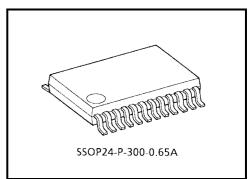
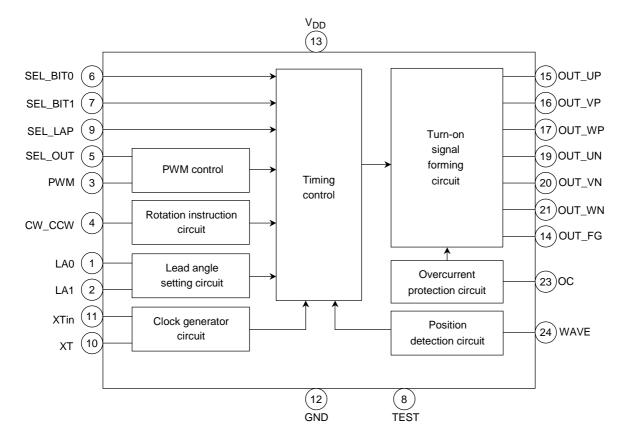
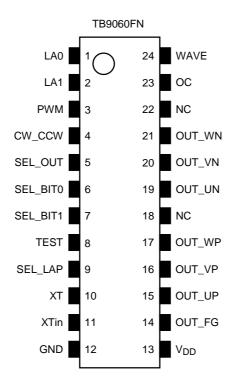
Preliminary TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TB9060FN

3-Phase Full-Wave Sensorless Controller for Brushless DC Motors

The TB9060FN is a 3-phase full-wave sensorless controller for brushless DC motors. It is capable of controlling voltage by PWM signal input. When combined with various drive circuits, it can be used for various types of motors.


Features


- 3-phase full-wave sensorless drive
- PWM control (PWM signal is applied externally.)
- Turn-on signal output current: 20 mA
- Overcurrent protection function
- Forward/reverse modes
- Lead angle control function (0°, 7.5°, 15° and 30°)
- Lap turn-on function
- Two types of PWM output (upper PWM and upper/lower alternate PWM)
- Rotational speed sensing function

Weight: 0.10 g (typ.)

