16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR

DESCRIPTION

The $\mu \mathrm{PD} 77115$ and $\mu \mathrm{PD} 77115 \mathrm{~A}$ are 16-bit fixed-point digital signal processors (DSP).
The $\mu \mathrm{PD} 77115$ and $\mu \mathrm{PD} 77115 \mathrm{~A}$ are RAM based DSP and have the specific circuit for audio application.
Unless otherwise specified, the μ PD77115 refers to μ PD77115 and 77115A.

For details of the functions of the μ PD77115, refer to the following User's Manuals:
μ PD77111 Family User's Manual - Architecture : U14623E
μ PD77016 Family User's Manual - Instructions : U13116E

FEATURES

- Instruction cycle (operating clock)
- Memory
- Internal instruction RAM
- Internal data RAM
- Peripherals
- Audio serial interface
- Secure Digital (SD) card interface
- 16-bit timer
- 16-bit host interface
- 8-bit port
- Supply voltage
- DSP core voltage
2.0 to 2.7 V (MAX. operation speed 50 MHz)
2.3 to 2.7 V (MAX. operation speed 75 MHz)
- I/O pin voltage
2.7 to 3.6 V
- Power consumption TYP. $50 \mathrm{~mW}(2.0 \mathrm{~V}, 50 \mathrm{MHz}$ operation)

ORDERING INFORMATION

	Part Number	Package
\star	μ PD77115F1-CN6	80-pin plastic FBGA (9×9)
	μ PD77115GK-9EU	80-pin plastic TQFP (fine pitch) (12×12)
\star	$\mu \mathrm{PD} 77115 \mathrm{AF} 1-\mathrm{xxx}-\mathrm{CN} 6$	80-pin plastic FBGA (9×9)
	Remark xxx indicates ROM code suffix.	

[^0]

FUNCTION PIN GROUPS

Remark The P4 to P7 pins are multiplexed with PLL0 to PLL3 pins.

* DSP FUNCTION LIST

Item		μ PD77110	μ PD77111	μ PD77112	μ PD77113A	μ PD77114	μ PD77115,77115A	μ PD77210	μ PD77213
Memory space (words \times bits)	Int. instruction RAM	$35.5 \mathrm{~K} \times 32$	$1 \mathrm{~K} \times 32$		$3.5 \mathrm{~K} \times 32$		$11.5 \mathrm{~K} \times 32$	$31.5 \mathrm{~K} \times 32$	$15.5 \mathrm{~K} \times 32$
	Int. instruction ROM	None	$31.75 \mathrm{~K} \times 32$		$48 \mathrm{~K} \times 32$		None		$64 \mathrm{~K} \times 32$
	Data RAM (XY memory)	$24 \mathrm{~K} \times 16$ each	$3 \mathrm{~K} \times 16$ each		$16 \mathrm{~K} \times 16$ each		$16 \mathrm{~K} \times 16$ each	$30 \mathrm{~K} \times 16$ each	$18 \mathrm{~K} \times 16$ each
	Data ROM (XY memory)	None	$16 \mathrm{~K} \times 16$ each		$32 \mathrm{~K} \times 16$ each		None		$32 \mathrm{~K} \times 16$ each
	Ext. instruction	None							
	Ext. data memory (XY memory)	$32 \mathrm{~K} \times 16$ each	None	$16 \mathrm{~K} \times 16$ each	None	$8 \mathrm{~K} \times 16$ each	None	$1 \mathrm{M} \times 16$	$\begin{gathered} 1 \mathrm{M} \times 16(8 \mathrm{~K} \times \\ 16, \text { using SD I/F) } \end{gathered}$
Instruction cycle (at maximum operating speed)		15.3 ns (65 MHz)	13.3 ns (75 MHz)					$\begin{gathered} 6.25 \mathrm{~ns} \\ (160 \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 8.33 \mathrm{~ns} \\ (120 \mathrm{MHz}) \end{gathered}$
Multiple		$\begin{aligned} & \text { Integer multiple } \\ & \quad \text { of } \times 1 \text { to } 8 \\ & \text { (external pin) } \end{aligned}$	Integer multiple of $\times 1$ to 16 (mask option)				Integer multiple of $\times 1$ to 16 (external pin)	Integer multiple of $\times 10$ to 64 (external pin)	
Peripheral	Serial interface	2 channels (speech CODEC)					1 channel (audio CODEC)	2 channels (time-division, audio)	
	Host interface	8 -bit bus					16-bit bus		
	General-purpose port (I/O programmable)	4 bits					8 bits	16 bits (some are alternative with host)	
	Timer	None					1 channel (16-bit resolution)	2 channels (16-bit resolution)	
	Others	-	-	-	-	-	SD card I/F	-	SD card I/F
Supply voltage		$\begin{gathered} \text { DSP core: } 2.5 \mathrm{~V} \\ \text { I/O pins: } 3 \mathrm{~V} \end{gathered}$						$\begin{gathered} \text { DSP core: } 1.5 \mathrm{~V} \\ \text { I/O pins: } 3 \mathrm{~V} \end{gathered}$	
Package		100-pin TQFP	80-pin TQFP 80-pin FBGA	100-pin TQFP	80-pin FBGA	100-pin TQFP	80-pin TQFP 80-pin FBGA	161-pin FBGA 144-pin LQFP	

PIN CONFIGURATIONS

80-pin plastic fine pitch BGA (9×9)
$\star \quad \mu$ PD77115F1-CN6
μ PD77115AF1-xxx-CN6

Pin No.	Pin Name						
A1	EVdd	C3	SDDAT	E6	GND	G8	$\overline{\text { HRE }}$
A2	NC	C4	GND	E7	$\overline{\text { HWR }}$	G9	EVdd
A3	EVdd	C5	INT3	E8	EVdd	H1	GND
A4	IVdD	C6	TRST	E9	CLKOUT	H2	EVdd
A5	INT2	C7	TICE	F1	EVdd	H3	HD12
A6	RESET	C8	TDO	F2	P0	H4	EVdd
A7	TDI	C9	HAO	F3	P3	H5	GND
A8	I.C.	D1	SOEN/LRCLK	F4	HD9	H6	HD2
A9	I.C.	D2	P5/PLL1	F5	HD4	H7	IVdD
B1	NC	D3	SO	F6	HRD	H8	HDO
B2	SI	D4	P7/PLL3	F7	HWE	H9	GND
B3	SDCR	D5	SDCLK	F8	CLKIN	J1	NC
B4	GND	D6	INT4	F9	HCS	J2	GND
B5	WAKEUP	D7	IVDD	G1	P1	J3	HD13
B6	$\overline{\text { INT1 }}$	D8	HA1	G2	HD15	J4	HD10
B7	TMS	D9	GND	G3	HD14	J5	HD7
B8	TCK	E1	P6/PLL2	G4	HD11	J6	HD6
B9	I.C.	E2	P4/PLL0	G5	HD8	J7	HD3
C1	SIEN/MCLK	E3	GND	G6	HD5	J8	GND
C2	SCK/BCLK	E4	P2	G7	HD1	J9	I.C.

80-pin plastic TQFP (fine pitch) (12×12) (Top view)

 μ PD77115GK-9EU

Pin No.	Pin Name						
1	SI	21	EVDD	41	HD0	61	TCK
2	NC	22	GND	42	GND	62	I.C.
3	SIEN/MCLK	23	HD13	43	EVDD	63	TDI
4	SCK/BCLK	24	HD12	44	$\overline{\text { HRE }}$	64	TMS
5	SO	25	HD11	45	$\overline{\text { HWE }}$	65	$\overline{\text { TRST }}$
6	SOEN/LRCLK	26	HD10	46	$\overline{\text { HCS }}$	66	$\overline{\text { RESET }}$
7	P7/PLL3	27	HD9	47	$\overline{\text { HRD }}$	67	$\overline{\text { INT4 }}$
8	GND	28	HD8	48	$\overline{\text { HWR }}$	68	$\overline{\text { INT3 }}$
9	P6/PLL2	29	HD7	49	CLKOUT	69	$\overline{\text { INT2 }}$
10	P5/PLL1	30	EVDD	50	CLKIN	70	$\overline{\text { INT1 }}$
11	P4/PLLO	31	GND	51	EVDD	71	$\overline{\text { WAKEUP }}$
12	EVDD	32	HD6	52	GND	72	IVDD
13	P3	33	HD5	53	IVDD	73	GND
14	P2	34	HD4	54	GND	74	SDCLK
15	P1	35	HD3	55	HA0	75	EVDD
16	P0	36	HD2	56	HA1	76	GND
17	HD15	37	IVDD	57	TDO	77	SDCR
18	GND	38	GND	58	I.C.	78	NC
19	NC	39	I.C.	59	I.C.	79	SDDAT
20	HD14	40	HD1	60	TICE	80	EVDD

