TISP4290J3BJ THRU TISP4395J3BJ

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

TISP4xxxJ3BJ Overvoltage Protector Series

Ion-Implanted Breakdown Region -Precise and Stable Voltage -Low Voltage Overshoot Under Surge

Designed for Transformer Center Tap (Ground Return) Overvoltage Protection -Enables GR-1089-CORE Compliance -High Holding Current Allows Protection of Data Lines with d.c. Power Feed

Can be Used to Protect Rugged Modems Designed for Exposed Applications Exceeding TIA-968-A

Device Name	V _{DRM}	V _(BO)	
Berlee Name	v	v	
TISP4290J3BJ	220	290	
TISP4350J3BJ	275	350	
TISP4395J3BJ	320	395	

Rated for International Surge Wave Shapes

Waye Shape	Wave Shape Standard	
wave Shape		
2/10	GR-1089-CORE	1000
8/20	IEC 61000-4-5	800
10/160	TIA-968-A (FCC Part 68)	400
10/700	ITU-T K.20/21/45	350
10/560	TIA-968-A (FCC Part 68)	250
10/1000	GR-1089-CORE	200

RĽ

..... UL Recognized Components

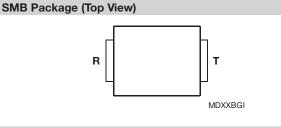
Description

The range of TISP4xxxJ3BJ devices are designed to limit overvoltages on telecom lines. The TISP4xxxJ3BJ is primarily designed to address GR-1089-CORE compliance on data transmission lines with d.c. power feeding. When overvoltage protection is applied to transformer coupled lines from the transformer center tap to ground, the total ground return current can be 200 A, 10/1000 and 1000 A, 2/10. The high 150 mA holding current is set above common d.c. feed system levels to allow the TISP4xxxJ3BJ to reset following a disturbance.

These devices allow signal voltages, without clipping, up to the maximum off-state voltage value, V_{DRM} , see Figure 1. Voltages above V_{DRM} are limited and will not exceed the breakover voltage, $V_{(BO)}$, level. If sufficient current flows due to the overvoltage, the device switches into a low voltage on-state condition, which diverts the current from the overvoltage through the device. When the diverted current falls below the holding current, I_H , level the devices switches off and restores normal system operation.

How to Order

Device	Package	Carrier	For Standard Termination Finish Order As	For Lead Free Termination Finish Order As	Marking Code	Std. Qty.
TISP4xxxJ3BJ	SMB (DO-214AA)	Embossed Tape Reeled	TISP4xxxJ3BJR	TISP4xxxJ3BJR-S	4xxxJ3	3000


Insert xxx value corresponding to device name.

*RoHS Directive 2002/95/EC Jan 27 2003 including Annex

JULY 2003 - REVISED FEBRUARY 2005

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

Device Symbol

BOURNS®

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating		Symbol	Value	Unit
	'4290		±220	
Repetitive peak off-state voltage	'4350	V _{DRM}	±275	V
	'4395		±320	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)				
2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape)			1000	
8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape)			800	
10/160 (TIA-968-A (Replaces FCC Part 68), 10/160 voltage wave shape)			400	
4/250 (ITU-T K.20/21, 10/700 voltage wave shape, simultaneous)		I _{PPSM}	370	А
5/310 (ITU-T K.20/21, 10/700 voltage wave shape, single)			350	
5/320 (TIA-968-A (Replaces FCC Part 68), 9/720 voltage wave shape, single)			350	
10/560 (TIA-968-A (Replaces FCC Part 68), 10/560 voltage wave shape)			250	
10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)			200	
Non-repetitive peak on-state current (see Notes 1 and 2)				
50 Hz, 1 cycle		I _{TSM}	80	А
60 Hz, 1 cycle			100	
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 50 A		di _T /dt	800	A/μs
Junction temperature		ТJ	-40 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C

NOTES: 1. Initially, the device must be in thermal equilibrium with T_J = 25 °C.
2. These non-repetitive rated currents are peak values of either polarity. The surge may be repeated after the device returns to its initial conditions.