Block Diagram

Pin Assignment

Pin Description

1LA0ILead angle setting signal input pin • LA0 = Low, LA1 = Low. Lead angle 0° • LA0 = High, LA1 = Low. Lead angle 0° • LA0 = Low, LA1 = High. Lead angle 15° • LON = WM signal • Applies active low PWM signal • Applies active low PWM signal • Built-in pull-down resistor (100 K1) • Low. Oper PWM • High: Lead angle 100 town resistor (100 K2) • SEL_BIT0 = Low, SEL_BIT1 = High. Halt the ICO select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. 	Pin No.	Symbol	I/O	Description
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I	Lead angle setting signal input pin
2LA1I· LA0 = Low, LA1 = High: Lead angle 15° · LA0 = High, LA1 = High: Lead angle 30° · Built-in pull-down resistor (100 kΩ)3PWMI· LA0 = High, LA1 = High: Lead angle 30° · Built-in pull-down resistor (100 kΩ)3PWMI· Applies active low PVM signal · Applies active low PVM signal · Disables input of duty-100%, (low) signal · High: Reverse U > W > V) · Low, Open: Forward (U → V → W) · Built-in pull-down resistor (100 kΩ)4CW_CCWIRotation direction signal input pin · High: Reverse U → W > V) · Low, Open: Forward (U → V → W) · Built-in pull-down resistor (100 kΩ)5SEL_OUTIPin to select the synthesis method of turn-on signal and PWM signal · Low: Upper PVM · Built-in pull-down resistor (100 kΩ)6SEL_BITOIPin to select the synthesis method of turn-on signal and PWM signal · Low: Upper PVMM · Built-in pull-down resistor (100 kΩ)7SEL_BITOIThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. · SEL_BIT0 = High, SEL_BIT1 = High: 14 bits · SEL_BIT0 = High, SEL_BIT1 = High: 12 bits · SEL_BIT0 = High, 120 bits · SEL_BIT1 = Built-in pull-down resistor (100 kΩ) · SEL_BIT1 = Built-in pull-down resistor (100 kΩ) · SEL_BIT1 = Built-in pull-down resistor (100 kΩ) · SEL_BIT1 = Built-in pull-down resistor (100 kΩ)8TESTITest pin · Built-in pull-down resistor (100 kΩ) · Built-in pull-down resistor (100 kΩ)	1	LA0		 LA0 = Low, LA1 = Low: Lead angle 0°
$ \begin{array}{c c c c c c } 2 & LA1 & I & LA0 - High, LA1 - High: Lead angle 30° & Built-in pull-down resistor (100 kΩ) \\ \hline \\ $				 LA0 = High, LA1 = Low: Lead angle 7.5°
$ \begin{array}{ c c c c } & & & & & & & & & & & & & & & & & & &$				 LA0 = Low, LA1 = High: Lead angle 15°
3PVMIPVM signal input pin · Applies active low PVM signal · Built-in pull-up resistor (100 k1) · Disables input of duty-100% (low) signal High for 250 ns or longer is required.4 CW_CCW IRotation direction signal input pin · High: Reverse (U → W → V) · Low, Open: Forward (U → V → W) · Built-in pull-down resistor (100 k1) Pin to select the synthesis method of turn-on signal and PVM signal · Low: Upper PVM · High: Reverse (U → W → V) · Low, Open: Forward (U → V → W) · Built-in pull-down resistor (100 k1)5SEL_OUTI6SEL_BIT0I7SEL_BIT0I8TESTI9SEL_LAPI9SEL_LAPI10XT-11XTin-11XTin-11XTin-	2	LA1	I	 LA0 = High, LA1 = High: Lead angle 30°
3PWMI· Applies active low PWM signal3PWMI· Built-in pull-up resistor (100 kG) · Disables input of duty-100% (low) signal High to 250 ns or longer is required.4 CW_CCW IRotation direction signal input pin · High: Reverse (U → W → V) · Low, Open: Forward (U → V → W) · Built-in pull-down resistor (100 kG)5 SEL_OUT IPin to select the synthesis method of turn-on signal and PWM signal · Low: Upper PWM · High: Upper/Lower alternate PWM · Built-in pull-down resistor (100 kG)6 SEL_BIT0 IThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of oculter bit. · SEL_BIT1 = High: SEL_BIT1 = High: 14 bits · SEL_BIT0 = High, SEL_BIT1 = Ligh: 14 bits · SEL_BIT0 = High, SEL_BIT1 = Ligh: 14 bits · SEL_BIT0 = High, SEL_BIT1 = Ligh: 14 bits · SEL_BIT1 = SEL_BIT1 = SEL_BIT1 = Ligh: 12 bits · SEL_BIT1 = Built-in pull-up resistor (100 kG) · SEL_BIT1 = Built-in pull-up resistor (100 kG) · SEL_BIT1 = Built-in pull-up resistor (100 kG) · SEL_BIT1 = Ligh: 12 bits · SEL_BIT1 = Ligh: 14 bits7SEL_BIT1ITest pin · Built-in pull-up resistor (10 kG) Please connect this pin to GND in your application.9SEL_LAPILap turn-on · High: 120* turn-on · Built-in pull-up resistor (10 kG)10XTResonator connecting pin · Select starting commutation frequency. · Starting commutation frequency. · Starting commutation frequency. · Starting commutation frequency High is decided by SEL_BIT1.				• Built-in pull-down resistor (100 k Ω)
$ \begin{array}{c c c c c c } 3 & PWM & I & & Built-in pull-up resistor (100 k\Omega) & & Disables input of duty-100% (low) signal \\ & \mathsf{High for 250 ns or longer is required. \\ \end{array} \\ \begin{array}{c c c c c c c } 4 & CW_CCW & I & & Rotation direction signal input pin \\ & \mathsf{High: Reverse (U \to W \to V) \\ & Low. Open: Forward (U \to V \to W) \\ & Built-in pull-down resistor (100 k\Omega) \\ \end{array} \\ \begin{array}{c c c c c c c } 5 & SEL_OUT & I & & Pin to select the synthesis method of turn-on signal and PWM signal \\ & \mathsf{Low. Open: Forward (U \to V \to W) \\ & Built-in pull-down resistor (100 k\Omega) \\ \end{array} \\ \begin{array}{c c c c c c c } 5 & SEL_OUT & I & & Pin to select the synthesis method of turn-on signal and PWM signal \\ & \mathsf{Low. Upper/Lower alternate PWM \\ & Built-in pull-down resistor (100 k\Omega) \\ \end{array} \\ \begin{array}{c c c c c c c c } 5 & SEL_BITO & & I & & I & I & I & In the oreod commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. \\ & SEL_BITO = High. SEL_BIT1 = High: 16 bits \\ & SEL_BIT1 & I & & SEL_BIT0 = Low. SEL_BIT1 = High: 14 bits \\ & SEL_BIT0 = SEL_BIT1 = High. SEL_BIT1 = Low: 12 bits \\ & SEL_BIT0 = SEL_BIT1 = High: 14 bits \\ & SEL_BIT0 = Ligh. SEL_BIT1 = High: 14 bits \\ & SEL_BIT0 = SEL_BIT1 = High: 14 bits \\ & SEL_BIT0 = SEL_BIT1 = High. SEL_BIT1 = Low: 12 bits \\ & SEL_BIT0 = SEL_BIT1 = High. 14 bits \\ & SEL_BIT0 = SEL_BIT1 = High. 14 bits \\ & SEL_BIT0 = SEL_BIT1 = Ligh. 14 bits \\ & SEL_BIT0 = SEL_BIT1 = Ligh. 14 bits \\ & SEL_BIT0 = Ligh. SEL_BIT1 = Ligh. 14 bits \\ & SEL_BIT0 = Ligh. SEL_BIT1 = Ligh. 14 bits \\ & SEL_BIT0 = SEL_BIT1 = Ligh. 14 bits \\ & SEL_BIT0 = Ligh. 14 bits \\$				PWM signal input pin
$\begin{array}{ c c c c c c } & \cdot & \text{Disables input of duty-100% (low) signal \\ & \text{High for 250 ns or longer is required.} \\ \hline \\ $				Applies active low PWM signal
$\begin{array}{ c c c c c } \hline High for 250 ns or longer is required. \\ \hline High for 250 ns or longer is required. \\ \hline High for 250 ns or longer is required. \\ \hline High: Reverse (U \rightarrow W \rightarrow V) \\ \hline Low, Open: Forward (U \rightarrow V \rightarrow W) \\ \hline Low, Open: Forward (U \rightarrow V \rightarrow W) \\ \hline High: Reverse (U \rightarrow W \rightarrow V) \\ \hline Low, Open: Forward (U \rightarrow V \rightarrow W) \\ \hline High: Difference (U \rightarrow W) \\ \hline High: Difference (U \rightarrow W) \\ \hline High: Upper/Lower alternate PWM \\ \hline High: Difference (U \rightarrow V \rightarrow W) \\ \hline High: Upper/Lower alternate PWM \\ \hline High: Difference (U \rightarrow V \rightarrow W) \\ $	3	PWM	I	• Built-in pull-up resistor (100 k Ω)
4 CW_CCW 1Rotation direction signal input pin • High: Reverse $(U \rightarrow W \rightarrow V)$ • Low, Open: Forward $(U \rightarrow V \rightarrow W)$ • Built-in pull-down resistor $(100 \text{ k}\Omega)$ 5 SEL_OUT 1Pin to select the synthesis method of turn-on signal and PWM signal • Low: Upper PWM • High: Upper/Lower alternate PWM • Built-in pull-down resistor $(100 \text{ k}\Omega)$ 6 SEL_BIT0 1The number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. • SEL_BIT1 = High: 16 bits • SEL_BIT1 = High: SEL_BIT1 = High: 16 bits • SEL_BIT0 = High, SEL_BIT1 = High: 16 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = High: 16 bit1 in pull-down resistor (100 k\Omega), SEL_BIT1 = Built-in pull-down resistor (100 k\Omega) Please connect this pin to GND in your application.9SEL_LAPITest pin • Low: Lap turn-on • Built-in pull-up resistor (100 k\Omega)10XT—Resonator connecting pin • Low: Lap turn-on • Built-in pull-up resistor (100 k\Omega)11XTin—Resonator connecting pin • Selects starting commutation frequency. Starting commutation frequency fat (6 × 2(^{BIT + 3)}) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				Disables input of duty-100% (low) signal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				High for 250 ns or longer is required.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Rotation direction signal input pin
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I	• High: Reverse $(U \rightarrow W \rightarrow V)$
5SEL_OUTIPin to select the synthesis method of turn-on signal and PWM signal . Low: Upper PWM . High: Upper/Lower alternate PWM . Built-in pull-down resistor (100 kΩ)6SEL_BIT0IThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. . SEL_BIT0 = High, SEL_BIT1 = High: 16 bits . SEL_BIT0 = Low, SEL_BIT1 = High: 14 bits . SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits . SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits . SEL_BIT1 = Built-in pull-down resistor (100 kΩ) SEL_BIT1 = Built-in pull-down resistor (100 kΩ) Please connect this pin to GND in your application.8TESTI9SEL_LAPI10XT—11XTin—11XTin—	4			· Low, Open: Forward (U \rightarrow V \rightarrow W)
5SEL_OUTI· Low: Upper PWM · High: Upper/Lower alternate PWM · Built-in pull-down resistor (100 kΩ)6SEL_BITOIThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. · SEL_BIT0 = High, SEL_BIT1 = High: 16 bits · SEL_BIT0 = Low, SEL_BIT1 = High: 14 bits · SEL_BIT0 = Low, SEL_BIT1 = Low: 12 bits · SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits · SEL_BIT1: Built-in pull-down resistor (100 kΩ) · Please connect this pin to GND in your application.9SEL_LAPITest pin · Low: Lap turn-on · High: 120° turn-on · Built-in pull-up resistor (100 kΩ)10XT—Resonator connecting pin · Selects starting commutation frequency. · Selects starting commutation frequency. · Starting commutation frequency fst = Resonator frequency fst (6 × 2 ^(BIT + 3)) · BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				· Built-in pull-down resistor (100 k Ω)
5SEL_OUTI iHigh: Upper/Lower alternate PWM • Built-in pull-down resistor (100 kΩ)6SEL_BIT0IThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. • SEL_BIT0 = High, SEL_BIT1 = High: 16 bits • SEL_BIT0 = Low; SEL_BIT1 = High: 14 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits • SEL_BIT1 = Built-in pull-down resistor (100 kΩ) • SEL_BIT1: Built-in pull-down resistor (100 kΩ) • SEL_BIT1: Built-in pull-down resistor (100 kΩ) • Please connect this pin to GND in your application.8TESTITest pin • Built-in pull-down resistor (10 kΩ) • Please connect this pin to GND in your application.9SEL_LAPIResonator connecting pin • Low: Lap turn-on • High: 120° turn-on • Built-in pull-up resistor (100 kΩ)10XT—Resonator connecting pin • Selects starting commutation frequency. • Starting commutation frequency fst = Resonator frequency fst / (6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				Pin to select the synthesis method of turn-on signal and PWM signal
$ \begin{array}{c c c c c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_			Low: Upper PWM
6SEL_BIT0IThe number of counter bit (within the IC) select pin The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. \cdot SEL_BIT1 = High: 16 bits \cdot SEL_BIT1 = High. SEL_BIT1 = High: 14 bits \cdot SEL_BIT1 = High. SEL_BIT1 = Low: 12 bits \cdot SEL_BIT1: Built-in pull-down resistor (100 kΩ), SEL_BIT1: Built-in pull-down resistor (100 kΩ) Please connect this pin to GND in your application.9SEL_LAPITest pin \cdot Low: Lap turn-on \cdot High: 120° turn-on \cdot Built-in pull-up resistor (100 kΩ)10XT—Resonator connecting pin \cdot Selects starting commutation frequency f_{st} = Resonator frequency $f_{st}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0.	5	SEL_OUT	I	High: Upper/Lower alternate PWM
6SEL_BITOIThe forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit. SEL_BIT0 Figure 2				· Built-in pull-down resistor (100 k Ω)
001resonator's frequency and the number of counter bit. SEL_BIT0 = High, SEL_BIT1 = High: 16 bits7SEL_BIT1I $SEL_BIT0 = High, SEL_BIT1 = High: 16 bits$ $SEL_BIT0 = Low, SEL_BIT1 = High: 14 bits$ $SEL_BIT0 = Bith; SEL_BIT1 = Low: 12 bits$ $SEL_BIT0 = Bith; in pull-down resistor (100 k\Omega),SEL_BIT1: Built-in pull-up resistor (100 k\Omega)8TESTITest pinBuilt-in pull down resistor (10 k\Omega)Please connect this pin to GND in your application.9SEL_LAPILap turn-on select pinHigh: 120^{\circ} turn-onBuilt-in pull-up resistor (100 k\Omega)10XT—Resonator connecting pinSelects starting commutation frequency.Starting commutation frequency fst = Resonator frequency fst/(6 × 2(BIT + 3))BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.$			I	The number of counter bit (within the IC) select pin
7SEL_BIT1I \cdot SEL_BIT0 = Low, SEL_BIT1 = High: 14 bits \cdot \cdot SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits \cdot \cdot SEL_BIT0 = Built-in pull-down resistor (100 k Ω), SEL_BIT1: Built-in pull-up resistor (100 k Ω) \cdot SEL_BIT1: Built-in pull-down resistor (100 k Ω) \cdot Test pin \cdot Test pin \cdot Built-in pull-down resistor (100 k Ω) \cdot Please connect this pin to GND in your application.9 SEL_LAP I \cdot Lap turn-on select pin \cdot \cdot Low: Lap turn-on \cdot \cdot Low: Lap turn-on \cdot High: 120° turn-on \cdot Built-in pull-up resistor (100 k Ω)10XTResonator connecting pin \cdot Selects starting commutation frequency. Starting commutation frequency f _{st} = Resonator frequency f _{st} /(6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.	6	SEL_BIT0		
7SEL_BIT1I \cdot SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits \cdot \cdot SEL_BIT0: Built-in pull-down resistor (100 k Ω), SEL_BIT1: Built-in pull-up resistor (100 k Ω)8TESTITest pin \cdot \cdot Test pin Please connect this pin to GND in your application.9SEL_LAPILap turn-on select pin \cdot \cdot Lap turn-on \cdot 10XTResonator connecting pin \cdot Selects starting commutation frequency. Starting commutation frequency fst = Resonator frequency fst (6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				 SEL_BIT0 = High, SEL_BIT1 = High: 16 bits
7SEL_BIT1I· SEL_BIT0: Built-in pull-down resistor (100 k\Omega), SEL_BIT1: Built-in pull-up resistor (100 k\Omega) SEL_BIT1: Built-in pull-up resistor (100 k\Omega)8TESTITest pin · Built-in pull down resistor (10 k\Omega) Please connect this pin to GND in your application.9SEL_LAPILap turn-on select pin · Low: Lap turn-on · High: 120° turn-on · Built-in pull-up resistor (100 k\Omega)10XTResonator connecting pin · Selects starting commutation frequency. Starting commutation frequency fst = Resonator frequency fst (6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				 SEL_BIT0 = Low, SEL_BIT1 = High: 14 bits
$\begin{array}{ c c c c c } & SEL_BIT0: Built-in pull-down resistor (100 k\Omega), \\ SEL_BIT1: Built-in pull-up resistor (100 k\Omega) \\ SEL_BIT1: Built-in pull-up resistor (100 k\Omega) \\ \hline \end{array} \\ \end{array}$	7	SEL_BIT1		 SEL_BIT0 = High, SEL_BIT1 = Low: 12 bits
8TESTITest pin9SEL_LAPI \cdot Built-in pull down resistor (10 k Ω) Please connect this pin to GND in your application.9SEL_LAPILap turn-on select pin \cdot Low: Lap turn-on \cdot Built-in pull-up resistor (100 k Ω)10XT—11XTin—11XTin—11VariationImage: Select starting commutation frequency fst = Resonator select pin	/		I	
8TESTI· Built-in pull down resistor (10 k Ω) Please connect this pin to GND in your application.9SEL_LAPILap turn-on select pin · Low: Lap turn-on · High: 120° turn-on · Built-in pull-up resistor (100 k Ω)10XT—Resonator connecting pin · Selects starting commutation frequency. Starting commutation frequency fst = Resonator frequency fxt/(6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				
9SEL_LAPILap turn-on select pin \cdot Low: Lap turn-on \cdot High: 120° turn-on \cdot Built-in pull-up resistor (100 k Ω)10XT—Resonator connecting pin \cdot Selects starting commutation frequency. Starting commutation frequency fst = Resonator frequency fst/(6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.	8	TEST	1	
9SEL_LAPILap turn-on select pin \cdot Low: Lap turn-on \cdot High: 120° turn-on \cdot Built-in pull-up resistor (100 k Ω)10XT—Resonator connecting pin \cdot Selects starting commutation frequency. Starting commutation frequency f _{st} = Resonator frequency f _{xt} /(6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				
9SEL_LAPI· Low: Lap turn-on · High: 120° turn-on · Built-in pull-up resistor (100 kΩ)10XT—Resonator connecting pin · Selects starting commutation frequency.11XTin—Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				
9 SEL_LAP I · High: 120° turn-on 10 XT - Built-in pull-up resistor (100 kΩ) 10 XT - Resonator connecting pin 11 XTin - Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.		SEL_LAP		
10 XT — Resonator connecting pin · Selects starting commutation frequency. 11 XTin — Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.	9		I	
10 XT — Resonator connecting pin 10 XT — Selects starting commutation frequency. 11 XTin — Starting commutation frequency f _{st} = Resonator frequency f _{st} = Resonator frequency f _{st} /(6 × 2 ^(BIT + 3)) BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				-
10 XT · Selects starting commutation frequency. 11 XTin Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.			ат —	
11 XTin Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.	10	ХТ		
BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.				
	11	XTin		
IZ GND — Connectea to grouna.	12	GND		Connected to ground.

