	0.8 7		3.2 13	mA mA
Low-voltage detection threshold	ON OFF	V _{TH(ON)} V _{TH(OFF)}	3.7 3.0		4.6 3.8	V V
Low-voltage hysteresis		V _{hyst}	0.55		1.05	V
Temperature shutdown		T _{Chip}	140		149	°C
Temperature shutdown hysteresis		T _{hyst}	5			°C
Input, Pin 5		·				
Zener-diode protection voltage	I _I = 10 mA	V _I	6.7		8.5	V
Zener-diode clamping current		I ₁			±10	mA
Pull-up resistor		R _I	170	250	305	kΩ
Switching threshold	OFF ON	V _I V _I		3.3 1.8		V V
Hysteresis		V_{hyst}		1.5		V
Output, Pin 4		<u>.</u>				
Zener-diode protection voltage	I _O = 10 mA	V _O	26.5			V
Integrated capacitor				5		pF
Leakage current		I _{Leak}			2.5	μA
Saturation voltage	(I _O = 20 mA)	V _{Sat}			0.7	V
Current limitation		I _{limit}	25		100	mA
Propagation delay	(470 pF, 1 kΩ, 20 V)	t _d			5	μs

Ordering Information

Extended Type Number	Package	Remarks
T6801-TAQ	SO8	Taped and reeled

Package Information

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Atmel Operations

Memoru

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

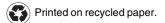
Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80


Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

