TS5A3154

Description

The TS5A3154 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V . The device offers a low ON -state resistance and an excellent channel-to-channel ON-state resistance matching. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Terminals and Peripherals

YEA, YEP, YZA, OR YZP PACKAGE (BOTTOM VIEW)

FUNCTION TABLE

$\overline{\text { EN }}$	IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	L	ON	OFF
L	H	OFF	ON
H	X	OFF	OFF

Features

- Specified Make-Before-Break Switching
- Low ON-State Resistance (0.9Ω)
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- $1.65-\mathrm{V}$ to $5.5-\mathrm{V}$ Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)

Summary of Characteristics

$\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Configuration	Single Pole, Double Throw 2:1 Multiplexer/ Demultiplexer (SPDT)
Number of channels	1
ON-state resistance (ron)	0.9Ω
ON-state resistance match ($\left.\Delta r_{\text {on }}\right)$	0.1Ω
ON-state resistance flatness (ron(flat))	0.15Ω
Turn-on/turn-off time (tON/tOFF)	$8 \mathrm{~ns} / 12.5 \mathrm{~ns}$
Make-before-break time (tMBB)	12 ns
Charge injection (QC)	10 pC
Bandwidth (BW)	100 MHz
OFF isolation (OISO)	-64 dB at 1 MHz
Crosstalk (XTALK)	-64 dB at 1 MHz
Total harmonic distortion (THD)	0.004%
Leakagearent(lCOM(OFF)/lNC(OFF))	$\pm 20 \mathrm{nA}$
Power-supply current (I $\left.\mathrm{I}_{+}\right)$	$0.1 \mu \mathrm{~mA}$
Package option	8-pin SSOP, SOT, or
DSBGA	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE(1)		ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoStar™ - WCSP (DSBGA) 0.17-mm Small Bump - YEA	Tape and reel	TS5A3154YEAR CKAGE PREV	N
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) 0.17-mm Small Bump - YZA (Pb-free)		TS5A3154YZAR PACKAGE PRENT	
	NanoStar™ - WCSP (DSBGA) $0.23-\mathrm{mm}$ Large Bump - YEP		TS5A3154YEPR PACKAGE PRENT	
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) 0.23 -mm Large Bump - YZP (Pb-free)		TS5A3154YZPR PACKAGE PREV\|	
	SSOP - DCT (Pb-free)	Tape	TS5A3154DCTRE6	JCF__
	DCU (Pb-free)	Tape and reel	TS5A3154DCURE6	JCF__,

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
(2) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \bullet=\mathrm{Pb}-\mathrm{free}$).

Absolute Minimum and Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{+}	Supply voltage range(3)		-0.5	6.5	V
$\begin{array}{\|l} \hline \mathrm{v}_{\mathrm{NC}} \\ \mathrm{v}_{\mathrm{NO}} \\ \mathrm{v}_{\mathrm{COM}} \\ \hline \end{array}$	Analog voltage range(3)(4)(5)		-0.5	$\mathrm{V}_{+}+0.5$	V
IK	Analog port diode current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$ or $\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}>\mathrm{V}_{+}$	-50	50	mA
${ }^{\text {INC }}$	On-state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}	-200	200	mA
$\begin{aligned} & \text { INO } \\ & \text { ICOM } \end{aligned}$	On-state peak switch current(6)		-400	400	
V_{1}	Digital input voltage range(3)(4)		-0.5	6.5	V
IIK	Digital input clamp current	$\mathrm{V}_{1}<0$	-50		mA
I_{+}	Continuous current through V_{+}			100	mA
IGND	Continuous current through GND		-100	100	mA
θJ A	Package thermal impedance ${ }^{(7)}$	DCT package		220	C/W
		DCU package		227	
		YEA/YZA package		140	
		YEP/YZP package		102	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) All voltages are with respect to ground, unless otherwise specified.
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(5) This value is limited to 5.5 V maximum.
(6) Pulse at 1 -ms duration $<10 \%$ duty cycle.
(7) The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS191 - MARCH 2005