Pin No.	Symbol	I/O	Description
13	V _{DD}		Connected to 5-V power supply.
			Rotation signal output pin
14	OUT_FG	0	Motor is stopped or starting: Low
			\cdot Motor is in operation: The level is changed by electrical frequency of the motor.
	U-phase upper turn-on signal output pin		
15	OUT_UP	0	U-phase winding wire positive ON/OFF switching pin
			· ON: Low, OFF: High
			V-phase upper turn-on signal output pin
16	OUT_VP	0	V-phase winding wire positive ON/OFF switching pin
			· ON: Low, OFF: High
			W-phase upper turn-on signal output pin
17	OUT_WP	0	W-phase winding wire positive ON/OFF switching pin
			· ON: Low, OFF: High
18	NC		Not connected
			U-phase lower turn-on signal output pin
19	OUT_UN	0	U-phase winding wire negative ON/OFF switching pin
			· ON: High, OFF: Low
			V-phase lower turn-on signal output pin
20	OUT_VN	0	V-phase winding wire negative ON/OFF switching pin
			· ON: High, OFF: Low
			W-phase lower turn-on signal output pin
21	OUT_WN	0	W-phase winding wire negative ON/OFF switching pin
			· ON: High, OFF: Low
22	NC		Not connected
			Overcurrent signal input pin
23	OC	I	 High on this pin can put constraints on the turn-on signal which is performing PWM control.
			· Built-in pull-up resistor (100 kΩ)
			Position signal input pin
24	WAVE	I	Applies majority logic synthesis signal of three-phase pin voltage.
			• Built-in pull-up resistor (100 k Ω)

Functional Description

1. Sensorless Drive

On receipt of PWM signal start instruction, turn-on signal for forced commutation (commutation irrespective of the motor's rotor position) is driven onto pins 15 to 17 and pins 19 to 21, and the motor starts to rotate. The motor's rotation causes induced voltage on winding wire pin for each phase.

When signals indicating positive or negative for pin voltage (including induced voltage) for each phase are applied on respective position signal input pin, the turn-on signal for forced commutation is automatically switched to turn-on signal for position signal (induced voltage).

Thereafter turn-on signal is formed according to the induced voltage contained in the pin voltage so as to drive the brushless DC motor.

Sensorless drive timing charts (lead angles: 0° , 7.5° , 15° and 30°) are shown below.

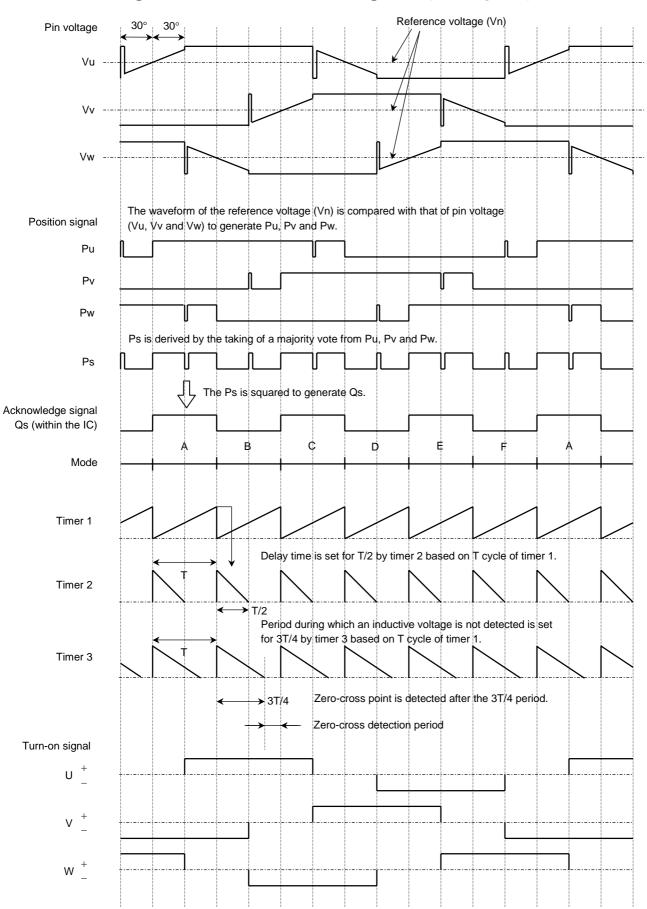


Figure 1 Sensorless drive timing chart (lead angle: 0°)

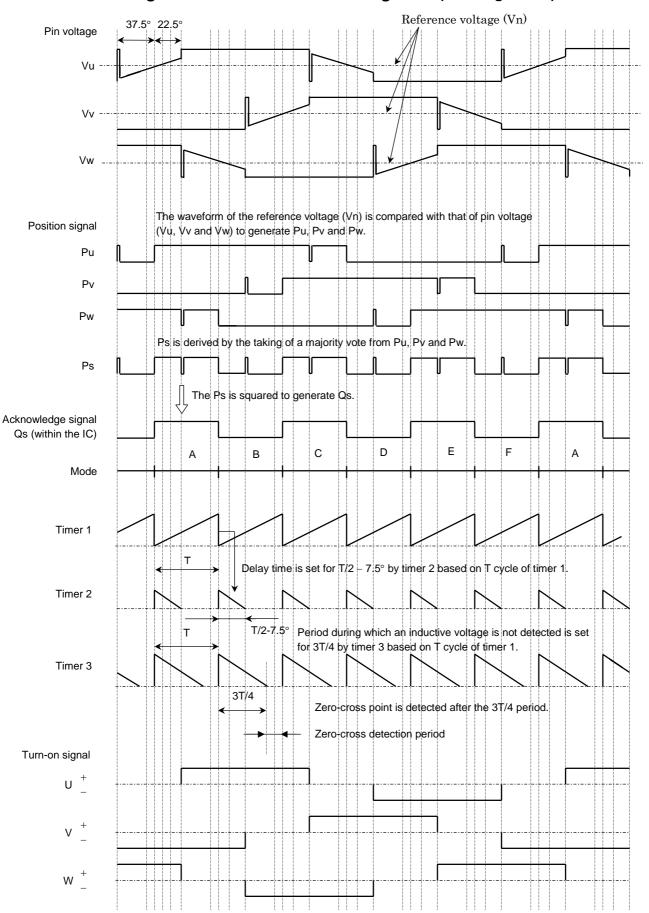


Figure 2 Sensorless drive timing chart (lead angle: 7.5°)

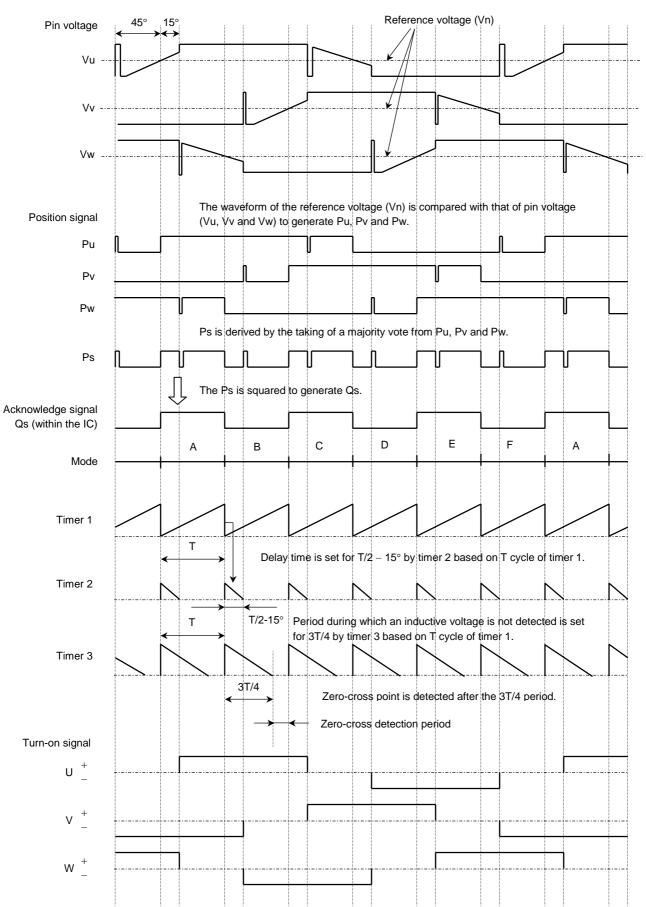


Figure 3 Sensorless drive timing chart (lead angle: 15°)