PIN NAME

CLKIN	Clock Input
CLKOUT	: Clock Output
EVDD	Power Supply for I/O Pins
GND	Ground
HAO, HA1	Host Data Access
HCS	: Host Chip Select
HD0 to HD15	Host Data Bus
$\overline{\text { HRD }}$	Host Read
HRE	: Host Read Enable
HWE	Host Write Enable
$\overline{H W R}$	Host Write
I.C.	: Internally Connected
$\overline{\text { INT1 }}$ to $\overline{\text { INT4 }}$: Interrupt
IVDD	: Power Supply for DSP Core
NC	: Non-Connection
P0 to P3	Port
P4/PLL0 to P7/PLL3 : Port/ PLL Setting Input	
RESET	Reset
SCK/BCLK	: Serial Clock Input/ Output
SDCLK	SD Card Clock Output
SDCR	SD Card Command Output/ Response Input
SDDAT	: SD Card Data Input/ Output
SI	Serial Data Input
SIEN/MCLK	Serial Input Enable/ Master Clock Input
SO	Serial Data Output
SOEN/LRCLK	Serial Output Enable/ Left Right Clock Input/ Output
TCK	Test Clock Input
TDI	Test Data Input
TDO	Test Data Output
TICE	Test In-Circuit Emulator
TMS	Test Mode Select
TRST	: Test Reset
WAKEUP	: Wakeup from STOP Mode

CONTENTS

1. PIN FUNCTION 10
1.1 Pin Function Description 10
1.2 Connection of Unused Pins 14
2. FUNCTION OUTLINE 15
2.1 Program Control Unit 15
2.2 Arithmetic Unit 16
2.3 Data Memory Unit 17
2.4 Peripheral Unit 17
3. RESET FUNCTION 18
3.1 Hardware Reset 18
3.2 Initializing PLL 18
4. FUNCTIONS OF BOOT-UP ROM 18
4.1 Boot at Reset 18
4.2 Reboot 19
4.3 Signature Operation 19
5. STANDBY MODES 20
5.1 HALT Mode 20
5.2 STOP Mode 20
6. MEMORY MAP 21
6.1 Instruction Memory 21
6.2 Data Memory 23
7. INSTRUCTIONS 25
7.1 Outline of Instructions 25
7.2 Instruction Set and Operation 26
8. ELECTRICAL SPECIFICATIONS 32
9. PACKAGES 51
10. RECOMMENDED SOLDERING CONDITIONS 53

1. PIN FUNCTION

Because the pin numbers differ depending on the package, refer to the diagram of the package to be used.

1.1 Pin Function Description

- Power supply

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
IVdo	A4,D7,H7	37,53,72	-	Power to DSP core (+2.5 V)	-
EVDD	$\begin{aligned} & \text { A1,A3,E8,F1, } \\ & \text { G9,H2,H4 } \end{aligned}$	$\begin{aligned} & 12,21,30,43,51, \\ & 75,80 \end{aligned}$	-	Power to I/O pins (+3 V)	-
GND	B4,C4,D9,E3, E6,H1,H5,H9, J2,J8	$\begin{array}{\|l} \hline 8,18,22,31, \\ 38,42,52,54, \\ 73,76 \\ \hline \end{array}$	-	Ground	-

- System control

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
CLKIN	F8	50	Input	System clock input	-
CLKOUT	E9	49	Output	Internal system clock output	-
PLLO to PLL3	E2,D2,E1,D4	11,10,9,7	Input	PLL multiple rate setting pin PLL3 to PLLO: $\begin{array}{ll} 0000: x 16, & 0001: x, \quad 0010: x 2, \\ 0100: x 4, & 0101: x 5, \\ 0110: x 6, & 0111: x 3 \\ 1000: x 8, & 1001: x, \\ 1100: x 12, & 11010: x 10, \\ 1111: x 15 \end{array}$	P4 to P7
$\overline{\text { RESET }}$	A6	66	Input	Internal system reset signal input	-
WAKEUP	B5	71	Input	Stop mode release signal input. - When this pin is asserted active, the stop mode is released.	-

- Interrupt

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			-
$\overline{\text { INT1 to INT4 }}$	B6,A5,C5,D6	$70,69,68,67$	Input	External maskable interrupt input. •	

- Serial interface

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
SCK/BCLK	C2	4	I/O	Serial clock input/output SCK : Standard serial interface(input) BCLK : Audio serial interface(//O)	-
SOEN/LRCLK	D1	6	I/O	Serial output enable / Left Right clock input/output SOEN : Standard serial interface(input) LRCLK : Audio serial interface(I/O)	-
SO	D3	5	Output (3S)	Serial data output	-
SIEN/MCLK	C1	3	Input	Serial input enable / Master clock input SIEN : Standard serial interface MCLK : Audio serial interface (Master clock input when master mode)	-
SI	B2	1	Input	Serial data input	-

Remark The pins marked " 3 S " under the heading " I / O " go into a high-impedance state on completion of data transfer and input of the hardware reset ($\overline{\mathrm{RESET}}$) signal.

- SD card interface

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
SDCLK	D5	74	Output	SD card clock output	-
SDCR	B3	77	I/O (3S)	SD card command/response Input : Response Output : Command -Leave pulled up.	-
SDDAT	C3	79	$\begin{aligned} & \text { I/O } \\ & \text { (3S) } \end{aligned}$	SD card data input/output Input : Read data Output: Write data -Leave pulled up.	-

Remark The pins marked " 3 "" under the heading "I/O" go into a high-impedance state when the SD card interface is not being accessed.

- Host interface

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
HA1	D8	56	Input	Specifies the register to be accessed by HD15 to HDO. - 1: Accesses the host interface status register (HST). - 0: Accesses the host transmit data register (HDT (out)) when read ($\overline{\mathrm{HRD}}=0$), and host receive data register (HDT (in)) when written ($\mathrm{HWR}=0$).	-
HAO	C9	55	Input	Specifies the register to be accessed by HD15 to HDO. - 1: Accesses bits 15 to 8 of HST, HDT (in), and HDT (out). - 0 : Accesses bits 7 to 0 of HST, HDT (in), and HDT (out). When 8-bit mode, this signal becomes valid. When 16-bit mode, this signal becomes invalid.	-
$\overline{\mathrm{HCS}}$	F9	46	Input	Chip select input	-
$\overline{\mathrm{HRD}}$	F6	47	Input	Host read input	-
$\overline{\mathrm{HWR}}$	E7	48	Input	Host write input	-
$\overline{\text { HRE }}$	G8	44	Output	Host read enable output	-
$\overline{\text { HWE }}$	F7	45	Output	Host write enable output	-
HD0 to HD15	H8,G7,H6,J7, F5,G6,J6,J5, G5,F4,J4,G4, H3,J3,G3,G2	$\begin{aligned} & 41,40,36,35, \\ & 34,33,32,29, \\ & 28,27,26,25, \\ & 24,23,20,17 \end{aligned}$	I/O (3S)	16-bit host data bus	-

Remark The pins marked " 3 S" under the heading "I/O" go into a high-impedance state when the host interface is not being accessed.

- I/O ports

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
P0	F2	16	I/O	General-purpose I/O port	-
P1	G1	15	I/O		-
P2	E4	14	I/O		-
P3	F3	13	I/O		-
P4	E2	11	1/O		PLLO
P5	D2	10	1/O		PLL1
P6	E1	9	1/O		PLL2
P7	D4	7	I/O		PLL3

- Debugging interface

Pin Name	Pin No.		I/O	Function	Shared by:
	80-pin FBGA	80-pin TQFP			
TDO	C8	57	Output	For debugging	-
TICE	C7	60	Output		-
TCK	B8	61	Input		-
TDI	A7	63	Input		-
TMS	B7	64	Input		-
TRST	C6	65	Input		-

- Others

Pin Name	Pin No.		I/O		Function
	80-pin FBGA				-
I.C.	A8,A9,B9,J9	$39,58,59,62$	-	Internally connected. Leave this pin unconnected.	-
NC	A2,B1,J1	$2,19,78$	-	No-connect pins. Leave these pins unconnected.	-

Caution If any signal is input to these pins or if an attempt is made to read these pins, the normal operation of the $\mu \mathrm{PD} 77115$ is not guaranteed.

