
SLVS062K-DECEMBER 1991-REVISED OCTOBER 2006

FEATURES

- 0.4% Initial Voltage Tolerance
- 0.2-Ω Typical Output Impedance
- Fast Turnon...500 ns

- Sink Current Capability...1 mA to 100 mA
- Low Reference Current (REF)
- Adjustable Output Voltage...V_{I(ref)} to 36 V

DESCRIPTION/ORDERING INFORMATION

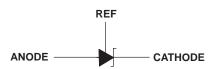
The TL1431 is a precision programmable reference with specified thermal stability over automotive, commercial, and military temperature ranges. The output voltage can be set to any value between $V_{l(ref)}$ (approximately 2.5 V) and 36 V with two external resistors (see Figure 16). This device has a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turnon characteristic, making the device an excellent replacement for Zener diodes and other types of references in applications such as onboard regulation, adjustable power supplies, and switching power supplies.

The TL1431C is characterized for operation over the commercial temperature range of 0°C to 70°C. The TL1431Q is characterized for operation over the full automotive temperature range of –40°C to 125°C. The TL1431M is characterized for operation over the full military temperature range of –55°C to 125°C.

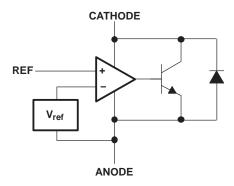
A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerFLEX is a trademark of Texas Instruments.

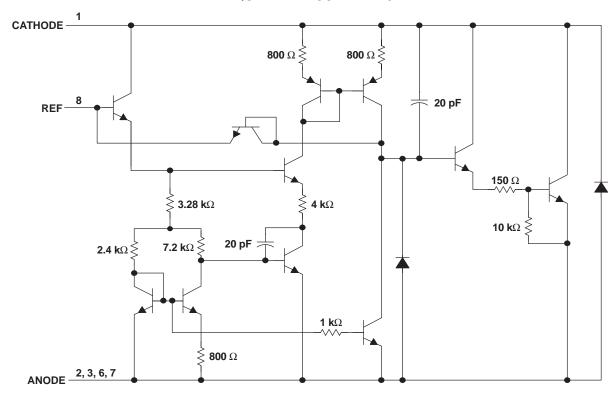


ORDERING INFORMATION(1)


T _A	PAC	KAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PowerFLEX™ – KTP	Reel of 3000	TL1431CKTPR	OBSOLETE
	SOIC - D	Tube of 75	TL1431CD	1431C
	30IC - D	Reel of 2500	TL1431CDR	14310
0°C to 70°C	TO-226 / TO-92 – LP	Bulk of 1000	TL1431CLP	TI 1421C
	10-226 / 10-92 – LP	Reel of 2000	TL1431CLPR	TL1431C
	TCCOD DW	Tube of 150	TL1431CPW	T4424
	TSSOP – PW	Reel of 2000	TL1431CPWR	T1431
	0010 D	Tube of 75	TL1431QD	TI 4404 O.D.
4000 to 40500	SOIC – D	Reel of 2500	TL1431QDR	TL1431QD
-40°C to 125°C	TCCOD DW	Tube of 150	TL1431QPW	T4 424 ODW
	TSSOP – PW	Reel of 2000	TL1431QPWR	T1431QPW
−55°C to 125°C	CDIP – JG	Tube of 50	TL1431MJG	TL1431MJG
-55 C to 125°C	LCCC – FK	Tube of 55	TL1431MFK	TL1431MFK

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SYMBOL



FUNCTIONAL BLOCK DIAGRAM

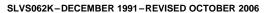
EQUIVALENT SCHEMATIC

- All component values are nominal.
- Pin numbers shown are for the D package.

Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{KA}	Cathode voltage ⁽²⁾		37	V			
I _{KA}	Continuous cathode current range	-100	150	mA			
I _{I(ref)}	Reference input current range	Reference input current range		10	mA		
θ_{JA}		D package		97			
	Package thermal impedance (3)(4)	LP package		140	0 °C/W		
		PW package		149			
0	Package thermal impedance (5)(6)	FK package		5.61	°C/W		
θ_{JC}	Fackage mermai impedance (9)(9)	JG package		14.5	C/VV		
TJ	Operating virtual junction temperature			150	°C		
	Lead temperature	1,6 mm (1/16 in) from case for 10 s		260	°C		
T _{stg}	Storage temperature range			150	°C		


⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to ANODE, unless otherwise noted.