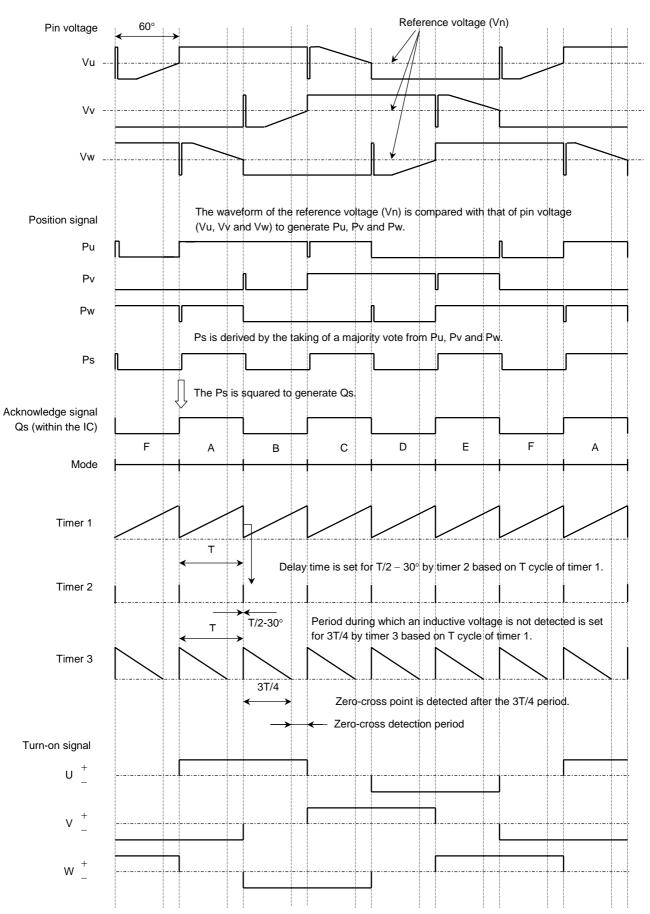


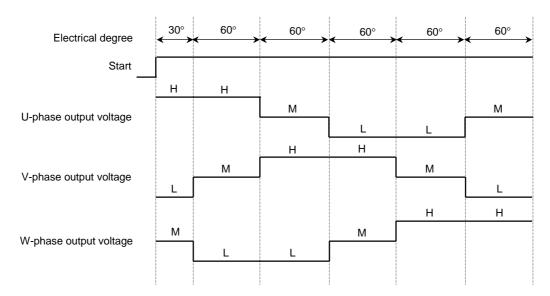
Figure 4 Sensorless drive timing chart (lead angle: 30°)

<u>TOSHIBA</u>

2. Starting commutation frequency (resonator pin and counter bit select pin)

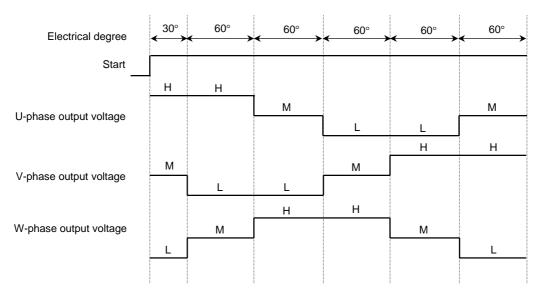
The forced commutation frequency at the time of start is determined by the resonator's frequency and the number of counter bit (within the IC).

SEL_BIT0 = High, SEL_BIT1 = High: Bit = 16 SEL_BIT0 = Low, SEL_BIT1 = High: Bit = 14 SEL_BIT0 = High, SEL_BIT1 = Low: Bit = 12


Starting commutation frequency f_{st} = Resonator frequency $f_{xt}/(6 \times 2^{(BIT + 3)})$ (BIT: The number of counter bit which is decided by SEL_BIT0 and SEL_BIT1.)

The forced commutation frequency at the time of start can be adjusted using inertia of the motor and load.

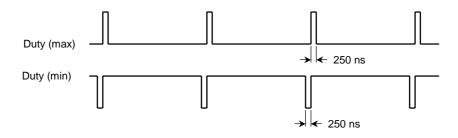
- The forced commutation frequency should be set higher as the number of magnetic poles increases.
- The forced commutation frequency should be set lower as the inertia of the load increases.


2.1 Forced commutation pattern

Forced commutation is performed at the timings as shown below according to the state of CW_CCW. The commutation pattern immediately after the motor starts is always the same.

(1) Forward rotation (CW_CCW = Low)

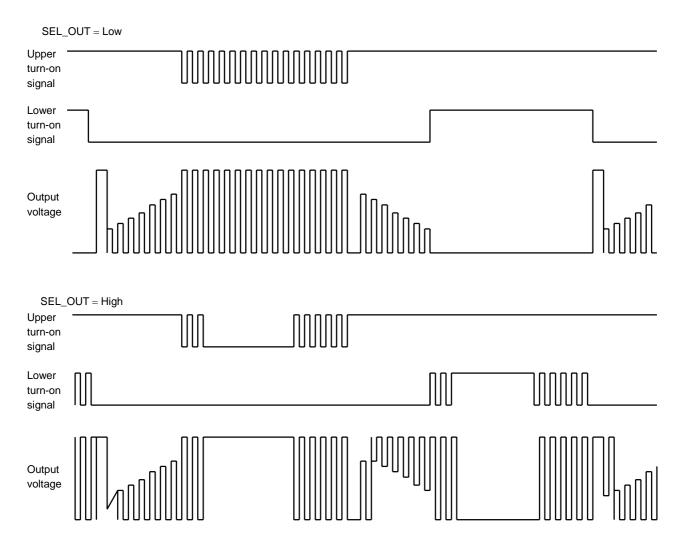
(2) Reverse rotation ($CW_CCW = High$)



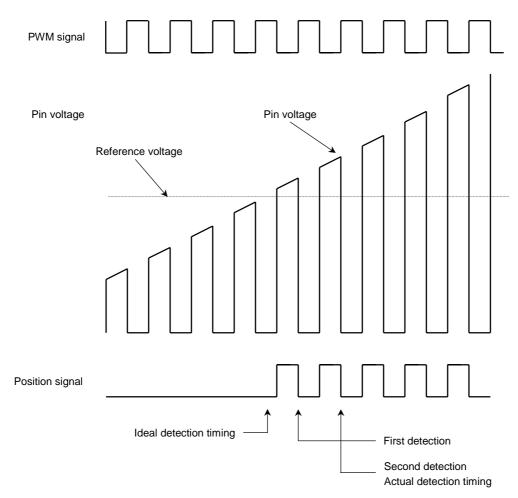
3. PWM Control

PWM signal can be reflected in turn-on signal by applying PWM signal externally.