1.2 Connection of Unused Pins

1.2.1 Connection of function pins

When mounting, connect unused pins as follows:

Pin	I/O	Recommended Connection
$\overline{\mathrm{INT} 1}$ to $\overline{\mathrm{NT} 4}$	Input	Connect to $\mathrm{EV} \mathrm{VD}^{\text {. }}$
SCK/BCLK	I/O	Connect to EVdD or GND.
SI	Input	
SIEN/MCLK	Input	Connect to GND.
SOEN/LRCLK	I/O	
SO	Output	Leave unconnected
SDCLK	Output	
SDCR	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
SDDAT	I/O	
HAO, HA1	Input	Connect to EVDD or GND.
$\overline{\mathrm{HCS}}, \overline{\mathrm{HRD}}, \overline{\mathrm{HWR}}$	Input	Connect to EVDD.
$\overline{\text { HRE, }} \overline{\text { HWE }}$	Output	Leave unconnected.
HDO to HD15 ${ }^{\text {Note }}$	I/O	Connect to EVDD via pull-up resistor, or connect to GND via pull-down resistor.
P0 to P3	I/O	
TCK	Input	Connect to GND via pull-down resistor.
TDO, TICE	Output	Leave unconnected.
TMS, TDI	Input	Leave unconnected. (internally pulled up).
TRST	Input	Leave unconnected. (internally pulled down).
CLKOUT	Output	Leave unconnected.
$\overline{\text { WAKEUP }}$	Input	Connect to EVDD.

Note These pins may be left unconnected if $\overline{\mathrm{HCS}}, \overline{\mathrm{HRD}}$, and $\overline{\mathrm{HWR}}$ are fixed to the high level.
However, connect these pins as recommended in the halt and stop modes when the power consumption must be lowered.

1.2.2 Connection of no-function pins

Pin	I/O	Recommended Connection
I.C.	-	Leave unconnected.
NC	-	Leave unconnected.

2. FUNCTION OUTLINE

2.1 Program Control Unit

This unit is used to execute instructions, and control branching, loops, interrupts, the clock, and the standby mode of the DSP.

2.1.1 CPU control

A three-stage pipeline architecture is employed and almost all the instructions, except some instructions such as branch instructions, are executed in one system clock.

2.1.2 Interrupt control

Interrupt requests input from external pins ($\overline{\mathrm{NT} 1}$ to $\overline{\mathrm{NT} 4}$) or generated by the internal peripherals (serial interface and host interface) are serviced. The interrupt of each interrupt source can be enabled or disabled. Multiple interrupts are also supported.

2.1.3 Loop control task

A loop function without any hardware overhead is provided. A loop stack with four levels is provided to support multiple loops.

2.1.4 PC stack

A 15-level PC stack that stores the program counter supports multiple interrupts and subroutine calls.

2.1.5 PLL

A PLL is provided as a clock generator that can multiply an external clock input to supply an operating clock to the DSP. A multiple of $\times 1$ to $\times 16$ can be set by pins(PLL0 to PLL3).

Two standby modes are available for lowering the power consumption while the DSP is not in use.

- HALT mode: Set by execution of the HALT instruction. The current consumption drops to several mA. The normal operation mode is recovered by an interrupt or hardware reset.
- STOP mode: Set by execution of the STOP instruction. The current consumption drops to several $10 \mu \mathrm{~A}$. The normal operation mode is recovered by hardware reset or $\overline{\text { WAKEUP }}$ pin.

2.1.6 Instruction memory

64 words of the instruction RAM are allocated to interrupt vectors.
A boot-up ROM that boots up the instruction RAM is provided, and the instruction RAM can be initialized or rewritten by host boot (boot via host interface).

The μ PD77115 has 11.5 K -word instruction RAM.

2.2 Arithmetic Unit

This unit performs multiplication, addition, logical operations, and shift, and consists of a 40-bit multiply accumulator, 40-bit data ALU, 40-bit barrel shifter, and eight 40-bit general-purpose registers.

2.2.1 General-purpose registers (R0 to R7)

These eight 40-bit registers are used to input/output data for arithmetic operations, and load or store data from/to data memory.

A general-purpose register (R0 to R7) is made up of three parts: R0L to R7L (bits 15 to 0), R0H to R7H (bits 31 to 16), and R0E to R7E (bits 39 to 32). Depending on the type of operation, RnL, RnH, and RnE are used as one register or in different combinations.

2.2.2 Multiply accumulator (MAC)

The MAC multiplies two 16-bit values, and adds or subtracts the multiplication result from one 40-bit value, and outputs a 40-bit value.

The MAC is provided with a shifter (MSFT: MAC ShiFTer) at the stage preceding the input stage. This shifter can arithmetically shift the 40-bit value to be added to or subtracted from the multiplication result 1 or 16 bits to the right .

2.2.3 Arithmetic logic unit (ALU)

This unit inputs one or two 40-bit values, executes an arithmetic or logical operation, and outputs a 40-bit value.

2.2.4 Barrel shifter (BSFT: Barrel ShiFTer)

The barrel shifter inputs a 40-bit value, shifts it to the left or right by any number of bits, and outputs a 40-bit value. The data may be arithmetically shifted to the right shifted to the right, in which case the data is sign-extended, or logically shifted to the right, in which case 0 is inserted from the MSB.

2.3 Data Memory Unit

The data memory unit consists of two banks of data memory and two data addressing units.

2.3.1 Data memory

The DSP have two banks of data memory (X data memory and Y data memory). A 64-word peripheral area is assigned in the data memory space.

The μ PD77115 has 16 K words $\times 2$ banks data RAM.

2.3.2 Data addressing unit

An independent data addressing unit is provided for each of the X data memory and Y data memory spaces.
Each data addressing unit has four data pointers (DPn), four index registers (DNn), one modulo register (DMX or DMY), and an address ALU.

2.4 Peripheral Unit

A serial interface, host interface, general-purpose I/O port, and wait cycle register are provided. All these internal peripherals are mapped to the X data memory and Y data memory spaces, and are accessed from program as memory-mapped I/Os.

2.4.1 Audio Serial interface (ASIO)

One serial interface is provided. This serial interface has two mode which are the audio serial and the standard serial. The standard serial is compatible other μ PD77111 family DSP.

The audio serial interfaces have the following features:

- Mode : Master mode or Slave mode

Master mode : MCLK (input), BCLK (output), LRCLK (output), support 256 fs, 384 fs and 512 fs
Slave mode : MCLK (unused), BCLK (input), LRCLK (input)

- Frame format : 32 or 64 bits audio format (LRCLK format), MSB first input/output.
- Handshake : Handshaking with the external devices is implemented with a dedicated frame signal (LRCLK).

Handshaking with the internal units, polling, wait, or interrupt are used.

The standard serial interfaces have the following features:

- Serial clock : Supplied from external source to each interface. The same clock is used for input and output on the interface.
- Frame length : 8 or 16 bits, and MSB or LSB first selectable for each input or output
- Handshake : Handshaking with external devices is implemented with a dedicated status signal. With the internal units, polling, wait, or interrupt are used.

2.4.2 Host interface (HIO)

This is an 16-bit parallel port that inputs data from or outputs data to an external host CPU or DMA controller. In the DSP, a 16-bit register is mapped to memory for input data, output data, and status. Handshaking with an external device is implemented by using a dedicated status signal or a dedicated status register. Handshaking with internal units is achieved by means of polling, wait, or interrupts.

2.4.3 General-purpose I/O port (PIO)

This is a 8-bit I/O port that can be set in the input or output mode in 1-bit units.

2.4.4 SD card interface (SDCIF)

This interface is for access SD card. It supports the DMA transfer for input data to internal data RAM. The SD card is accessed by using a dedicated routine of system ROM.

2.4.5 Timer

This is 16-bit timer unit. The count source can be selected from system clock, SD card clock, serial clock and INT4 input. Timer unit generates interrupt for interface internal units.

3. RESET FUNCTION

When a low level of a specified width is input to the $\overline{\text { RESET }}$ pin, the device is initialized.

3.1 Hardware Reset

If the $\overline{\text { RESET }}$ pin is asserted active (low level) for a specified period, the internal circuitry of the DSP is initialized. If the RESET pin is then deasserted inactive (high level), boot processing of the instruction RAM is performed according to the status of the port pins (P 0 and P 1). After boot processing, processing is executed starting from the instruction at address 0×200 of instruction memory (reset entry).

No power-ON reset function is available.