 ⁽³⁾ Maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)} – T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
 (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Maximum power dissipation is a function of $T_{J(max)}$, θ_{JC} , and T_{C} . The maximum allowable power dissipation at any allowable case temperature is $P_{D} = (T_{J(max)} - T_{C})/\theta_{JC}$. Operating at the absolute maximum T_{J} of 150°C can affect reliability. The package thermal impedance is calculated in accordance with MIL-STD-883.

TL1431 PRECISION PROGRAMMABLE REFERENCE

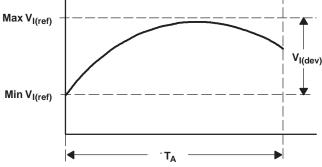
Recommended Operating Conditions

			MIN	MAX	UNIT
V_{KA}	Cathode voltage		V _{I(ref)}	36	V
I _{KA}	Cathode current		1	100	mA
		TL1431C	0	70	
T _A	Operating free-air temperature	TL1431Q	-40	125	°C
		TL1431M	- 55	125	

Electrical Characteristics

at specified free-air temperature, $I_{KA} = 10 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST COMPITIONS	T (1)	TEST		TL1431C			
		TEST CONDITIONS T _A ⁽¹⁾		CIRCUIT	MIN	TYP	MAX	UNIT	
V	Deference input valtage	V V	25°C	Figure 4	2490	2500	2510	mV	
V _{I(ref)}	Reference input voltage	$V_{KA} = V_{I(ref)}$	Full range	Figure 1	2480		2520	IIIV	
V _{I(dev)}	Deviation of reference input voltage over full temperature range ⁽²⁾	$V_{KA} = V_{I(ref)}$	Full range	Figure 1		4	20	mV	
$\frac{\Delta V_{\text{l(ref)}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2	mV/V	
_	Poforonoo innut ourront	R1 = 10 kΩ, R2 = ∞	25°C	Figure 2		1.5	2.5	μΑ	
I _{I(ref)}	Reference input current		Full range	rigure 2			3		
I _{I(dev)}	Deviation of reference input current over full temperature range ⁽²⁾	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2		0.2	1.2	μΑ	
I _{min}	Minimum cathode current for regulation	$V_{KA} = V_{I(ref)}$	25°C	Figure 1		0.45	1	mA	
-	Off state anthodo surrent	.,	25°C	F: 0		0.18	0.5	^	
I _{off}	Off-state cathode current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	Figure 3			2	μΑ	
z _{KA}	Output impedance ⁽³⁾	$V_{KA} = V_{I(ref)}, f \le 1 \text{ kHz},$ $I_{KA} = 1 \text{ mA to } 100 \text{ mA}$	25°C	Figure 1		0.2	0.4	Ω	


Full range is 0°C to 70°C for C-suffix devices.

The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{VI(ref)}$ is defined as:

$$\left| \alpha_{\text{Vi(ref)}} \right| \left(\frac{\text{ppm}}{^{\circ}\text{C}} \right) = \frac{\left(\frac{\text{V}_{\text{I(dev)}}}{\text{V}_{\text{I(ref)}} \text{ at 25}^{\circ}\text{C}} \right) \times 10^{6}}{\text{T}_{\text{A}}}$$

 ΔT_A is the rated operating temperature range of the device.

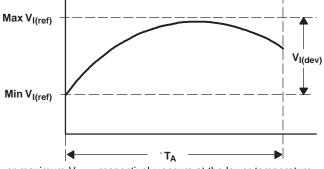
 $\alpha_{VI(ref)}$ is positive or negative, depending on whether minimum $V_{I(ref)}$ or maximum $V_{I(ref)}$, respectively, occurs at the lower temperature.

(3) The output impedance is defined as: $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: $|z'| = \frac{\Delta V}{\Delta I}$, which is approximately equal to $\left|z_{KA}\right|\left(1 + \frac{R1}{R2}\right)$.

Electrical Characteristics

at specified free-air temperature, $I_{KA} = 10 \text{ mA}$ (unless otherwise noted)


	PARAMETER	TEST CONDITIONS TA (1)		TEST		TL1431Q			TL1431M			
	PARAMETER TEST CONDITIONS		T _A ⁽¹⁾	CIRCUIT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
			25°C		2490	2500	2510	2475	2500	2540		
V _{I(ref)}	Reference input voltage	$V_{KA} = V_{I(ref)}$	Full range	Figure 1	2470		2530	2460		2550	mV	
V _{I(dev)}	Deviation of reference input voltage over full temperature range (2)	$V_{KA} = V_{I(ref)}$	Full range	Figure 1		17	55		17	55 ⁽³⁾	mV	
$\frac{\Delta V_{\text{l(ref)}}}{\Delta V_{\text{KA}}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2		-1.1	-2	mV/V	
			25°C			1.5	2.5		1.5	2.5		
I _{I(ref)}	Reference input current	R1 = 10 k Ω , R2 = ∞	Full range	Figure 2			4			5	μΑ	
I _{I(dev)}	Deviation of reference input current over full temperature range (2)	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2		0.5	2		0.5	3(3)	μА	
I _{min}	Minimum cathode current for regulation	$V_{KA} = V_{I(ref)}$	25°C	Figure 1		0.45	1		0.45	1	mA	
	Off-state cathode		25°C			0.18	0.5		0.18	0.5		
I _{off}	current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	Figure 3			2			2	μΑ	
z _{KA}	Output impedance ⁽⁴⁾	$V_{KA} = V_{I(ref)}$, $f \le 1 \text{ kHz}$, $I_{KA} = 1 \text{ mA to } 100 \text{ mA}$	25°C	Figure 1		0.2	0.4		0.2	0.4	Ω	

Full range is -40° C to 125°C for Q-suffix devices and -55° C to 125°C for M-suffix devices. The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{VI(ref)}$ is defined as:

$$\left|\begin{array}{c} \alpha_{\text{Vi(ref)}} \end{array}\right| \left(\frac{\text{ppm}}{^{\circ}\text{C}}\right) = \begin{array}{c} \left(\frac{\text{V}_{\text{I(dev)}}}{\text{V}_{\text{I(ref)}} \text{ at } 25^{\circ}\text{C}}\right) \times 10^{6} \\ \text{T}_{\triangle} \end{array}\right|$$

where:

 ΔT_A is the rated operating temperature range of the device.

 $\alpha_{VI(ref)}$ is positive or negative, depending on whether minimum $V_{I(ref)}$ or maximum $V_{I(ref)}$, respectively, occurs at the lower temperature. (3) On products compliant to MIL-PRF-38535, this parameter is not production tested. (4) The output impedance is defined as: $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: $|z'| = \frac{\Delta V}{\Delta I}$, which is approximately equal to $\left|z_{\text{KA}}\right|\left(1+\frac{R1}{R2}\right)$

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuit for $V_{(KA)} = V_{ref}$

Figure 2. Test Circuit for $V_{(KA)} > V_{ref}$

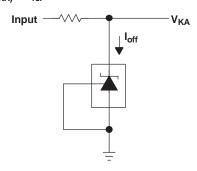


Figure 3. Test Circuit for I_{off}

TYPICAL CHARACTERISTICS

Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

Table of Graphs

GRAPH	FIGURE
Reference voltage vs Free-air temperature	4
Reference current vs Free-air temperature	5
Cathode current vs Cathode voltage	6, 7
Off-state cathode current vs Free-air temperature	8
Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature	9
Equivalent input-noise voltage vs Frequency	10
Equivalent input-noise voltage over a 10-second period	11
Small-signal voltage amplification vs Frequency	12
Reference impedance vs Frequency	13
Pulse response	14
Stability boundary conditions	15

REFERENCE VOLTAGE

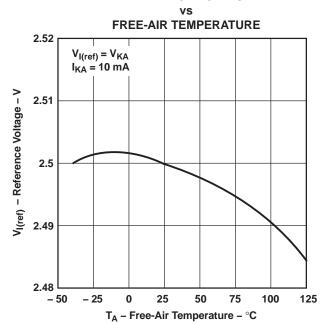


Figure 4.

CATHODE CURRENT vs

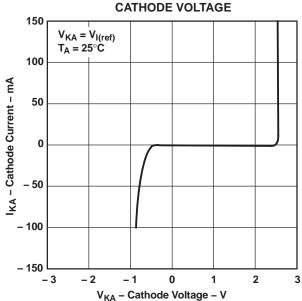


Figure 6.

REFERENCE CURRENT vs

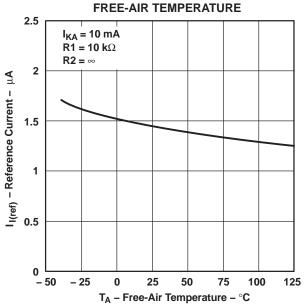
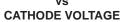



Figure 5.