The frequency of the PWM signal shoud be set adequately high with regard to the electrical frequency of the motor and in accordance to the switching characteristics of the drive circuit.

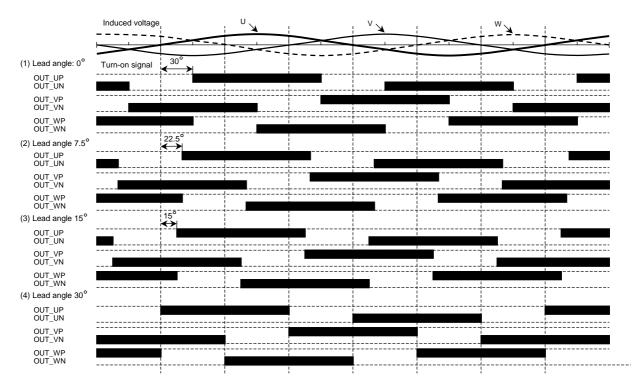

Because positional detection is performed on the falling edges of PWM signal, positional detection cannot be performed with 0% duty or 100% duty.

The voltage applied to the motor is duty 100% because of the storage time of the drive circuit even if the duty is 99%.

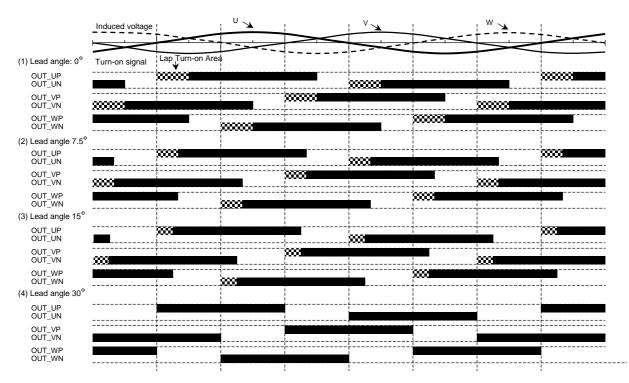

4. Selecting PWM Output Form

PWM output form can be selected using SEL_OUT.

5. Positional Variation


Since positional detection is performed in synchronization with PWM signal, positional variation occurs in connection with the frequency of PWM signal. Be especially careful when the IC is used for high-speed motors.

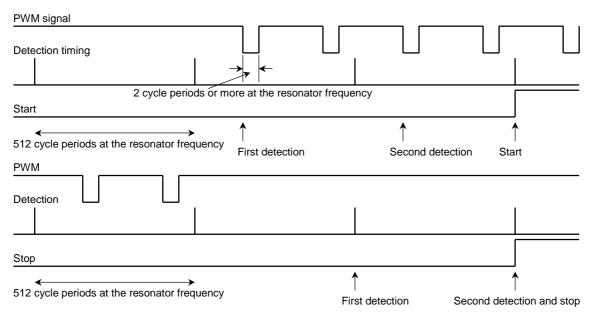
 $\label{eq:Variation} \begin{array}{ll} \mbox{Variation is calculated by detecting at two consecutive rising edges of PWM signal.} \\ 1/f_p < \mbox{Detection time variation} < 2/f_p & f_p \mbox{: PWM frequency} \end{array}$


6. Lead Angle Control

The lead angle is 0° during the starting forced commutation and when normal commutation is started, automatically changes to the lead angle which has been set using LA0 and LA1. However, if both LA0 and LA1 are set high, the lead angle is 30° in the starting forced commutation as well as in natural commutation.

7. Lap Turn-on Control

When SEL_LAP = High, the turn on degree is 120°. When SEL_LAP = Low, Lap Turn on Mode starts. In Lap Turn on Mode, the time between zero cross point and the 120° turn on timing becomes longer (shaded area in the below chart) so as to create some overlap when switching turn on signals. The lap time differs depending on the lead angle setting.

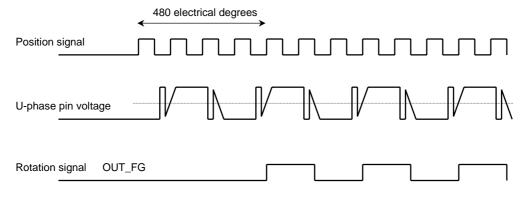


8. Start/Stop Control

Start/Stop is controlled using PWM signal input pin.

A stop is acknowledged when PWM signal duty is 0, and a start is acknowledged when ON-signal of a frequency 2 times higher than the resonator frequency or even higher is applied successively.

Timing chart



Note: Take sufficient care for noise on PWM signal input pin.

9. Rotation Signal Monitor Function

The rotation signal that senses rotational speed and indicates errors including motor lock is driven onto the OUT_FG pin. Low voltage is driven onto the pin at forced commutation of starting and stopping the motor. After natural commutation (position signal is detected) is performed for 480 electrical degrees, the rotation signal in synchronization with the U-phase position detection result is driven onto the pin. If motor lock occurs due to overload during rotation, the forced commutation of starting the motor is performed and low voltage is driven onto the pin.

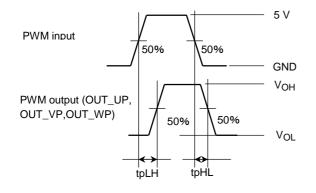
It is possible to determine an error from the relationship between duty cycle of PWM signal and rotation frequency.

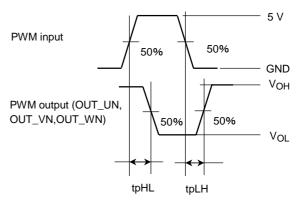
10. Pull-out of Synchronism

If you do not receive the OUT_FG output at the specified frequency while monitoring the rotation signal (OUT_FG output), please restart the TB9060FN.