3.2 Initializing PLL

Initializing the PLL starts during boot up program at reset. The pins (PLLO to PLL3) that specify the PLL multiple rate must be kept stable for the duration of 3 clocks before and for the duration of 50 clocks after reset has been cleared (the clock is input from CLKIN). It takes the PLL 100μ s to be locked. Until the PLL is lacked, the DSP internal is operated by the CLKIN clock.

To use the PLL clock as an internal operating clock, set the clock control register (internal peripheral) by user program.

4. FUNCTIONS OF BOOT-UP ROM

To rewrite the contents of the instruction memory on power application or from program, boot up the instruction RAM by using the internal boot-up ROM.

The $\mu \mathrm{PD} 77115$ has a function to verify the contents of the internal instruction RAM.

4.1 Boot at Reset

After hardware reset has been cleared, the boot program first reads the general-purpose I/O ports P0 and P1 and, depending on their bit pattern, determines the boot mode (host boot or non boot). After boot processing, processing is executed starting from the instruction at address 0×200 (reset entry) of the instruction memory.

The pins (P 0 and P 1) that specify the boot mode must be kept stable for the duration of 3 clocks before and for the duration of 12 clocks after reset has been cleared (the clock is input from CLKIN).

P1	P0	
0	0	Boot Mode
0	1	Executes host byte boot and then branches to address 0x200.
1	0	Setting prohibited
1	1	Executes host word boot and then branches to address 0×200.

Note This setting is used when the DSP must be reset to recover from the standby mode after reset boot has been executed once.

A boot parameter and instruction code are obtained via the host interface, and transferred to the instruction RAM. The data transfer support byte mode and word mode.

4.2 Reboot

By calling the reboot entry address from the program, the contents of the instruction RAM can be rewritten. An instruction code is obtained via the host interface and transferred to the instruction RAM. The data transfer support byte mode and word mode.

The entry address is $0 x 6$. Host reboot is executed by calling this address after setting the following parameter:

- R7L: Number of instruction steps for rebooting
- DP3: First address of instruction memory to be loaded

4.3 Signature Operation

The μ PD77115 has a signature operation function so that the contents of the internal instruction RAM can be verified. The signature operation performs a specific arithmetic operation on the data in the instruction RAM booted up, and returns the result to a register. Perform the signature operation in advance on the device when it is operating normally, and repeat the signature operation later to check whether the data in RAM is correct by comparing the operation result with the previous result. If the results are identical, there is no problem.

The entry address is 0×9. Execute the operation by calling this address after setting the following parameter. The operation result is stored in register R7.

- R7L: Number of instruction steps for operation
- DP3: First address of instruction memory for operation

5. STANDBY MODES

Two standby modes are available. By executing the corresponding instruction, each mode is set and the power consumption can be reduced.

5.1 HALT Mode

To set this mode, execute the HALT instruction. In this mode, functions other than clock circuit and PLL are stopped to reduce the current consumption.

To release the HALT mode, use an interrupt or hardware reset. When releasing the HALT mode using an interrupt, the contents of the internal registers and memory are retained. It takes several 10 system clocks to release the HALT mode when the HALT mode is released using an interrupt.

In the HALT Mode, the clock circuit of the μ PD77115 supplies the following clock as the internal system clock. The clock output from the CLKOUT pin is also as follows.

The clock output from the CLKOUT pin, however, has a high-level width that is equivalent to 1 cycle of the normal operation (i.e., the duty factor is not 50%).

- μ PD77115: $1 / I$ of internal system clock ($I=$ integer from 1 to 16 , specified by register $)$

5.2 STOP Mode

To set the STOP mode, execute the STOP instruction. In the STOP mode, all the functions, including the clock circuit and PLL, can be stopped and the power consumption is minimized with only leakage current flowing.

To release the STOP mode, use hardware reset or WAKEUP pin.
When releasing the STOP mode by using the $\overline{\text { WAKEUP }}$ pin, the contents of the internal registers and memory are retained, but it takes several 100μ s to release the mode.

6. MEMORY MAP

A Harvard architecture, in which the instruction memory space and data memory space are separated is employed.

6.1 Instruction Memory

6.1.1 Instruction memory map

0xFFFFF	System
$0 \times A 000$	
	Instruction RAM (8K words)
0x8000	
	System
$\begin{aligned} & 0 \times 1000 \\ & 0 x 0 F F F \end{aligned}$	
0x0240	Instruction RAM (3.5K words)
$\begin{aligned} & 0 \times 023 F \\ & 0 \times 0200 \end{aligned}$	Vector area (64 words)
0×0000	Boot-up ROM (512 words)

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

6.1.2 Interrupt vector table

Addresses 0×200 to $0 \times 23 F$ of the instruction memory are entry points (vectors) of interrupts. Four instruction addresses are assigned to each interrupt source.

Vector	Interrupt Source
0×200	Reset
0×204	
0×208	
$0 \times 20 \mathrm{C}$	
0×210	INT2
0×214	INT3
0×218	INT4
0×21 C	SI input
0×220	SO output
0×224	SDDAT input $/$ PBU
0×228	SDDAT output
$0 \times 22 C$	HI input
0×230	HO output
0×234	SDCR input
0×238	Timer
$0 \times 23 C$	

Cautions 1. Although reset is not an interrupt, it is handled like an interrupt as an entry to a vector.
2. It is recommended that unused interrupt source vectors be used to branch an error processing routine.

6.2 Data Memory

6.2.1 Data memory map

0xFFFF	
	System
$\begin{aligned} & 0 \times 6000 \\ & 0 \times 5 F F F \end{aligned}$	
	Data RAM (8K words)
0×4000	
$0 \times 3 F F F$	System
$\begin{aligned} & 0 \times 3840 \\ & 0 \times 383 F \\ & 0 \times 3800 \end{aligned}$	
	Peripheral (64 words)
$\begin{aligned} & 0 \times 37 \mathrm{FF} \\ & 0 \times 3000 \end{aligned}$	System
$\begin{aligned} & 0 \times 2 F F F \\ & 0 \times 2000 \end{aligned}$	Data RAM (4K words)
0x1FFF	System
0×1000	System
0x0FFF	Data RAM (4K words)

Caution Programs and data cannot be placed at addresses reserved for the system, nor can these addresses be accessed. If these addresses are accessed, the normal operation of the device cannot be guaranteed.

6.2.2 Internal peripherals

The internal peripherals are mapped to the internal data memory space.

X/Y Memory Address	Register Name	Function	Peripheral Name
0×3800	SDT/ASDT	Serial data register	ASIO
0×3801	SST	Serial status register	
0x3802	ASST	Audio serial status register	
0×3803	Reserved area	Caution Do not access this area.	-
0x3804	PDT	Port data register	PIO
0x3805	PCD	Port command register	
0×3806	HDT	Host data register	HIO
0×3807	HST	Host status register	
0×3808 to 0x380F	Reserved area	Caution Do not access this area.	-
0×3810	SDDR	SD card data register	SDCIF
0×3811	SDCMD_IDX	SD card command register index	
0×3812	SDCMD_AGH	SD card command register argument high	
0×3813	SDCMD_AGL	SD card command register argument low	
0×3814	SDCTL	SD card control register	
0×3815	SDRPR	SD card response register	
0×3816	SDSBR	SD card CRC status busy register	
0×3817 to 0x381F	Reserved area	Caution Do not access this area.	-
0x3820	TIR	Timer initialize value register	Timer
0×3821	TCR	Timer count register	
0x3822	TCSR	Timer control / status register	
0×3823	TENR	Timer count enable register	
0×3824 to 0x382D	Reserved area	Caution Do not access this area.	-
0x382E	CLKCNTL	Clock control register	PLL
0x382F	Reserved area	Caution Do not access this area.	-
0x3830	PSAR	DMA start address register	SDCIF
0x3831	PSR	DMA size register	
0x3832	PRR	DMA pointer register	
0x3833	PCR	DMA control register	
0×3834 to 0x383F	Reserved area	Caution Do not access this area.	-

Cautions 1. The register names listed in this table are not reserved words of the assembler or the \mathbf{C} language. Therefore, when using these names in assembler or \mathbf{C}, the user must define them.
2. The same register is accessed, as long as the address is the same, regardless of whether the X memory space or Y memory space is accessed.
3. Even different registers cannot be accessed at the same time from both the X and Y memory spaces.

7. INSTRUCTIONS

7.1 Outline of Instructions

An instruction consists of 32 bits. Almost all the instructions, except some such as branch instructions, are executed with one system clock. The maximum instruction cycle of the μ PD77115 is 13.3 ns . The following nine types of instructions are available:

(1) Trinomial operation instructions

These instructions specify an operation by the MAC. As the operands, three general-purpose registers can be specified.