Electrical Characteristics for 5-V Supply ${ }^{(1)}$

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM},}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
Peak ON resistance	rpeak	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I} \mathrm{COM}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	4.5 V		0.9	1.1	Ω
				Full				1.3	
ON-state resistance	r^{\prime}	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	4.5 V		0.8	0.9	Ω
				Full				1.1	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2.5 \mathrm{~V} \text {, } \\ & \mathrm{I} \mathrm{COM}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	4.5 V		0.05	0.1	Ω
				Full				0.1	
ON-state resistance flatness	ron(flat)	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+} \text {, } \\ & \mathrm{I} \mathrm{COM}=-100 \mathrm{~mA} \text {, } \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	4.5 V		0.15		Ω
				Full					
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$			0.09	0.15	
				Full				0.15	
NC, NO OFF leakage current	${ }^{1} \mathrm{NC}(\mathrm{OFF})$, INO(OFF)	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ \text { or } \\ \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \end{array} \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-150		150	
	INC(PWROFF), INO(PWROFF)	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to 5.5 V , $\mathrm{V}_{\mathrm{COM}}=5.5 \mathrm{~V}$ to 0 ,	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-5	0.7	5	$\mu \mathrm{A}$
				Full		-25		25	
NC, NO ON leakage current	${ }^{1} \mathrm{NC}(\mathrm{ON})$, INO(ON)	$\begin{gathered} \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ \text { or } \\ \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{gathered}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-150		150	
COM OFF leakage current	ICOM(OFF)	$\begin{array}{\|l} \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V}, \\ \text { or } \\ \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \end{array}$	Switch OFF See Figure 14	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-150		150	
	lCOMPWROFF)	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to 5.5 V , $\mathrm{V}_{\mathrm{COM}}=5.5 \mathrm{~V}$ to 0 ,	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-5	0.7	5	$\mu \mathrm{A}$
				Full		-25		25	
COM ON leakage current	ICOM(ON)	$\begin{array}{\|l} \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open }, \\ \text { or } \end{array},$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	5.5 V	-20	2	20	nA
				Full		-150		150	
Digital Control Inputs (IN, $\overline{\mathrm{EN}}$)(2)									
Input logic high	V_{IH}			Full		2.4		5.5	V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full		0		0.8	V
Input leakage current	IIH, IIL	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	5.5 V	-100	25	100	nA
				Full		-100		100	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 5-V Supply (${ }^{1}$) (continued)
$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time, IN or $\overline{\mathrm{OE}}$	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	5 V	1	5.2	8	ns
				Full	4.5 V to 5.5 V	1		9	
Turn-off time, IN or $\overline{\mathrm{OE}}$	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	5 V	5	9.5	12.5	ns
				Full	4.5 V to 5.5 V	4		13.5	
Make-beforebreak time	${ }^{\text {m MBB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	5 V	4	6.3	12	ns
				Full	4.5 V to 5.5 V	4		13	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{VGEN}=0, \\ & \mathrm{RGEN}=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	5 V		10		pC
NC, NO OFF capacitance	CNC(OFF), CNO(OFF)	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		19		pF
NC, NO ON capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NC}(\mathrm{ON}),} \\ & \mathrm{C}_{\mathrm{NO}(\mathrm{ON})} \end{aligned}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND , Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		57		pF
COM OFF capacitance	CCOM(OFF)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		36		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		57		pF
Digital input capacitance	CI	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		2		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega \text {, }$ Switch ON,	See Figure 19	$25^{\circ} \mathrm{C}$	5 V		100		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	5 V		-64		dB
Crosstalk	X TALK	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	5 V		-64		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 23	$25^{\circ} \mathrm{C}$	5 V		0.004		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	5.5 V		0.02	0.1	$\mu \mathrm{A}$
				Full				0.5	

[^0]SCDS191 - MARCH 2005

Electrical Characteristics for 3.3-V Supply(1)