CATHODE CURRENT vs

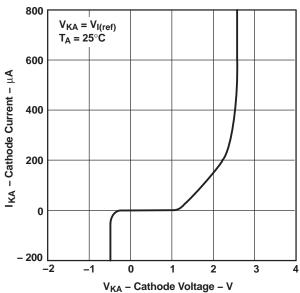
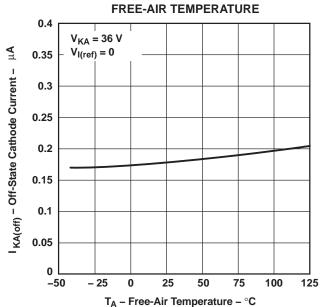



Figure 7.

RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE

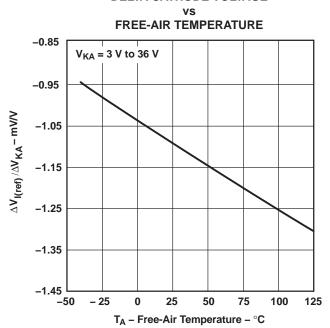


Figure 8.

Figure 9.

EQUIVALENT INPUT-NOISE VOLTAGE

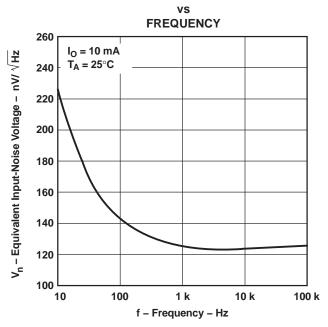
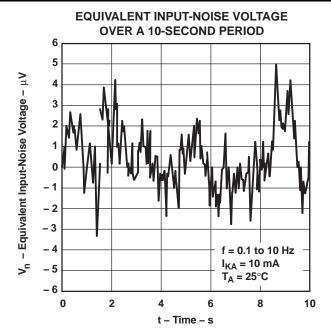
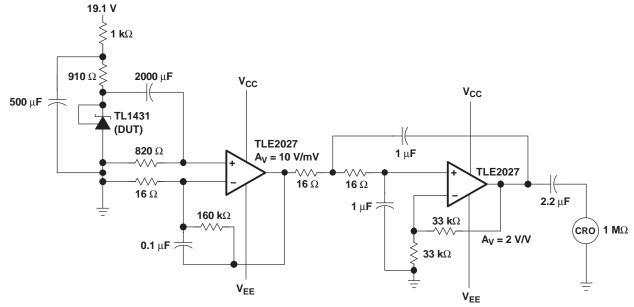
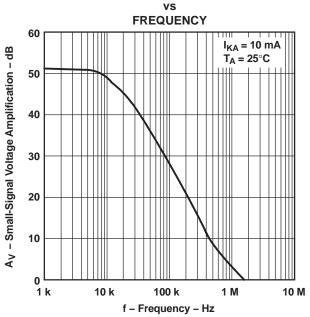
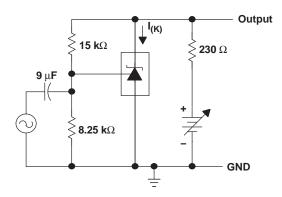




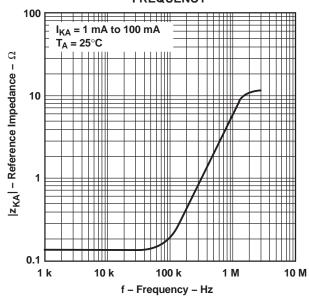
Figure 10.





TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT INPUT-NOISE VOLTAGE Figure 11.

SMALL-SIGNAL VOLTAGE AMPLIFICATION



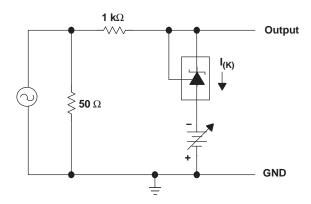
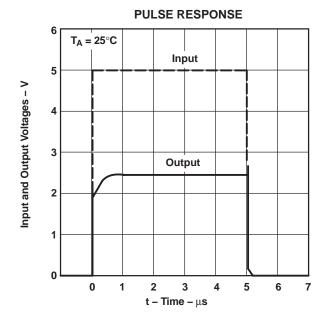

TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

Figure 12.