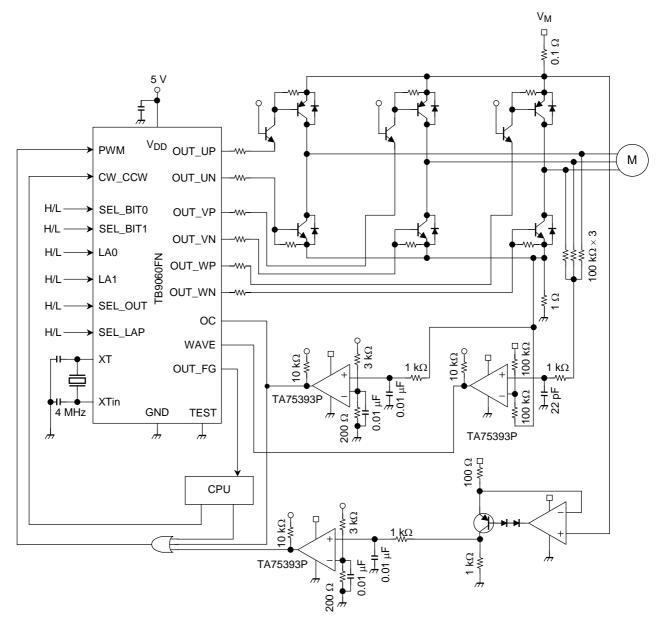
Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{DD}	6.0	V	
Input voltage	V _{IN}	$-0.2V_{DD}+0.2$	V	
Turn-on signal output current	I _{OUT}	20	mA	
Power dissipation	PD	850	mW	
Operating temperature	T _{opr}	-40~125	°C	
Storage temperature	T _{stg}	-55~150	°C	
Lead Temperature – Time	T _{sol}	260(10s)	°C	

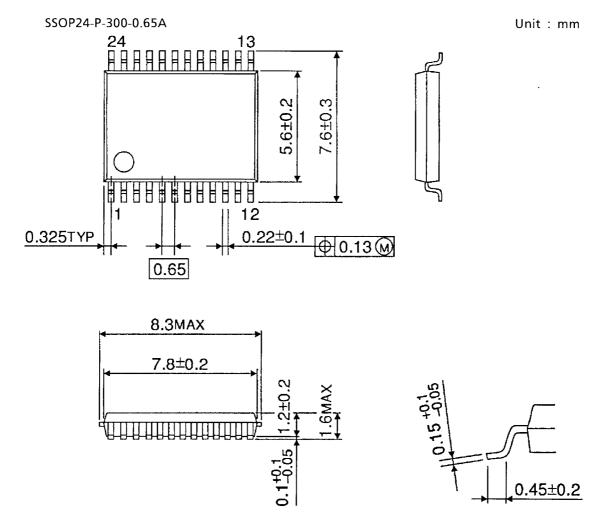

Recommended Operating Conditions (Ta = -40~125°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Power supply voltage	V _{DD}	_	4.5	5.0	5.5	V
Input voltage	V _{IN}	—	-0.2		V _{DD} + 0.2	V
PWM frequency	fpwm		_	16	_	kHz
Oscillation frequency	f _{osc}	_	1.0		10	MHz

Electrical Characteristics ($V_{DD} = 5 V$, Ta = -40 to 125°C)


Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit	
Static power supply current	I _{DD}		PWM = H, XTin = H	_	0.1	0.3	mA	
Dynamic power supply current	I _{DD (opr)}	_	PWM = 50%Duty, XTin = 4 MHz	_	1	3	mA	
	I _{IN-1} (H)	_	V _{IN} = 5 V, PWM, OC, WAVE SEL_LAP, SEL_BIT1	_	0	1		
Input current	I _{IN-1} (L)	_	V _{IN} = 0 V, PWM, OC, WAVE SEL_LAP, SEL_BIT1	-100	-50	_	•	
input current	I _{IN-2} (H)	_	V _{IN} = 5 V, CW_CCW, LA0, LA1, SEL_OUT, SEL_BIT0	_	50	100	μA	
	I _{IN-2} (L)	_	V _{IN} = 0 V, CW_CCW, LA0, LA1, SEL_OUT, SEL_BIT0	-1	0	_		
Input voltage	V _{IN (H)}	—	PWM, OC, SEL_LAP	4.0		V _{DD}	V	
input voltage	V _{IN (L)}	—	CW_CCW, WAVE, LA0 LA1, SEL_OUT	GND		1.0		
Input hysteresis voltage	V _H	—	SEL_BIT0, SEL_BIT1		0.6	_	V	
	V _{O-1 (H)}	_	I _{OH} = -1mA OUT_UP, OUT_VP, OUT_WP	4.0	_	V _{DD}		
	V _{O-1 (L)}	_	I _{OL} = 20 mA OUT_UP, OUT_VP, OUT_WP	GND		0.7		
Output voltage	V _{O-2 (H)}	_	I _{OH} = -20 mA OUT_UN, OUT_VN, OUT_WN	3.8		V _{DD}	V	
	V _{O-2 (L)}	_	I _{OL} = 1 mA OUT_UN, OUT_VN, OUT_WN	GND	_	0.7		
	V _{O-3 (H)}	_	$I_{OH} = -1 \text{ mA}, \text{OUT}_FG$	4.0	_	V _{DD}	V	
	V _{O-3 (L)}	—	I _{OL} = 1 mA, OUT_FG	GND		0.7	v	
	I _L (H)		V _{DD} = 5.5 V, V _{OUT} = 0 V OUT_UP, OUT_VP, OUT_WP OUT_UN, OUT_VN, OUT_WN OUT_FG	_	0	15		
Output leak current	I _L (L)	_	$V_{DD} = 5.5 V$, $V_{OUT} = 5.5 V$ OUT_UP, OUT_VP, OUT_WP OUT_UN, OUT_VN, OUT_WN OUT_FG		0	15	μA	
Output delay time	t _{pLH}			_	0.5	1	μS	
	t _{pHL}		PWM – Output	_	0.5	1	μΟ	

Note1: Output delay time test waveforms


Application Circuit Example

- Note 2: Take enough care in designing output V_{DD} line and ground line to avoid short circuit between outputs, V_{DD} fault or ground fault which may cause the IC to break down.
- Note 3: The above application circuit and values mentioned are just an example for reference. Since the values may vary depending on the motor to be used, appropriate values must be determined through experiments before using the device.
- Note 4: TEST pin is only used for factory test, so connect it to ground in application.

TB9060FN

Package Dimensions

Weight: 0.10 g (typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

000707EAA_S

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.