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{v}_{\mathrm{COM},}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
Peak ON resistance	${ }^{\text {rpeak }}$	$\begin{aligned} & 0 \leq\left(V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+} \text {, } \\ & \mathrm{I} \mathrm{COM}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	3 V		1.3	1.6	Ω
				Full				1.9	
ON-state resistance	r^{\prime}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}$, ${ }^{\mathrm{I}} \mathrm{COM}=-100 \mathrm{~mA}$,	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	3 V		1.2	1.5	Ω
				Full				1.7	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	3 V		0.08	0.15	Ω
				Full				0.15	
ON-state resistance flatness	$r_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(V_{N O} \text { or } V_{N C}\right) \leq V_{+}, \\ & I^{\prime} O M=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	3 V		0.3		Ω
				Full					
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$			0.09	0.15	
				Full				0.15	
NC, NO OFF leakage current	INO(OFF), INC(OFF)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ \text { or } \\ \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ \hline \end{array}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	3.6 V	-20	2	20	nA
				Full		-50		50	
	INO(PWROFF), INC(PWROFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3.6 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.2	1	$\mu \mathrm{A}$
				Full		-15		15	
NC, NO ON leakage current	${ }^{\mathrm{I}} \mathrm{NC}(\mathrm{ON})$, ${ }^{1} \mathrm{NO}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	3.6 V	-20	2	20	nA
				Full		-50		50	
COM OFF leakage current	ICOM(OFF)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \\ \text { or } \\ \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \end{gathered}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	3.6 V	-20	2	20	nA
				Full		-50		50	
	LCOMPWROFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3.6 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.2	1	$\mu \mathrm{A}$
				Full		-15		15	
COM ON leakage current	ICOM(ON)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open }, \\ \text { or } \\ \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open } \end{gathered}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	3.6 V	-20	2	20	nA
				Full		-50		50	
Digital Control Inputs (IN, $\overline{\text { EN }}$)(2)									
Input logic high	V_{IH}			Full		2		5.5	V
Input logic low	V_{IL}			Full		0		0.8	V
Input leakage current	IIH, IIL	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V	-100	25	100	nA
				Full		-100		100	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 3.3-V Supply(1) (continued)
$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	3	6	10	ns
				Full	3 V to 3.6 V	2		10.5	
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	5	10	15	ns
				Full	3 V to 3.6 V	4		17	
Make-beforebreak time	${ }^{\text {m MBB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V	4	5.7	12	ns
				Full	3 V to 3.6 V	4		13	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V} \text { GEN }=0, \\ & \mathrm{RGEN}=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	3.3 V		9		pC
NC, NO OFF capacitance	CNC(OFF), $\mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND , Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		19		pF
NC, NO ON capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NC}(\mathrm{ON}),} \\ & \mathrm{C}_{\mathrm{NO}(\mathrm{ON})} \end{aligned}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND , Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		57		pF
COM OFF capacitance	CCOM(OFF)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		36		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		57		pF
Digital input capacitance	CI	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		2		pF
Bandwidth	BW	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	3.3 V		100		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	3.3 V		-64		dB
Crosstalk	X TALK	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	3.3 V		-64		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 23	$25^{\circ} \mathrm{C}$	3.3 V		0.010		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	3.6 V		0.01	0.1	$\mu \mathrm{A}$
				Full				0.25	