Electrical Characteristics, T_A = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Max	Unit
I _{DRM}	Repetitive peak off- state current	$V_D = \pm V_{DRM}$	T _A = 25 °C T _A = 85 °C			±5 ±10	μΑ
V _(BO)	AC breakover voltage	dv/dt = ±250 V/ms, R _{SOURCE} = 300	'4290 '4350 '4395			±290 ±350 ±395	V
V _(BO)	Ramp breakover voltage	dv/dt ≤ ±1000 V/μs, Linear voltage ramp, Maximum ramp value = ±500 V di/dt = ±20 A/μs, Linear current ramp, Maximum ramp value = ±10 A	'4290 '4350 '4395			±303 ±364 ±409	V
V _(BO)	Impulse breakover voltage	2/10 wave shape, I_{PP} = ±1000 A, R_{S} = 2.5 $\Omega,$ (see Note 3)	'4290 '4350 '4395		±320 ±386 ±434		V
I _(BO)	Breakover current	$dv/dt = \pm 250 V/ms, R_{SOURCE} = 300 \Omega$				±600	mA
Ι _Η	Holding current	$I_{T} = \pm 5 \text{ A}, \text{ di/dt} = \pm -30 \text{ mA/ms}$		±150			mA
dv/dt	Critical rate of rise of off-state voltage	Linear voltage ramp, Maximum ramp value < 0.85 V_{DRM}		±5			kV/μs

BOURNS®

Electrical Characteristics, $T_A = 25$ °C (Unless Otherwise Noted)

Parameter Test Conditions		Min	Тур	Max	Unit		
I _D	Off-state current	$V_{D} = \pm 50 \text{ V}$	T _A = 85 °C			±10	μA
		$f = 1 \text{ MHz}, Vd = 1 \text{ V rms}, V_D = 0$			105	125	
		$f = 1 \text{ MHz}$, $Vd = 1 \text{ V rms}$, $V_D = -1 \text{ V}$			95	115	
Coff	Off-state capacitance	$f = 1 \text{ MHz}$, $Vd = 1 \text{ V rms}$, $V_D = -2 \text{ V}$			90	105	pF
		f = 1 MHz, Vd = 1 V rms, V _D = -50 V			42	50	
		f = 1 MHz, Vd = 1 V rms, V _D = -100 V			35	40	

NOTE 3: Dynamic voltage measurements should be made with an oscilloscope with limited band width (20 MHz) to avoid high frequency noise.

Thermal Characteristics

Parameter	Test Conditions	Min	Тур	Max	Unit
RAIN JUNCTION TO THE AIR THERMAI RESISTANCE	EIA/JESD51-3 PCB, $I_T = I_{TSM(1000)}$, $T_A = 25 \text{ °C}$, (see Note 4)			90	°C/W