REFERENCE IMPEDANCE

vs FREQUENCY



TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 13.

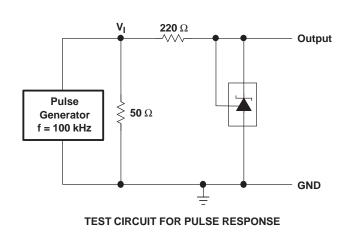
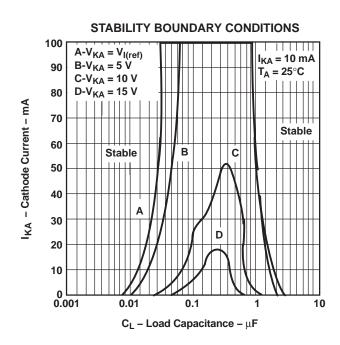
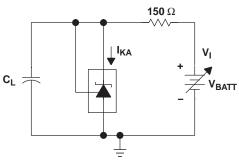
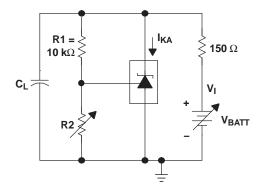
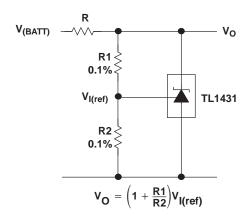





Figure 14.

TEST CIRCUIT FOR CURVE A

TEST CIRCUIT FOR CURVES B, C, AND D

A. The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ are adjusted to establish the initial V_{KA} and I_{KA} conditions, with $C_L = 0$. V_{BATT} and C_L then are adjusted to determine the ranges of stability.


Figure 15.

APPLICATION INFORMATION

Table of Application Circuits

APPLICATION	FIGURE
Shunt regulator	16
Single-supply comparator with temperature-compensated threshold	17
Precision high-current series regulator	18
Output control of a three-terminal fixed regulator	19
Higher-current shunt regulator	20
Crowbar	21
Precision 5-V, 1.5-A, 0.5% regulator	22
5-V precision regulator	23
PWM converter with 0.5% reference	24
Voltage monitor	25
Delay timer	26
Precision current limiter	27
Precision constant-current sink	28

A. R should provide cathode current ≥1 mA to the TL1431 at minimum V_(BATT).
 Figure 16. Shunt Regulator

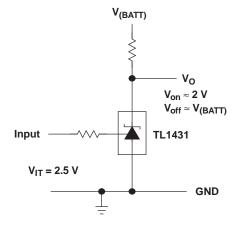
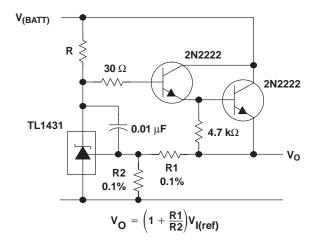



Figure 17. Single-Supply Comparator With Temperature-Compensated Threshold

SLVS062K-DECEMBER 1991-REVISED OCTOBER 2006

A. R should provide cathode current ≥1 mA to the TL1431 at minimum V_(BATT).

Figure 18. Precision High-Current Series Regulator

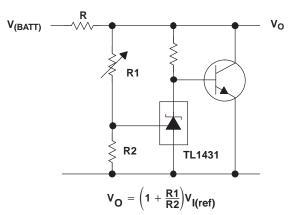


Figure 20. Higher-Current Shunt Regulator

Figure 22. Precision 5-V, 1.5-A, 0.5% Regulator

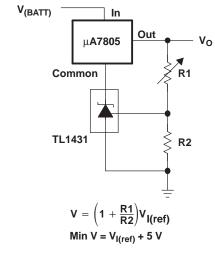
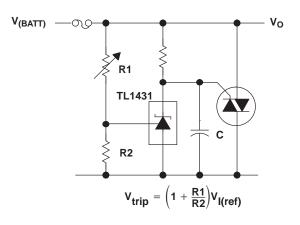
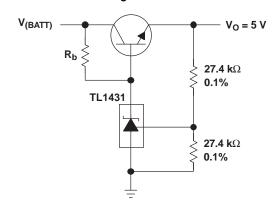




Figure 19. Output Control of a Three-Terminal Fixed Regulator

 Refer to the stability boundary conditions in Figure 15 to determine allowable values for C.