[^1]SCDS191 - MARCH 2005
Electrical Characteristics for 2.5-V Supply(1)
$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}} \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
Peak ON resistance	${ }^{\text {rpeak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I} \mathrm{COM}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	2.3 V		1.9	2.5	Ω
				Full				2.7	
ON-state resistance	ron	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	2.3 V		1.6	2.1	Ω
				Full				2.5	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	2.3 V		0.12	0.2	Ω
				Full				0.2	
ON-state resistance flatness	$r_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I} \text {, } \mathrm{MM}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	2.3 V		0.65		Ω
				Full					
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$			0.5	1	
				Full				1	
NC, NO OFF leakage current	${ }^{1} \mathrm{NO}(\mathrm{OFF})$, INC(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2.3 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	2.7 V	-20	2	20	nA
				Full		-50		50	
	INO(PWROFF), INC(PWROFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } 2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=2.7 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.1	1	$\mu \mathrm{A}$
				Full		-10		10	
NC, NO ON leakage current	${ }^{\mathrm{I}} \mathrm{NC}(\mathrm{ON})$, ${ }^{1} \mathrm{NO}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{NC}}^{\text {or }} \mathrm{V}_{\mathrm{NO}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	2.7 V	-20	2	20	nA
				Full		-50		50	
COM OFF leakage current	ICOM(OFF)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.3 \mathrm{~V}, \\ \text { or } \\ \mathrm{V}_{\mathrm{COM}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \end{gathered}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	2.7 V	-20	2	20	nA
				Full		-50		50	
	lCOMPWROFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \text { to } 2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.7 \mathrm{~V} \text { to } 0, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.1	1	$\mu \mathrm{A}$
				Full		-10		10	
COM ON leakage current	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V}, \mathrm{v}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open }, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{COM}}=2.3 \mathrm{~V}, \mathrm{v}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, }, \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	2.7 V	-20	2	20	nA
				Full		-50		50	
Digital Control Inputs (IN, $\overline{\mathrm{EN}}$)(2)									
Input logic high	V_{IH}			Full		1.8		5.5	V
Input logic low	V_{IL}			Full		0		0.6	V
Input leakage current	IIH, IIL	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V	-100	25	100	nA
				Full		-100		100	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 2.5-V Supply(1) (continued)
$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	4	7.0	11.5	ns
				Full	2.3 V to 2.7 V	3.5		12	
Turn-off time	tofF	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	5	11.5	18.5	ns
				Full	2.3 V to 2.7 V	4		21	
Make-beforebreak time	${ }^{\text {t MBB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, }$ See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V	4	6.3	15	ns
				Full	2.3 V to 2.7 V	4		16	
Charge injection	Q_{C}	$\begin{aligned} & \hline \mathrm{V}_{\text {GEN }}=0, \\ & \text { RGEN }=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	2.5 V		7		pC
NC, NO OFF capacitance	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{NC} \text { (OFF), }} \\ & \mathrm{C}_{\mathrm{NO}}(\mathrm{OFF}) \end{aligned}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND , Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		19		pF
NC, NO ON capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NC}(\mathrm{ON}),} \\ & \mathrm{C}_{\mathrm{NO}(\mathrm{ON})} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or GND, } \\ & \text { Switch } \mathrm{ON}, \end{aligned}$	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		57		pF
COM OFF capacitance	CCOM(OFF)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		36		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		57		pF
Digital input capacitance	Cl_{1}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		2		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega,$ Switch ON,	See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		100		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	2.5 V		-64		dB
Crosstalk	X TALK	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V		-64		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 23	$25^{\circ} \mathrm{C}$	2.5 V		0.020		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	2.7 V		0.001	0.05	$\mu \mathrm{A}$
				Full				0.15	

[^2]SCDS191 - MARCH 2005

Electrical Characteristics for 1.8-V Supply(1)

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{v}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
Peak ON resistance	rpeak	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\text {NO }} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I} \text { COM }=-2 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V		5.5	25	Ω
				Full				30	
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \text {, }$$\mathrm{I} \mathrm{COM}=-2 \mathrm{~mA},$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V		2.0	2.7	Ω
				Full				3.1	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V} \text {, } \\ & \mathrm{I} \mathrm{COM}=-2 \mathrm{~mA} \text {, } \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V		0.16	0.3	Ω
				Full				0.3	
ON-state resistance flatness	ron(flat)	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{l} \mathrm{COM}=-2 \mathrm{~mA}, \\ & \hline \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V	3			Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA} \text {, } \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$			3	20	
				Full				25	
NC, NO OFF leakage current	${ }^{\prime} \mathrm{NO}(\mathrm{OFF})$, ${ }^{\mathrm{I}} \mathrm{NC}$ (OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.65 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \end{aligned}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	1.95 V	-20	1.5	20	nA
				Full		-50		50	
	INO(PWROFF), INC(PWROFF)	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to 1.95 V , $\mathrm{V}_{\mathrm{COM}}=1.95 \mathrm{~V}$ to 0 ,	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.1	1	$\mu \mathrm{A}$
				Full		-10		10	
NC, NO ON leakage current	${ }^{\mathrm{I}} \mathrm{NC}(\mathrm{ON})$, INO(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{Open}, \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	1.95 V	-20	1.5	20	nA
				Full		-50		50	
COM OFF leakage current	ICOM(OFF)	$\begin{gathered} \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.65 \mathrm{~V}, \end{gathered}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	1.95 V	-20	1.5	20	nA
				Full		-50		50	
	ICOMPWROFT)	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=1.95 \mathrm{~V}$ to 0 , $\mathrm{V}_{\mathrm{COM}}=0$ to 1.95 V ,	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	0 V	-1	0.06	1	$\mu \mathrm{A}$
				Full		-10		10	
COM ON leakage current	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=1.65 \mathrm{~V}, \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	1.95 V	-20	1.5	20	nA
				Full		-50		50	
Digital Control Inputs (IN, $\overline{\text { EN }}$) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		1.5		5.5	V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full		0		0.6	V
Input leakage current	${ }^{\prime} \mathrm{IH}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	1.95 V	-100	25	100	nA
				Full		-100		100	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for $1.8-\mathrm{V}$ Supply(1) (continued)
$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	5	10.5	20.5	ns
				Full	1.65 V to 1.95 V	4.5		21	
Turn-off time	tofF	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	7	16.5	27.5	ns
				Full	1.65 V to 1.95 V	5		30	
Break-beforemake time	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	1.8 V	4	8.3	15	ns
				Full	1.65 V to 1.95 V	4		16	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 22	$25^{\circ} \mathrm{C}$	1.8 V		5		pC
NC, NO OFF capacitance	$\begin{aligned} & \text { CNC(OFF), } \\ & \text { CNO(OFF) } \end{aligned}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		19		pF
NC, NO ON capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NC}(\mathrm{ON}),} \\ & \mathrm{C}_{\mathrm{NO}(\mathrm{ON})} \end{aligned}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		57		pF
COM OFF capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		36		pF
COM ON capacitance	$\mathrm{C}^{\text {COM (ON) }}$	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		57		pF
Digital input capacitance	Cl_{1}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		2.0		pF
Bandwidth	BW	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{Switch} \mathrm{ON}, \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	1.8 V		100		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 20	$25^{\circ} \mathrm{C}$	1.8 V		-64		dB
Crosstalk	XTALK	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 21	$25^{\circ} \mathrm{C}$	1.8 V		-64		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \text { See Figure } 23 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		0.060		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	1.95 V		0.001	0.05	$\mu \mathrm{A}$
				Full				0.1	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TYPICAL PERFORMANCE

Figure 1. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {COM }}$

Figure 3. $\mathrm{r}_{\mathrm{on}} \mathrm{vs} \mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 5. Charge Injection (Q_{C}) vs $\mathrm{V}_{\text {COM }}$

Figure 2. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {Com }}\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 4. Leakage Current vs Temperature ($\mathrm{V}_{+}=5.5 \mathrm{~V}$)

Figure 6. ton and toff vs Supply Voltage

TYPICAL PERFORMANCE

Figure 7. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 8. Logic-Level Threshold vs $\mathrm{V}_{\boldsymbol{+}}$

Figure 10. OFF Isolation and Crosstalk ($\mathrm{V}_{+}=5 \mathrm{~V}$)

Figure 11. Total Harmonic Distortion (THD) vs. Frequency

Figure 12. Power Supply Current vs Temperature

5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER

SCDS191 - MARCH 2005

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
1	COM	Common
2	$\overline{\mathrm{EN}}$	Enable control input
3	GND	Digital ground
4	GND	Digital ground
5	IN	Digital control to connect COM to NO or NC
6	NO	Normally open
7	NC	Normally closed
8	V $_{+}$	Power supply

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {COM }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
ron	Resistance between COM and NC or COM and NO ports when the channel is ON
rpeak	Peak on-state resistance over a specified voltage range
$\Delta r_{\text {on }}$	Difference of $r_{\text {on }}$ between channels in a specific device
$r_{\text {on(flat) }}$	Difference between the maximum and minimum value of $r_{\text {on }}$ in a channel over the specified range of conditions
${ }^{\text {INC(OFF) }}$	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
INC(PWROFF)	Leakage current measured at the NC port during the power-off condition, $\mathrm{V}_{+}=0$
${ }^{\text {INO(OFF) }}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
INO(PWROFF)	Leakage current measured at the NO port during the power-off condition, $\mathrm{V}_{+}=0$
INC(ON)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open
${ }^{1} \mathrm{NO}(\mathrm{ON})$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
${ }^{\text {I COM }}$ (ON)	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open
ICOM(OFF)	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the OFF state and the output (NC or NO) open
ICOM(PWROFF)	Leakage current measured at the COM port during the power-off condition, $\mathrm{V}_{+}=0$
V_{IH}	Minimum input voltage for logic high for the control input (IN, EN)
V_{IL}	Maximum input voltage for logic low for the control input (IN, EN)
V_{1}	Voltage at the control input (IN, EN)
$\mathrm{IIH}^{\text {, }}$ IL	Leakage current measured at the control input (IN, $\overline{\mathrm{EN}}$)
ton	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON.
toff	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control $(\mathbb{I N})$ signal and analog output (COM, NC, or NO) signal when the switch is turning OFF.
${ }^{\text {tMBB }}$	Make-before-break time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $\mathrm{Q}_{\mathrm{C}}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{COM}}, \mathrm{C}_{\mathrm{L}}$ is the load capacitance, and $\Delta \mathrm{V}_{\mathrm{COM}}$ is the change in analog output voltage.

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
CCOM(ON)	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
$\mathrm{C}_{\text {COM (OFF) }}$	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is OFF
Cl_{1}	Capacitance of control input (IN, EN)
OISO	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
Xtalk	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB .
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I_{+}	Static power-supply current with the control (IN, EN) pin at V_{+}or GND

PARAMETER MEASUREMENT INFORMATION

$$
\begin{aligned}
& \text { Channel ON } \\
& \mathrm{r}_{\text {on }}=\frac{\mathrm{v}_{\mathrm{COM}}-\mathrm{v}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}}{\mathrm{I}_{\mathrm{COM}}} \\
& \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}
\end{aligned}
$$

Figure 13. ON-State Resistance ($r_{o n}$)

OFF-State Leakage Current Channel OFF
$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$

Figure 15. ON-State Leakage Current (ICOM(ON), $\left.{ }^{\mathrm{I} C(O N)}{ }^{(1)} I_{\mathrm{NO}(\mathrm{ON})}\right)$

$\mathrm{V}_{\text {BIAS }}=\mathrm{V}_{+}$or GND
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND
Capacitance is measured at NC, NO, COM, and IN inputs during ON and OFF conditions.

Figure 16. Capacitance ($\left.\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\text {com(OFF), }} \mathrm{C}_{\mathrm{COM}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 17. Turn-On (ton) and Turn-Off Time (toff)

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 18. Make-Before-Break Time ($\mathrm{t}_{\mathrm{MBB}}$)

Figure 19. Bandwidth (BW)

Figure 20. OFF Isolation ($\mathrm{O}_{\mathrm{ISO}}$)

Figure 21. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 22. Charge Injection (Q_{C})

(1) C_{L} includes probe and jig capacitance.

Figure 23. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS5A3154DCUR | ACTIVE | US8 | DCU | 8 | 3000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A3154DCURE4 | ACTIVE | US8 | DCU | 8 | 3000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-260C-UNLIM |
| TS5A3154DCURE6 | PREVIEW | US8 | DCU | 8 | 3000 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

DCU (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-187 variation CA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

[^1]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

[^2]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