(2) Binomial operation instructions

These instructions specify an operation by the MAC, ALU, or BSFT. As the operands, two general-purpose registers can be specified. An immediate value can be specified for some of these instructions, instead of a general-purpose register, for one input.

(3) Uninominal operation instructions

These instructions specify an operation by the ALU. As the operands, one general-purpose register can be specified.

(4) Load/store instructions

These instructions transfer 16-bit values between memory and a general-purpose register. Any general-purpose register can be specified as the transfer source or destination.
(5) Register-to-register transfer instructions

These instructions transfer data from one general-purpose register to another.
(6) Immediate value setting instructions

These instructions write an immediate value to a general-purpose register and the registers of the address operation unit.
(7) Branch instructions

These instruction specify branching of program execution.
(8) Hardware loop instructions

These instruction specify repetitive execution of an instruction.
(9) Control instructions

These instructions are used to control the program.

7.2 Instruction Set and Operation

An operation is written in the operation field for each instruction in accordance with the operation representation format of that instruction. If two or more parameters can be written, select one of them.

(a) Representation formats and selectable registers

The following table shows the representation formats and selectable registers.

Representation Format	
r0, r0', r0"	Relectable Register
rl, rl'	R0L to R7L
rh, rh'	R0H to R7H
re	R0E to R7E
reh	R0EH to R7EH
dp	DP0 to DP7
dn	DN0 to DN7
dm	DMX, DMY
dpx	DP4 to DP7
dpy	DPn, DPn++, DPn- -, DPn\#\#, DPn\%\%, !DPn\#\# (n = 0 to 3)
dpx_mod	DPn, DPn++, DPn- -, DPn\#\#, DPn\%\%, !DPn\#\# (n = 4 to 7)
dpy_mod	DPn\#\#imm (n = 0 to 7)
dp_imm	Contents of memory with address xxx <Example> If the contents of the DP0 register are 1000, *DP0 indicates the contents of address 1000 of the memory. *xxx

(b) Modifying data pointer

The data pointer is modified after the memory has been accessed. The result of modification becomes valid starting from the instruction that immediately follows. The data pointer cannot be modified.

Example	Operation
DPn	Nothing is done (value of DPn is not changed.)
DPn++	$\mathrm{DPn} \leftarrow \mathrm{DPn}+1$
DPn--	$\mathrm{DPn} \leftarrow \mathrm{DPn}-1$
DPn\#\#	$\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{DNn}$ (Adds value of corresponding DN0 to DN7 to DP0 to DP7.) Example: DPO \leftarrow DPO + DNO
DPn\%\%	$(\mathrm{n}=0$ to 3) $\mathrm{DPn}=((\mathrm{DPL}+\mathrm{DNn}) \bmod (\mathrm{DMX}+1))+\mathrm{DP}$ н
	$(\mathrm{n}=4$ to 7$) \mathrm{DPn}=((\mathrm{DPL}+\mathrm{DNn}) \bmod (\mathrm{DMY}+1))+\mathrm{DP}$ н
!DPn\#\#	Reverses bits of DPn and then accesses memory. After memory access, $\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{DNn}$
DPn\#\#imm	$\mathrm{DPn} \leftarrow \mathrm{DPn}+\mathrm{imm}$

(c) Instructions that can be simultaneously written

Instructions that can be simultaneously written are indicated by O .
(d) Status of overflow flag (OV)

The status of the overflow flag is indicated by the following symbol:

- : Not affected
! : Set to 1 when overflow occurs

Caution If an overflow does not occur as a result of an operation, the overflow flag is not reset but retains the status before the operation.

Instruction Set

Instruction	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									Flag OV		
				Trino- mial	Bino- mial	Unino- minal	$\begin{array}{\|l\|l} \text { Load/ } \\ \text { store } \end{array}$	Transfer	Imme- diate value	$\begin{aligned} & \text { Bran- } \\ & \text { ch } \end{aligned}$	Loop	Cont- rol			
Trinomial operation	Multiply add	$\mathrm{ro}=\mathrm{ro}+\mathrm{rh}$ * rh'	$\mathrm{ro} \leftarrow \mathrm{ro}+\mathrm{rh}$ * rh'				\checkmark						\dagger		
	Multiply sub	$\mathrm{ro}=\mathrm{ro}-\mathrm{rh}$ * rh'	$\mathrm{ro} \leftarrow \mathrm{ro}-\mathrm{rh}$ * rh'				\checkmark						\dagger		
	Sign unsign multiply add	$\mathrm{ro}=\mathrm{ro}+\mathrm{rh} * \mathrm{rl}$ (rl is in positive integer format.)	$\mathrm{ro} \leftarrow \mathrm{ro}+\mathrm{rh} * \mathrm{rl}$				\checkmark						\dagger		
	Unsign unsign multiply add	$\mathrm{ro}=\mathrm{ro}+\mathrm{rl} \text { * } \mathrm{rl} \text { ' }$ (rl and rl' are in positive integer format.)	$\mathrm{rO} \leftarrow \mathrm{ro}+\mathrm{rl}^{*} \mathrm{rl}{ }^{\prime}$				\checkmark						\dagger		
	1-bit shift multiply add	$r \mathrm{ra}=(\mathrm{ro>>} 1)+\mathrm{rh} * \mathrm{rh}^{\prime}$	$\mathrm{ro} \leftarrow \frac{\mathrm{ro}}{2}+\mathrm{rh}$ * rh'				\checkmark						\dagger		
	16-bit shift multiply add	$r 0=(r o \gg 16)+r{ }^{*}$ rh'	$\mathrm{ro} \leftarrow \frac{\mathrm{rO}}{2^{16}}+\mathrm{rh}{ }^{*}$ rh'				\checkmark						-		
Binomial operation	Multiply	$\mathrm{ro}=\mathrm{rh}^{*} \mathrm{rh}$ '	ro \leftarrow rh * rh'				\checkmark						-		
	Add	ro" $=$ ro + ro'	$\mathrm{ro} \mathrm{\prime}$ ' $\leftarrow \mathrm{ro}+\mathrm{ro}{ }^{\prime}$				\checkmark						\dagger		
	Immediate add	ro' $=$ ro +imm	$\begin{aligned} & \mathrm{ro} ’ \leftarrow \mathrm{ro}+\mathrm{imm} \\ & (\text { where imm } \neq 1) \end{aligned}$										\dagger		
	Sub	ro" $=$ ro - ro'	$\mathrm{ro} \mathrm{\prime}$ ' $\leftarrow \mathrm{ro}-\mathrm{ro}{ }^{\prime}$				\checkmark						\dagger		
	Immediate sub	ro' $=$ ro -imm	$\begin{aligned} & \text { ro' } \leftarrow \mathrm{ro}-\mathrm{imm} \\ & (\text { where imm } \neq 1) \end{aligned}$										\dagger		
	Arithmetic right shift	ro' = ro SRA rl	$\mathrm{rO}^{\prime} \leftarrow \mathrm{ro} \gg \mathrm{rl}$				\checkmark						-		
	Immediate arithmetic right shift	ro' = ro SRA imm	ro' \leftarrow ro >> imm										-		
	Logical right shift	ro' = ro SRL rl	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \gg \mathrm{rl}$				\checkmark						-		
	Immediate logical right shift	ro' = ro SRL imm	ro' \leftarrow ro >> imm										\bullet		
	Logical left shift	ro' = ro SLL rl	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \ll \mathrm{rl}$				\checkmark						\bullet		
	Immediate logical left shift	ro' = ro SLL imm	ro' \leftarrow ro \ll imm										-		
	AND	ro" = ro \& ro'	$\mathrm{ro} \mathrm{\prime}$ ¢ ro \& ro'				\checkmark						\bullet		
	Immediate AND	ro' = ro \& imm	ro' $\leftarrow \mathrm{ro} \& \mathrm{imm}$										-		
	OR	ro" = ro \\| ro'	ro" \leftarrow ro \| ro'				\checkmark						-		
	Immediate OR	ro' = ro $\\| \mathrm{imm}$	ro' \leftarrow ro \\| imm										-		
	Exclusive OR	ro" = ro ^ ro'	$\mathrm{ro} \mathrm{\prime}$ ¢ rO^{\wedge} ro'				\checkmark						\bullet		
	Immediate exclusive OR	ro' $=$ ro ^imm	ro' \leftarrow ro ^ imm										-		