Figure 21. Crowbar

A. R_b should provide cathode current ≥ 1 mA to the TL1431.

Figure 23. 5-V Precision Regulator

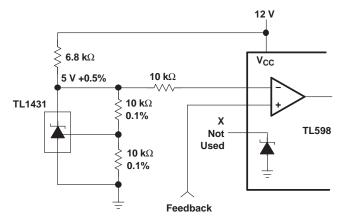
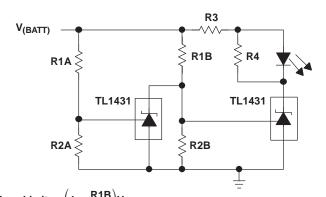



Figure 24. PWM Converter With 0.5% Reference

 $\begin{aligned} \text{Low Limit} &= \left(1 + \frac{\text{R1B}}{\text{R2B}}\right) V_{\text{I(ref)}} & \text{LED on When} \\ \text{High Limit} &= \left(1 + \frac{\text{R1A}}{\text{R2A}}\right) V_{\text{I(ref)}} & \text{Low Limit} < V_{\text{(BATT)}} < \text{High Limit} \end{aligned}$

 A. Select R3 and R4 to provide the desired LED intensity and cathode current ≥1 mA to the TL1431.

Figure 25. Voltage Monitor

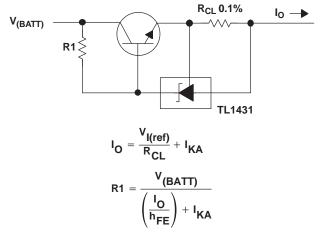
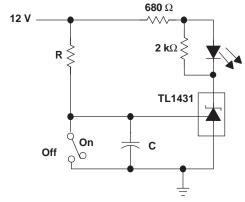



Figure 27. Precision Current Limiter

Delay = R
$$\times$$
 C \times I $\frac{12 \text{ V}}{(12 \text{ V}) - \text{V}_{\text{I(ref)}}}$

Figure 26. Delay Timer

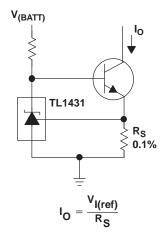


Figure 28. Precision Constant-Current Sink

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
5962-9962001Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9962001QPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9962001VPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
TL1431CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI
TL1431CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL1431CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL1431CLPM	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
TL1431CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL1431CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
TL1431CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CPWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431CPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL1431MFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TL1431MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TL1431MJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
TL1431MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
TL1431QD	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
TL1431QDR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
TL1431QLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
TL1431QLPR	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
TL1431QPWR	ACTIVE	TSSOP	PW	8	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PACKAGE OPTION ADDENDUM

6-Dec-2006

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

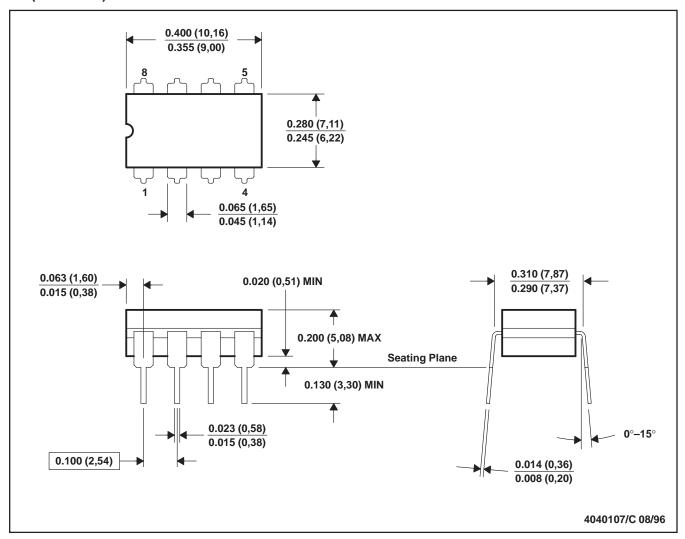
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

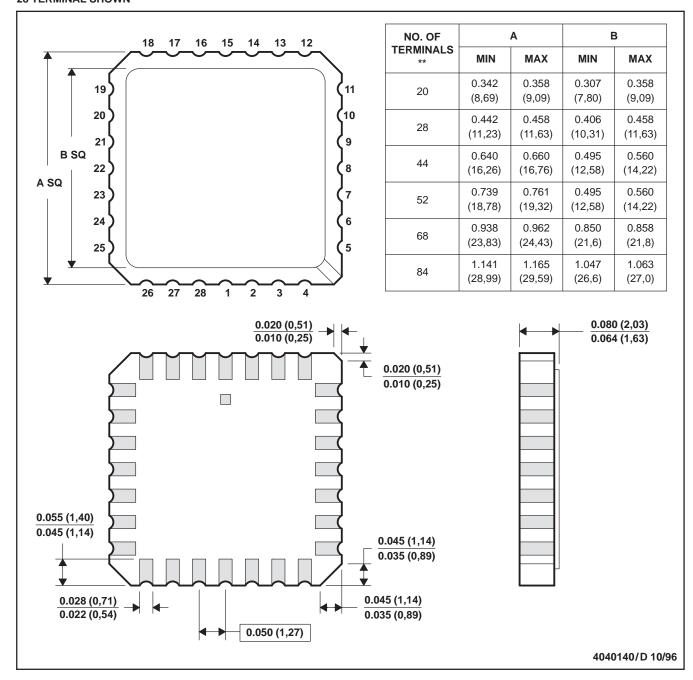

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

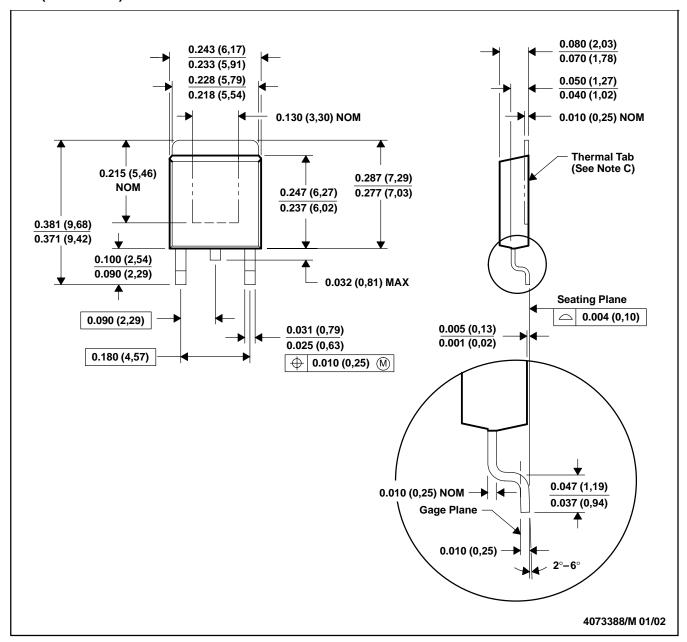

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

28 TERMINAL SHOWN

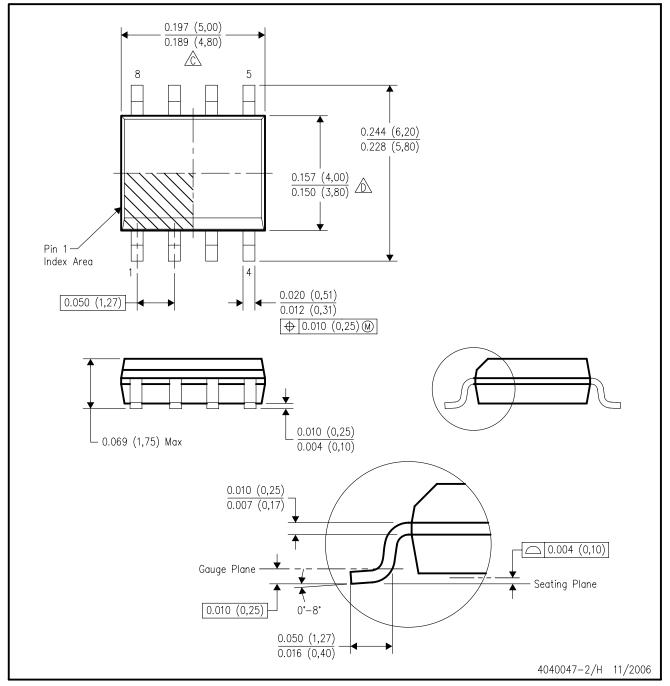
LEADLESS CERAMIC CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

KTP (R-PSFM-G2)

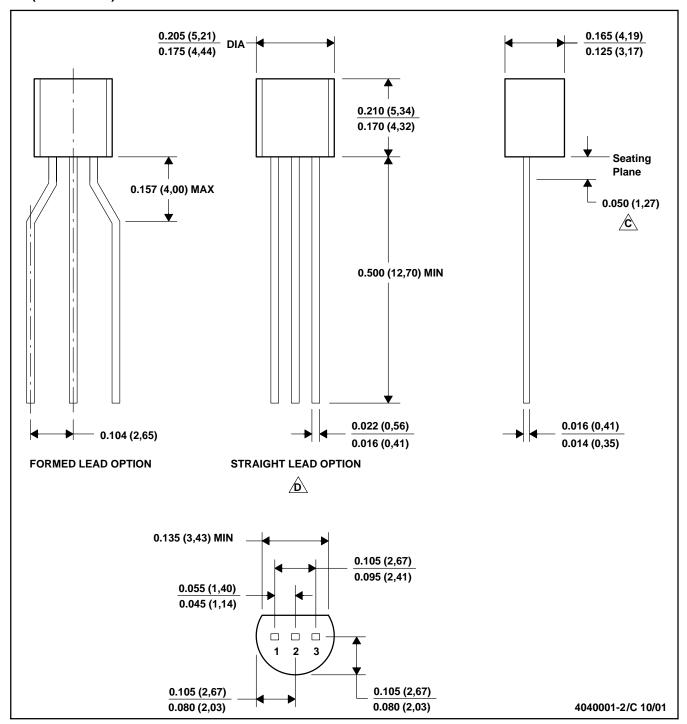
PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. The center lead is in electrical contact with the thermal tab.
 - D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
 - E. Falls within JEDEC TO-252 variation AC.

PowerFLEX is a trademark of Texas Instruments.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

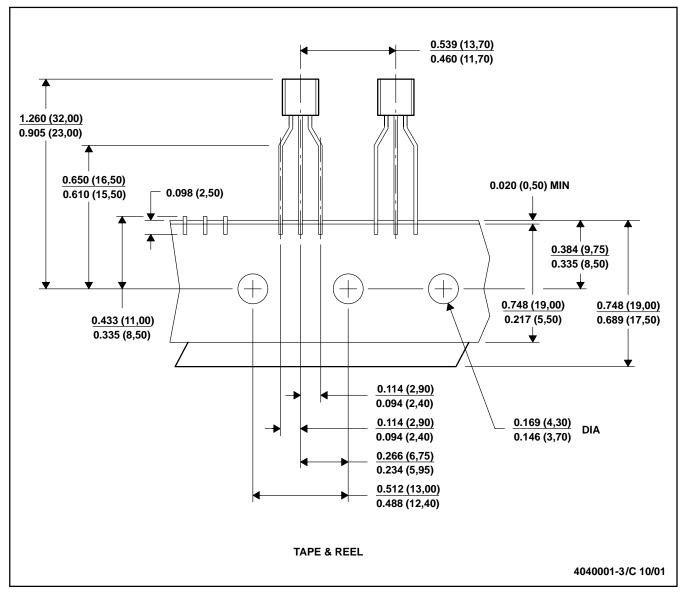
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C.\ Lead dimensions are not controlled within this area

√D.\ FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:

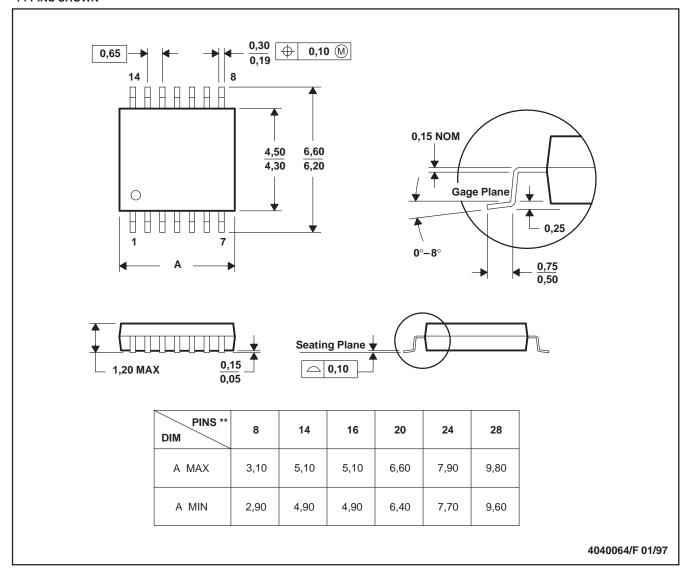

Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated