Features

- Temperature and Supply Voltage Compensated Flashing Frequency
- Frequency Doubling Indicates Lamp Outage
- Two Relay Driver Outputs with High Current-carrying Capacity and Low Saturation Voltage
- Minimum Lamp Load for Flasher Operation: ≥ 1 W
- Very Low Susceptibility to EMI
- Protection According to ISO/TR7637/1 Level 4
- Extremly Low Current Consumption < $10 \mu \mathrm{~A}$ (with Switches Open)
- Reverse Polarity Protection
- Three Control Inputs: Left, Right and Hazard Warning

Description

The integrated circuit U2044B is used in relay-controlled automotive flashers. With two output stages, each side of the vehicle is controlled separately. A left and a right direction indicator input with only a small control current makes switch contacts for small loads possible.
The separate hazard warning input simplifies the construction of the hazard switch. Lamp outage is indicated by frequency doubling during direction mode. Thanks to extreme low current consumption the U2044B can be directly connected to the battery.

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning DIP14/SO14

Pin Description

Pin	Symbol	Function
1	OSC	Oscillator
2	SIL	Start input left
3	SIR	Start input right
4	SIHW	Start input hazard warning
5	VS	V $_{\text {S }}$
6	CR1	Control input relay 1
7	CR2	Control input relay 2
8	LD	Lamp failure detection
9	VS	V $_{\text {S }}$
10	GND	IC ground
11	OR1	Output relay 1
12	VS	V
13	OR2	Output relay 2
14	OSC	Oscillator

Functional Description

Oscillator (Pin 1 and 14) Flashing frequency, f_{1}, is determined by the $R_{1} C_{1}$ components as follows (see Figure 1):

$\mathrm{f}_{1} \approx \frac{1}{\mathrm{R}_{1} \times \mathrm{C}_{1} \times 1.5} \mathrm{~Hz}$
where $\quad \mathrm{C}_{1} \leq 47 \mu \mathrm{~F}$

$$
\mathrm{R}_{1}=6.8 \mathrm{k} \Omega \text { to } 180 \mathrm{k} \Omega
$$

In the case of a lamp outage, the oscillator frequency is switched to the lamp outage frequency f_{2} with $\mathrm{f}_{2} \approx 2.2 \times \mathrm{f}_{1}$.
Duty cycle in normal flashing mode: 50%
Duty cycle in lamp outage mode: 40% (bright phase)

Start Input Right and Left (Pin 2 and 3)

Start Input Hazard Warning (Pin 4)

Supply Voltage Sense (Pin 5)

Control Input Relay 1 and 2 (Pin 6 and 7)

Lamp Outage Detection (Pin 8)

Flashing is disabled as long as the input comparator is tied to GND (pull-down resistor R_{7} or R_{5}). The high-side flasher switch left or right changes the comparator status and enables the output stage at pin 11 or Pin 13. R_{6} and R_{4} are protection resistors for the input stage.
With an open flasher switch the current consumption is only $\mathrm{I}<10 \mu \mathrm{~A}$. The IC is kept in stand-by mode until there is a voltage drop of $\mathrm{V} \approx 6.9 \mathrm{~V}$ at the pull-down resistor.
Direction mode can only be activated when the ignition switch is in the ON-position as shown in Figure 1.

In contrast to the direction switches, the hazard input is a low-side type. The pull-up resistor R_{10} provides the off-state. R_{3} is a protection resistor for the input stage. Hazard warning can be activated independent of the ignition switch position.

This pin supplies the lamp outage comparator at pin 8 and is externally connected to the battery (KI 30).

The feedback detects the bright phase and the dark phase and enables the oscillator.

The lamp current is monitored via an external shunt resistor, $\mathrm{R}_{\text {Shunt }}$ and an internal comparator, K1, with its reference voltage of typically $81 \mathrm{mV}\left(\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}\right)$. The outage of one lamp out of two lamps is detected according to the following calculation:
Nominal current of 1 lamp: $21 \mathrm{~W} /\left(\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}\right)$:

$$
\begin{aligned}
& \mathrm{I}_{\text {lamp }}=1.75 \mathrm{~A} \\
& \mathrm{I}_{\text {lamp }}=3.5 \mathrm{~A}
\end{aligned}
$$

We recommend setting the detection threshhold in the middle of the current range: $\mathrm{l}_{\text {outage }} \approx 2.7 \mathrm{~A}$
Thus the shunt resistor is calculated as:
$\mathrm{R}_{\text {Shunt }}=\mathrm{V}_{\mathrm{T}}(\mathrm{K} 1) / \mathrm{I}_{\text {outage }}$
$\mathrm{R}_{\text {Shunt }}=81 \mathrm{mV} / 2.7 \mathrm{~A}=30 \mathrm{~m} \Omega$
Comparator K1's reference voltage is matched to the characteristics of filament lamps (see section "Control Signal Threshold").

Supply Voltage (Pin 9)
GND (Pin 10)

The combination of the shunt resistor and the resistance of the wire harness prevents pin 8 from a too high voltage in the case of shorted lamps.

This pin supplies the oscillator, the comparators and the logic parts of the IC.

The integrated circuit is protected against transients according to ISO-TR 7637-3 level 3 via resistor R_{2} to ground (-31). An integrated protection circuit together with external resistors $R_{2}, R_{3}, R_{4}, R_{6}, R_{8}$ and R_{9} limits the current pulses in the IC. The IC is also protected against reversed battery.

The relay control outputs are high-side drivers with a low saturation voltage and capable of driving a typical automotive relay with a coil resistance of 60Ω.

This pin supplies the relay drivers connected directly to the battery $(\mathrm{KI} 30)$. It is internally clamped by a 27-V Z-diode.

Absolute Maximum Ratings

Reference point pin 1

Parameters	Symbol	Value	Unit
Supply voltage, 1 min , pins 5, 9 and 12	V_{S}	24	V
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient, DIP14	$\mathrm{R}_{\text {thJA }}$	90	K/W
Junction ambient, SO14	$\mathrm{R}_{\text {thJA }}$	120	K/W

Electrical Characteristics

Typical values under normal operation in application circuit Figure 1, $\mathrm{V}_{\mathrm{S}}(+30)=12 \mathrm{~V}$.
Reference point ground (-31), $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Supply voltage range	Pins 5, 9, 12	V_{S}	8		18	V
Supply current, switches open	Pins 5, 9, 12	I_{s}			10	$\mu \mathrm{A}$
Output current for relay driver	Pins 11, 13	I_{0}			300	mA
Saturation voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=82 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V} \end{aligned}$	V_{O}			$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Relay output reverse current	Pin 11, 13	I_{0}			0.1	mA
Relay coil resistance		R_{L}	60			Ω
Start delay	First bright phase	$\mathrm{t}_{\text {on }}$			10	ms

Electrical Characteristics (Continued)

Typical values under normal operation in application circuit Figure 1, $\mathrm{V}_{\mathrm{S}}(+30)=12 \mathrm{~V}$.
Reference point ground (-31), $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified
$\left.\begin{array}{|l|l|c|c|c|c|}\hline \text { Parameters } & \text { Test Conditions } & \text { Symbol } & \text { Min. } & \text { Typ. } & \text { Max. } \\ \hline \text { Control signal threshold } & \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=13.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=16 \mathrm{~V}\end{array}\right)$

Tolerances

Typical values under normal operation in application circuit Figure $1, \mathrm{~V}_{\mathrm{S}}(+30)=12 \mathrm{~V}$.
Reference point ground (-31), $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Frequency determining resistor		R_{1}	6.8		510	$\mathrm{k} \Omega$
Frequency determining capacitor		C_{1}			47	$\mu \mathrm{F}$
Frequency tolerance	Normal flashing, basic frequency f_{1} not including the tolerance of the external components R_{1} and C_{1}	$\Delta \mathrm{f}_{1}$	-5		+5	\%
Bright period	Basic frequency f_{1}	$\Delta \mathrm{f}_{1}$	47		53	\%
	Control frequency f_{2}	$\Delta \mathrm{f}_{2}$	37		45	\%
Frequency increase	Lamp failure	f_{2}	$\begin{gathered} 2.15 \times \\ f_{1} \end{gathered}$		$\begin{gathered} 2.3 \times \\ \mathrm{f}_{1} \\ \hline \end{gathered}$	Hz
Lamp load		P_{L}	1			W

Ordering Information

Extended Type Number	Package	Remarks
U2044B	DIP14	-
U2044B-FP	SO14	-

Package Information

technical drawings according to DIN specifications

Package SO14
Dimensions in mm

technical drawings according to DIN specifications

Atmel Headquarters
Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature @atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