Instruction	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									Flag OV
				$\begin{aligned} & \text { Trino- } \\ & \text { mial } \end{aligned}$	Bino- mial	Unino- minal	$\begin{aligned} & \text { Load/ } \\ & \text { store } \end{aligned}$	$\begin{aligned} & \text { Trans- } \\ & \text { fer } \end{aligned}$	Imme- diate value	$\begin{aligned} & \text { Bran- } \\ & \text { ch } \end{aligned}$	Loop	$\begin{aligned} & \text { Cont- } \\ & \text { rol } \end{aligned}$	
Binomial operation	Less than	ro" = LT (ro, ro')	$\begin{aligned} & \text { if }(\mathrm{ro}<\mathrm{ro}) \\ & \left\{\mathrm{rrO}^{\prime \prime} \leftarrow 0 \times 0000000001\right\} \\ & \text { else }\left\{\mathrm{ro}^{\prime \prime} \leftarrow 0 \times 0000000000\right\} \end{aligned}$				$\sqrt{ }$						-
Uninominal operation	Clear	CLR (ro)	$\mathrm{ro} \leftarrow 0 \times 0000000000$				\checkmark					\checkmark	-
	Increment	ro' = ro + 1	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}+1$				$\sqrt{ }$					\checkmark	\dagger
	Decrement	ro' = ro - 1	ro' \leftarrow ro - 1				\checkmark					\checkmark	\dagger
	Absolute value	ro' $=\mathrm{ABS}$ (ro)	$\begin{aligned} & \text { if }(\text { ro }<0) \\ & \{\text { ro' } \leftarrow-\text { ro }\} \\ & \text { else }\left\{\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}\right\} \end{aligned}$				$\sqrt{ }$					\checkmark	;
	1's complement	ro' $=\sim$ ro	ro' $\leftarrow \sim$ ro				\checkmark					\checkmark	-
	2's complement	ro' $=-\mathrm{ro}$	ro' $\leftarrow-\mathrm{ro}$				\checkmark					\checkmark	!
	Clip	ro' = CLIP (ro)	$\begin{aligned} & \text { if }(\text { ro }>0 \times 007 F F F F F F F) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow 0 \times 007 F F F F F F F\right\} \\ & \text { elseif }\{r 0<0 x F F 80000000\} \\ & \left\{\mathrm{ro}^{\prime} \leftarrow 0 \times F F 80000000\right\} \\ & \text { else }\left\{\mathrm{ro}^{\prime} \leftarrow \mathrm{ro} \mathrm{\}}\right. \end{aligned}$				\checkmark					\checkmark	-
	Round	ro' = ROUND (ro)	$\begin{aligned} & \text { if }(\text { ro > Ox007FFF0000 }) \\ & \left\{r 0^{\prime} \leftarrow 0 \times 007 F F F 0000\right\} \\ & \text { elseif }\{r 0<0 x F F 80000000\} \\ & \left\{r^{\prime} \leftarrow 0 x F F 80000000\right\} \\ & \text { else }\left\{r 0^{\prime} \leftarrow(\mathrm{ro}+0 \times 8000)\right. \\ & \& 0 x F F F F F 0000\} \end{aligned}$				$\sqrt{ }$					\checkmark	-
	Exponent	ro' = EXP (ro)	ro' $\leftarrow \log _{2}\left(\frac{1}{\mathrm{rO}}\right)$				$\sqrt{ }$					\checkmark	-
	Substitution	ro' = ro	ro' \leftarrow ro				\checkmark					\checkmark	-
	Accumulated addition	ro' $+=$ ro	$\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}^{\prime}+\mathrm{ro}$				\checkmark					\checkmark	\dagger
	Accumulated subtraction	ro' $-=\mathrm{ro}$	$\mathrm{ro}^{\prime} \leftarrow$ ro' - ro				\checkmark					\checkmark	\dagger
	Division	ro' / = ro	$\begin{aligned} & \text { if }\left(\text { sign }\left(\mathrm{ro}^{\prime}\right)==\operatorname{sign}(\mathrm{ro})\right) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow\left(\mathrm{ro}^{\prime}-\mathrm{ro}\right) \ll 1\right\} \\ & \text { else } \\ & \left\{\mathrm{ro}^{\prime} \leftarrow\left(\mathrm{ro}^{\prime}+\mathrm{ro}\right) \ll 1\right\} \\ & \text { if }\left(\operatorname{sign}\left(\mathrm{ro}^{\prime}\right)==0\right) \\ & \left\{\mathrm{ro}^{\prime} \leftarrow \mathrm{ro}^{\prime}+1\right\} \end{aligned}$				\checkmark					\checkmark	\dagger

Notes 1. Of the two mnemonics, either one of them or both can be written.
2. After transfer, modification specified by mod is performed.
3. Select any of dest, dest' $=\{r o, r e h, r e, r h, r l\}$, source, source' $=\{r e, r h, r l\}$.
4. Select any of dest $=\left\{r o\right.$, reh, re, rh, rl\}, source $=\{r e, r h, r l\}$, addr $=\left\{\begin{array}{l}0: X-0 x F F F: X(X \text { memory }) \\ 0: Y-0 x F F F F: ~ Y(Y \text { memory })\end{array}\right\}$.
5. Select any of dest $=\{r o, r e h, r e, r h, r l\}$, source $=\{r e, r h, r l\}$.
6. Select any register other than general-purpose registers as dest and source.

Instruction	Instruction Name	Mnemonic	Operation	Instructions Simultaneously Written									Flag OV
				Trino- mial	$\begin{aligned} & \text { Bino- } \\ & \text { mial } \end{aligned}$	Uninominal	$\begin{aligned} & \text { Load/ } \\ & \text { store } \end{aligned}$	Transfer	$\left\lvert\, \begin{aligned} & \text { Imme- } \\ & \text { diate } \\ & \text { value } \end{aligned}\right.$	$\begin{aligned} & \text { Bran- } \\ & \text { ch } \end{aligned}$	Loop	$\begin{aligned} & \text { Cont- } \\ & \text { rol } \end{aligned}$	
Branch	Jump	JMP imm	$\mathrm{PC} \leftarrow \mathrm{imm}$									\checkmark	-
	Register indirect jump	JMP dp	$\mathrm{PC} \leftarrow \mathrm{dp}$									\checkmark	-
	Subroutine call	CALL imm	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{STK} \leftarrow \mathrm{PC}+1 \\ & \mathrm{PC} \leftarrow \mathrm{imm} \end{aligned}$									\checkmark	\bullet
	Register indirect subroutine call	CALL dp	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}+1 \\ & \mathrm{STK} \leftarrow \mathrm{PC}+1 \\ & \mathrm{PC} \leftarrow \mathrm{dp} \end{aligned}$									\checkmark	\bullet
	Return	RET	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{STK} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-1 \end{aligned}$									\checkmark	\bullet
	Interrupt return	RETI	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{STK} \\ & \mathrm{STK} \leftarrow \mathrm{SP}-1 \end{aligned}$ Recovery of interrupt enable flag									\checkmark	\bullet
Hard- ware loop	Repeat	REP count	Start $\mathrm{RC} \leftarrow$ count $\mathrm{RF} \leftarrow 0$ During repeat $\mathrm{PC} \leftarrow \mathrm{PC}$ $\mathrm{RC} \leftarrow \mathrm{RC}-1$ End $\mathrm{PC} \leftarrow \mathrm{PC}+1$ $\mathrm{RF} \leftarrow 1$										\bullet
	Loop	LOOP count (instruction of two or more lines)	Start $R C \leftarrow$ count $R F \leftarrow 0$ During repeat $P C \leftarrow P C$ $R C \leftarrow R C-1$ End $P C \leftarrow P C+1$ $R F \leftarrow 1$										-
	Loop pop	LPOP	$\begin{aligned} & \mathrm{LC} \leftarrow \text { LSR3 } \\ & \mathrm{LE} \leftarrow \text { LSR2 } \\ & \text { LS } \leftarrow \text { LSR1 } \\ & \text { LSP } \leftarrow \text { LSP - } \end{aligned}$										\bullet
Control	No operation	NOP	$\mathrm{PC} \leftarrow \mathrm{PC}+1$										-
	Halt	HALT	CPU stops.										\bullet
	Stop	STOP	CPU, PLL, and OSC stop										\bullet
	Condition	IF (ro cond)	Condition test			\checkmark		$\sqrt{ }$		\checkmark			\bullet
	Forget interrupt	FINT	Discard interrupt request										\bullet

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	$\mathrm{I} \mathrm{V}_{\mathrm{DD}}$	For DSP core	-0.5 to +3.6	V
	$\mathrm{EV}_{\mathrm{DD}}$	For I/O pins	-0.5 to +4.6	V
Input voltage	V_{1}	$\mathrm{~V}_{1}<\mathrm{EVDD}+0.5 \mathrm{~V}$	-0.5 to +4.1	V
Output voltage	V_{o}		-0.5 to +4.1	V
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$		-65 to +150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating voltage	IVDD	For DSP core	2.0		2.7	V
	EVDD	For I/O pins	2.7		3.6	V
Input voltage	V_{I}		0		EVDD	V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{IV} \mathrm{DD}=0 \mathrm{~V}, \mathrm{EV}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	C_{I}	$\mathrm{f}=1 \mathrm{MHz}$,				
Pins other than those						
Output capacitance	Co		10		pF	
	tested: 0 V					

DC Characteristics (Unless otherwise specified, $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, with IVDD and EVDD within recommended operating condition range)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIHN	Pins other than below	0.7 EVDD		EVDD	V
	$\mathrm{V}_{\mathrm{HSS}}$	$\overline{\mathrm{RESET}}, \overline{\mathrm{INT} 1}$ to $\overline{\mathrm{NT} 4}$, SCK, SIEN, SOEN	0.8 EVDD		EVDD	V
	V ${ }_{\text {HC }}$	CLKIN	$\begin{gathered} 0.5 \mathrm{EV} \mathrm{VDD}^{2} \\ +0.25 \end{gathered}$		$E V_{\text {do }}$	V
Low-level input voltage	VIL	Pins other than below	0		$0.2 \mathrm{EV} \mathrm{DD}^{\text {d }}$	V
	Vic	CLKIN	0		$\begin{gathered} 0.5 \text { EVDD } \\ -0.25 \end{gathered}$	V
High-level output voltage	Vон	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	0.7 EVDD			V
		$\mathrm{IOH}=-100 \mu \mathrm{~A}$	0.8 EVDD			V
Low-level output voltage	VoL	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.2 EV DD	V
High-level input leakage current	ILH	Other than TDI, TMS, and $\overline{\text { TRST }}$ $\mathrm{V}_{1}=E V_{D D}$	0		10	$\mu \mathrm{A}$
Low-level input leakage current	ILL	Other than TDI, TMS, and TRST $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	-10		0	$\mu \mathrm{A}$
Pull-up pin current	IpuI	TDI, TMS, $0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{EV}_{\text {DD }}$	-250		0	$\mu \mathrm{A}$
Pull-down pin current	Ipol	$\overline{\text { TRST, }} 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{EV}$ DD	0		250	$\mu \mathrm{A}$
Internal supply current $\left[V_{I H N}=V_{I H S}=E V_{D D}, V_{I L}=0 \mathrm{~V},\right.$ no load]	$1 \mathrm{ldo}^{\text {Note }}$	During operating, $30 \mathrm{~ns}, \mathrm{IV} \mathrm{DD}=$ 2.7 V		TBD	75	mA
	IdDH	In halt mode, tcc $=30 \mathrm{~ns}$, divided by eight, $\mathrm{IV} \mathrm{VD}=2.7 \mathrm{~V}$		TBD	10	mA
	IdDs	In stop mode, $0^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<60^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

Note The TYP. values are when an ordinary program is executed.
The MAX. values are when a special program that brings about frequent switching inside the device is executed.

Common Test Criteria of Switching Characteristics

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, with IVDD and $E V_{D D}$ within recommended operating condition range)

Clock

Timing requirements

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
CLKIN cycle time ${ }^{\text {Note } 1}$	tccx			25			ns
		PLL lock range ${ }^{\text {Note } 2}$	$\begin{aligned} & \mathrm{IV} \mathrm{DD}=2.0 \\ & \text { to } 2.7 \mathrm{~V} \end{aligned}$	$15 \times \mathrm{m}$		$50 \times \mathrm{m}$	ns
			$\begin{aligned} & \mathrm{IV} \mathrm{VD}=2.3 \\ & \text { to } 2.7 \mathrm{~V} \end{aligned}$	$10 \times m$		$50 \times \mathrm{m}$	ns
CLKIN high-level width	twCXH			12.5			ns
CLKIN low-level width	twCxL			12.5			ns
CLKIN rise/fall time	tricx					5	ns
Internal clock cycle time requirements ${ }^{\text {Note } 3}$	tcC (R)	IVdd $=2.0$ to 2.7 V		20			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V		13.3			ns

Notes 1. m: Multiple
2. This is the range in which the PLL is locked (stably oscillates). Input tccx within this range.
3. Input $t_{c c x}$ so that the value of $\left(\mathrm{t}_{\mathrm{c}} \mathrm{cx} \div \mathrm{m} \times \mathrm{n}\right)$ satisfies this condition. m : Multiple, n : Division ratio

Switching characteristics

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Internal clock cycle ${ }^{\text {Note }}$	$t_{c c}$	External clock operation			tccx		ns
		PLL clock operation			$(\mathrm{tccx} \div \mathrm{m}) \times \mathrm{n}$		ns
		In HALT mode			$(\operatorname{tcc} x \div m) \times n \times 1$		ns
CLKOUT cycle time	tcco				tcc		ns
CLKOUT width	twco	During normal operation	$n=1$, or even number	tcc $\div 2-3$			ns
			n = odd number (other than 1)	$\mathrm{tcc}_{\mathrm{c}} \div \mathrm{n}-3$			ns
		In HALT mode		$\mathrm{tcc} \div \mathrm{n}-3$			ns
CLKOUT rise/fall time	trico					5	ns
CLKOUT delay time	tdco	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V				20	ns
		IV DD $=2.3$ to 2.7 V				15	ns

Note m: Multiple, n: Division ratio, l: HALT division ratio

Clock I/O timing

Reset, Interrupt

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\text { RESET }}$ low-level width	tw (RL)		$6 \mathrm{tcc}^{\text {Note }}$			ns
WAKEUP low-level width	tw (WAKEUPL)		6 toc			$\mu \mathrm{s}$
$\overline{\mathrm{INT} 1}$ to INT4 low-level width	tw (INTL)		$3 \mathrm{tcc}^{\text {Note }}$			ns
$\overline{\mathrm{INT} 1}$ to $\overline{\mathrm{INT} 4}$ recovery time	trec (INT)		3 tcc			ns

Note Note that tcc is I $(I=$ integer of 1 to 16$)$ times that during normal operation in the HALT mode.

Reset timing

WAKEUP timing

Interrupt timing
$\overline{\mathrm{INT} 1}$ to $\overline{\mathrm{INT} 4}$

Serial Interface (Audio Serial mode)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
MCLK cycle time	tomc	Master mode	40			ns
MCLK high-/low-level width	twMc	Master mode	$0.4 \times \mathrm{tcmc}$			ns
MCLK rise/fall time	trimc	Master mode			Note	ns
BCLK cycle time	tcbe	Slave mode	300			ns
BCLK high-/low-level width	$t_{\text {wBC }}$	Slave mode	120			ns
BCLK rise/fall time	tribc	Slave mode			20	ns
LRCLK setup time	tsu(BC-LR)	Slave mode	50			ns
SI setup time	tsus		50			ns
SI hold time	thsi		50			ns

Note 5 or maximum value of $0.1 \times \mathrm{tcmc}$

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
BCLK cycle time	$\mathrm{tc}_{\mathrm{cBC}}$	Master mode, 64-bit mode		1/64 fs		ns
		Master mode, 32-bit mode		1/32 fs		$n \mathrm{~s}$
BCLK high-/low-level width	$t_{\text {wBC }}$	Master mode	$0.4 \mathrm{tcBC}^{\text {c }}$			ns
BCLK rise/fall time	tribc	Master mode			20	ns
LRCLK delay time	td(BC-LR)	Master mode	-40		+40	ns
SO output delay time	tdso		-40		+40	ns

Audio Serial clock timing

Audio Serial Master mode timing

Audio Serial Slave mode timing

Serial Interface (Standard Serial mode)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SCK cycle time	tosc		60 and 2tcc			ns
SCK high-/low-level width	twsc		25			ns
SCK rise/fall time	trisc				20	ns
SOEN setup time	tsusoe	IVDD $=2.0$ to 2.7 V	10			ns
		IVDD $=2.3$ to 2.7 V	5			ns
SOEN hold time	thsoe	IVDD $=2.0$ to 2.7 V	15			ns
		IVDD $=2.3$ to 2.7 V	10			ns
SIEN setup time	tsusie	IVDD $=2.0$ to 2.7 V	10			ns
		IVDD $=2.3$ to 2.7 V	5			ns
SIEN hold time	tnsIE	IVDD $=2.0$ to 2.7 V	15			ns
		IVDD $=2.3$ to 2.7 V	10			ns
SI setup time	tsusı	IVDD $=2.0$ to 2.7 V	10			ns
		IVDD $=2.3$ to 2.7 V	5			ns
SI hold time	thsi	IVDD $=2.0$ to 2.7 V	15			ns
		IVDD $=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SO output delay time	taso	IV DD $=2.0$ to 2.7 V			30	ns
		$\mathrm{IVDD}=2.3$ to 2.7 V			25	ns
SO hold time	thso		0		ns	

Serial output timing 1

Serial output timing 2 (during successive output)

Serial input timing 1

Serial input timing 2 (during successive input)

Caution If noise is superimposed on the serial clock, the serial interface may be deadlocked. Bear in mind the following points when designing your system:

- Reinforce the wiring for power supply and ground (if noise is superimposed on the power and ground lines, it has the same effect as if noise were superimposed on the serial clock).
- Shorten the wiring between the device's SCK pin, and clock supply source.
- Do not cross the signal lines of the serial clock with any other signal lines. Do not route the serial clock line in the vicinity of a line through which a high alternating current flows.
- Supply the clock to the SCK pin of the device from the clock source on a one-to-one basis. Do not supply clock to several devices from one clock source.
- Exercise care that the serial clock does not overshoot or undershoot. In particular, make sure that the rising and falling of the serial clock waveform are clear.

Host Interface

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
$\overline{\mathrm{HRD}}$ delay time	tdHR	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	5			ns
$\overline{\mathrm{HRD}}$ width	twHR		40			ns
$\overline{\mathrm{HCS}}, \mathrm{HAO}, \mathrm{HA} 1$, read hold time	thHCAR		0			ns
$\overline{\mathrm{HCS}}, \mathrm{HAO}, \mathrm{HA} 1$ write hold time	thHCAW		0			$n s$
HRD, HWR recovery time	trechs		$3 \mathrm{tcc}_{\text {c }}$			ns
HWR delay time	tdrw	IV DD $=2.0$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	10			ns
$\overline{\mathrm{HWR}}$ width	twHw		40			ns
$\overline{\text { HWR }}$ hold time	thHDW		0			ns
HWR setup time	tsuHDw	IV DD $=2.0$ to 2.7 V	15			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
HRE, HWE output delay time	tdHE	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			25	ns
HRE, HWE hold time	thHE	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V			30	ns
		IVDD $=2.3$ to 2.7 V			25	ns
HRD valid time	twhid	IV $\mathrm{DD}^{\text {a }} 2.0$ to 2.7 V			30	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			25	ns
$\overline{\text { HRD }}$ hold time	thHor		0			ns

Host read interface timing

Host write interface timing

General-purpose I/O Port

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Port input setup time	tsuPI		0			ns
Port input hold time	thPI	IV DD $=2.0$ to 2.7 V	15			ns
		$\mathrm{IVDD}=2.3$ to 2.7 V	10			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.
Port output delay time	taPo	$\mathrm{IVDD}=2.0$ to 2.7 V			30
		$I V_{D D}=2.3$ to 2.7 V		ns	

General-purpose I/O port timing

SD card Interface

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SDCR input setup time	tsuSDCR	Input Response	5			$n s$
SDCR input hold time	thsDCR	Input Response	0			ns
SDDAT input setup time	tsuSDD	Input data	5			ns
SDDAT input hold time	thSDD	Input data	0			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
SDCLK cycle time	tcsbc		40			ns
SDCLK high- level width	twSDCH		10			ns
SDCLK low-level width	twSDCL		10			ns
SDCLK rise/fall time	trisdc				10	ns
SDCR output delay time	tdSDCR	Output Command			10	ns
SDCR output valid time	tvsDCR	Output Command	0			ns
SDDAT output delay time	tdSDD	Output data			10	ns
SDDAT output valid time	tvSDD	Output data	0			ns

SDCR timing

SDDAT timing

Debugging Interface (JTAG)

Timing requirements

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TCK cycle time	tctck		120			ns
TCK high-/low-level width	twTCK		50			ns
TCK rise/fall time	trick				20	ns
TMS, TDI setup time	tsuDI	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
TMS, TDI hold time	thDI	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
Input pin setup time	tsulin	$1 \mathrm{~V}_{\text {DD }}=2.0$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
Input pin hold time	thuln	IV DD $=2.0$ to 2.7 V	25			ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V	20			ns
$\overline{\text { TRST }}$ setup time	tsutrst		100			ns

Switching characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TDO output delay time	tado	$\mathrm{IV} \mathrm{DD}=2.0$ to 2.7 V			25	ns
		$\mathrm{IV} \mathrm{VD}=2.3$ to 2.7 V			20	ns
Output pin output delay time	tajout	IV DD $=2.0$ to 2.7 V			25	ns
		$\mathrm{IV} \mathrm{DD}=2.3$ to 2.7 V			20	ns

Debugging interface timing

Remark For details of JTAG, refer to IEEE1149.1.

9. PACKAGES

$\star \quad$ 80-PIN PLASTIC FBGA (9x9)

	$($ UNIT:mm $)$
ITEM	DIMENSIONS
D	9.00 ± 0.10
E	9.00 ± 0.10
w	0.20
A	1.28 ± 0.10
A1	0.35 ± 0.06
A2	0.93
e	0.80
b	$0.50_{-0.10}^{+0.05}$
x	0.08
y	0.10
$y 1$	0.20
ZD	1.30
ZE	1.30
	P80F1-80-CN6

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

detail of lead end

NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.0 ± 0.2
B	12.0 ± 0.2
C	12.0 ± 0.2
D	14.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.10
J	0.5 (T.P.)
K	1.0 ± 0.2
L	0.5 ± 0.2
M	0.145 ± 0.05
N	0.10
P	1.0 ± 0.05
Q	0.1 ± 0.05
R	$3_{-3}^{\circ+7^{\circ}}$
S	1.2 MAX.
	S80GK-50-9EU-1

10. RECOMMENDED SOLDERING CONDITIONS

It is recommended to solder this product under the following conditions.
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Surface-Mount Type

- μ PD77115GK-9EU: 80-pin plastic TQFP (fine-pitch) (12×12)

Soldering Process	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX $\left(210^{\circ} \mathrm{C} \mathrm{MIN}\right)$, Number of times: 2 MAX, Number of days: $3^{\text {Note }}$ (after that, prebaking is necessary for 10 to 72 hours at $\left.125^{\circ} \mathrm{C}\right)$)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX $\left(200^{\circ} \mathrm{C} \mathrm{MIN)}\right.$, Number of times: 2 MAX, Number of days: $3^{\text {Note }}$ (after that, prebaking isnecessary for 10 to 72 hours at $125^{\circ} \mathrm{C}$)	VP15-103-2
Partial heating method	Pin temperature: $300^{\circ} \mathrm{C}$ MAX, Time: 3 seconds MAX (per side of device)	-

- μ PD77115F1-CN6: 80-pin plastic FBGA (9×9)
- μ PD77115AF1-xxx-CN6: 80-pin plastic FBGA (9×9)

Soldering Process	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX $\left(210^{\circ} \mathrm{C} \mathrm{MIN}\right)$, Number of times: 2 MAX, Number of days: $3^{\text {Note }}$ (after that, prebaking is necessary for 10 to 72 hours at $\left.125^{\circ} \mathrm{C}\right)$)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX $\left(200^{\circ} \mathrm{C} \mathrm{MIN)}\right.$, Number of times: 2 MAX, Number of days: $3^{\text {Note }}$ (after that, prebaking isnecessary for 10 to 72 hours at $125^{\circ} \mathrm{C}$)	VP15-103-2

Note Number of days in storage after the dry pack has been opened. The storage conditions are at $25^{\circ} \mathrm{C}, 65 \%$ RH MAX.

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Duesseldorf, Germany
Tel: 0211-65030

- Sucursal en España

Madrid, Spain
Tel: 091-504 2787

- Succursale Française

Vélizy-Villacoublay, France
Tel: 01-30-675800

- Filiale Italiana

Milano, Italy
Tel: 02-66 7541

- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-2445845

- Tyskland Filial

Taeby, Sweden
Tel: 08-63 80820

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737
NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore
Tel: 6253-8311

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and Vін (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