NOTE 4: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

BOURNS®

Parameter Measurement Information

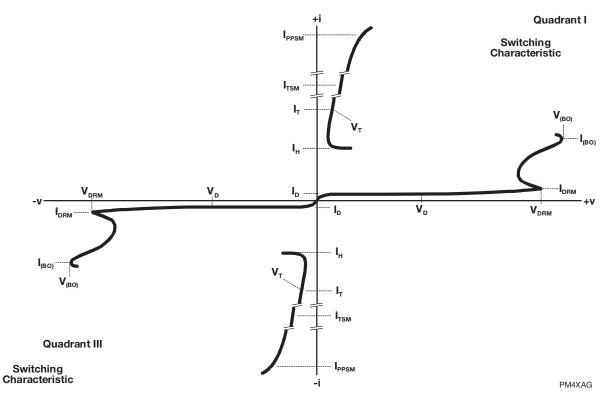
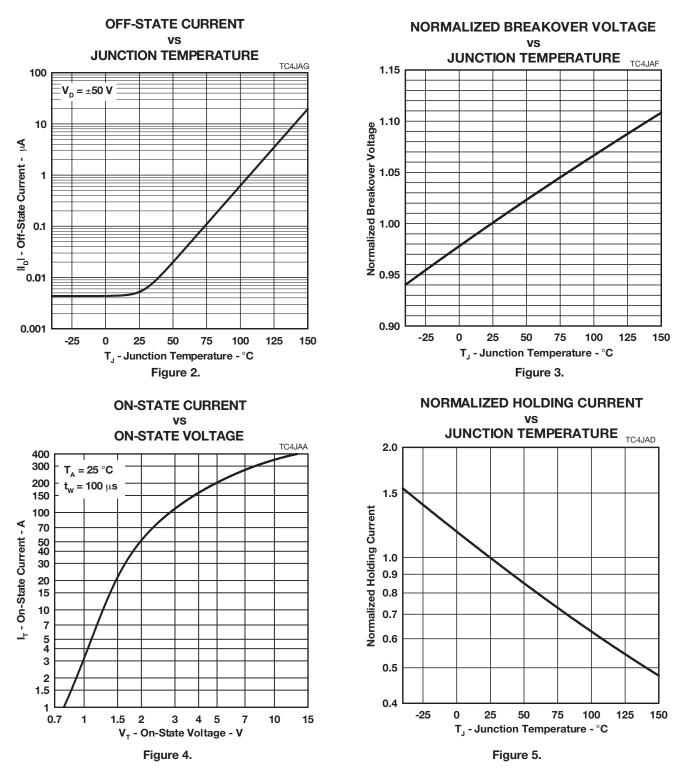
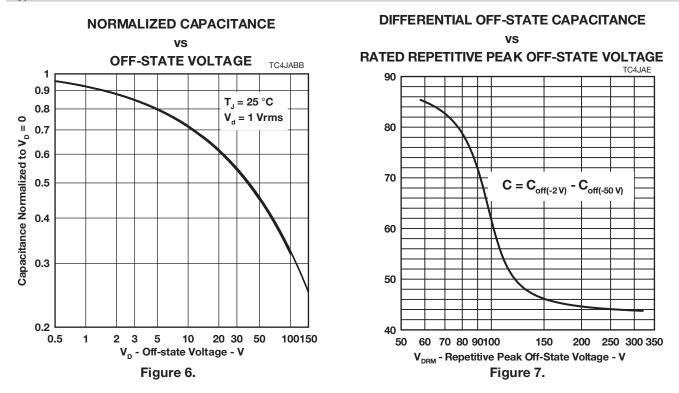
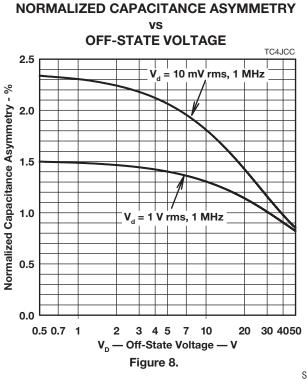



Figure 1. Voltage-Current Characteristic for Terminals T and R All Measurements are Referenced to Terminal T

BOURNS®


Typical Characteristics



JULY 2003 - REVISED FEBRUARY 2005 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications.

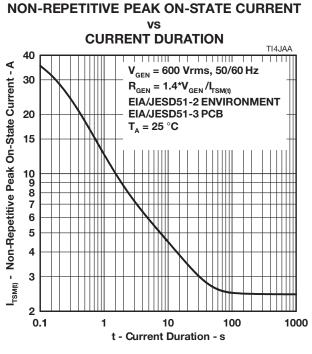
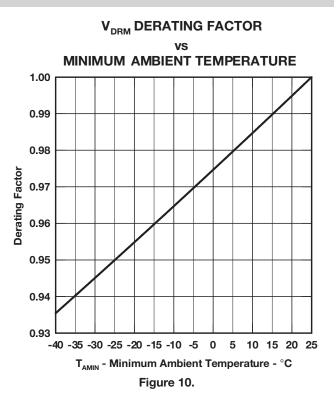
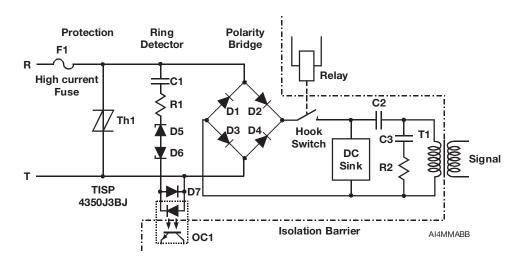
BOURNS®

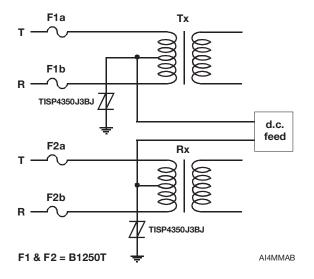
Typical Characteristics

JULY 2003 - REVISED FEBRUARY 2005 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications.

BOURNS®

Rating and Thermal Characteristics


Figure 9.

BOURNS®

Applications Circuits

"TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is Registered in U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries. JULY 2003 - REVISED FEBRUARY 2005 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications.