Features

- High-performance ULC Family Suitable for Large-sized CPLDs and FPGAs
- From 46K Gates up to 780K Gates Supported
- From 18 Kbit to 390 Kbit DPRAM
- Compatible with Xilinx or Altera
- Pin-counts to Over 976 pins
- Any Pin-out Matched
- Full Range of Packages: DIP, SOIC, LCC/PLCC, PQFP/TQFP, BGA, PGA/PPGA
- Low Quiescent Current: 0.3 nA/gate
- Available in Commercial and Industrial Grades
- $0.35 \mu \mathrm{~m}$ Drawn CMOS, 3 and 4 Metal Layers
- Library Optimised for Synthesis, Floor Plan \& Testability Generation (ATPG)
- High Speed Performances:
- 150 ps Typical Gate Delay @3.3V
- Typical 600 MHz Toggle Frequency @3.3V
- Typical 360 MHz Toggle Frequency @2.5V
- High System Frequency Skew Control:
- Clock Tree Synthesis Software
- Low Power Consumption:
- $0.25 \mu \mathrm{~W} /$ Gate/ MHz @3.3V
- $0.18 \mu \mathrm{~W} /$ Gate/ MHz @2.5V
- Power on Reset (Internal)
- Standard 2, 4, 6, 8,10, 12 and $18 \mathrm{~mA} \mathrm{I/Os}$
- CMOS/TTL/PCI LVCMOS, LVTTL, GTL, HSTL, LVDS Interfaces
- ESD (2 kV) and Latch-up Protected I/O
- High Noise \& EMC Immunity:
- I/O with Slew Rate Control
- Internal Decoupling
- Signal Filtering between Periphery \& Core
- Thick oxide matrices allowing 5V Compliance
- Internal Regulator 5V -> 3.3V
- PLL $0.35 \mu \mathrm{~m}$ with Integrated Filter

Description

The UA1E series of ULCs is well suited for conversion of large sized CPLDs and FPGAs. We can support within one ULC from 18 Kbits to 390 Kbits DPRAM and from 46 Kgates to 780 Kgates. Typically, ULC die size is 50% smaller than the equivalent FPGA die size. DPRAM blocks are compatible with Xilinx or Altera FPGA blocks.
Devices are implemented in high-performance CMOS technology with $0.35 \mu \mathrm{~m}$ (drawn) channel lengths, and are capable of supporting flip-flop toggle rates of 200 MHz at 3.3 V and 180 MHz at 2.5 V , and input to output delays as fast as 150 ps at 3.3 V . The architecture of the UA1E series allows for efficient conversion of many PLD architecture and FPGA device types with higher IO count. A compact RAM cell, along with the large number of available gates allows the implementation of RAM in FPGA architectures that support this feature, as well as JTAG boundary-scan and scan-path testing.
Conversion to the UA1E series of ULC can provide a significant reduction in operating power when compared to the original PLD or FPGA. This is especially true when compared to many PLD and CPLD architecture devices, which typically consume 100 mA or more even when not being clocked. The UA1E series has a very low standby consumption of $0.3 \mathrm{nA} /$ gate typically commercial temperature, which would yield a standby current of $42 \mu \mathrm{~A}$ on a 144,000 gates design. Operating consumption is a strict
function of clock frequency, which typically results in a power reduction of 50% to 90% depending on the device being compared.

The UA1E series provides several options for output buffers, including a variety of drive levels up to 18 mA . Schmitt trigger inputs are also an option. A number of techniques are used for improved noise immunity and reduced EMC emissions, including: several independent power supply busses and internal decoupling for isolation; slew rate limited outputs are also available if required.

The UA1E series is designed to allow conversion of high performance 3.3 V devices as well as 2.5 V devices. Support of mixed supply conversions is also possible, allowing optimal trade-offs between speed and power consumption.

Array Organization

Table 1. Matrices

Part Number	Max Pads	KGates	DPRAM Kbits	PLL
USD700	700	780	390	4
USD594	594	590	230	3
USD492	492	520	243	2
USD432	432	374	144	2
USD384	384	300	99	0
USD312	312	150	72	0
USD256	256	124	48	2
USD228	228	98	38	2
USD210	210	95	0	0
USD170 ${ }^{(1)}$	170	33	0	0
USD134 ${ }^{(1)}$	134		$3.3 V$	

Note: 1. Arrays with internal regulators $5 \mathrm{~V} \rightarrow 3.3 \mathrm{~V}$ and Power on Reset.

Matrix Examples

Figure 1. ATL35_M484E1 Matrix with 108 DPRAMS and 2 PLL's

Figure 2. ATL35_MI34E1 Matrix with 1 voltagte Regulator 5V - 3V and Power on Reset

Architecture

The basic element of the UA1E family is called a cell. One cell can typically implement between one to four FPGA gates. Cells are located contiguously throughout the core of the device, with routing resources provided in three to four metal layers above the cells. Some cell blockage does occur due to routing, and utilization will be significantly greater with three metal routing than two. The sizes listed in the Product Outline are estimated usable amounts using three metal layers. I/O cells are provided at each pad, and may be configured as inputs, outputs, $\mathrm{I} / \mathrm{Os}, \mathrm{V}_{\mathrm{DD}}$ or V_{SS} as required to match any FPGA or PLD pinout.
In order to improve noise immunity within the device, separate V_{DD} and V_{SS} busses are provided for the internal cells and the I/O cells.

I/O buffer interfacing
I/O Flexibility
All I/O buffers may be configured as input, output, bi-directional, oscillator or supply. A level translator could be located close to each buffer.
I/O Options
Slew Rate Controlled Output
Buffer

2.5V Compatibility

Power Supply and Noise Protection

Inputs
Each input can be programmed as TTL, CMOS, or Schmitt Trigger, with or without a pull up or pull down resistor.
Fast Output Buffer
Fast output buffers are able to source or sink 2 to 18 mA at 3.3 V according to the chosen option. 36 mA achievable, using 2 pads.

In this mode, the p - and n -output transistors commands are delayed, so that they are never set "ON" simultaneously, resulting in a low switching current and low noise. These buffers are dedicated to very high load drive.

The UA1E series of ULC's is fully capable of supporting high-performance operation at 2.5 V or 3.3 V . The performance specifications of any given ULC design however, must be explicitly specified as $2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or both.

In order to improve the noise immunity of the UA1E core matrix, several mechanisms have been implemented inside the UA1E arrays. Two types of protection have been added: one to limit the I/O buffer switching noise and the other to protect the I/O buffers against the switching noise coming from the matrix.

The speed and density of the UA1E technology cause large switching current spikes, for example when:

- 16 high current output buffers switch simultaneously, or
- 10% of the 700000 gates are switching within a window of 1 ns .

Sharp edges and high currents cause some parasitic elements in the packaging to become significant. In this frequency range, the package inductance and series resistance should be taken into account. It is known that an inductor slows down the setting time of the current and causes voltage drops on the power supply lines. These drops can affect the behavior of the circuit itself or disturb the external application (ground bounce).

Three features are implemented to limit the noise generated by the switching current:

- The power supplies of the input and output buffers are separated.
- The rise and fall times of the output buffers can be controlled by an internal regulator.
- A design rule concerning the number of buffers connected on the same power supply line has been imposed.

This noise disturbance is caused by a large number of gates switching simultaneously. To allow this without impacting the functionality of the circuit, three new features have been added:

- Decoupling capacitors are integrated directly on the silicon to reduce the power supply drop.
- A power supply network has been implemented in the matrix. This solution reduces the number of parasitic elements such as inductance and resistance and constitutes an artificial V_{DD} and Ground plane. One mesh of the network supplies approximately 150 cells.
- A low pass filter has been added between the matrix and the input to the output buffer. This limits the transmission of the noise coming from the ground or the V_{DD} supply of the matrix to the external world via the output buffers.

Matrix Switching Current Protection

I/O Buffers Switching Protection

PLL Characterisitics The following list the caracteristics of the PLL $0.35 \mu \mathrm{~m}$ with integrated filter:

- Input frequency from 5 to 100 MHz
- Outout frequency from 20 to 200 MHz
- Frequency multiplication by 2 or 4
- Phase shifter 0, 90, 180, 270 degrees
- Output lock signal: lock_in time: 50us
- Supply: 3.3V
- Power consumption max: 3.32mA

Application

Use for XILINX and ALTERA conversions, in the following cases:

- clock deskew
- frequency synthesis
- clock latency reduction
- phase shift

Note: For detailed information, please contact our technical center.

Electrical Characteristics

Absolute Maximum Ratings

	Operating Temperature
Commercial... 0° to $70^{\circ} \mathrm{C}$	
	Industrial.. 40° to $85^{\circ} \mathrm{C}$
	Max Supply Core Voltage (V_{DD})......................3.6V
	Max Supply Periphery Voltage ($\mathrm{V}_{\mathrm{DD5}}$) $\ldots \ldots \ldots \ldots \ldots5 .5 \mathrm{~V}$
	Storage Temperature...................................... 65° to $150^{\circ} \mathrm{C}$
	Operating Ambient Temperature..................... 55° to $125^{\circ} \mathrm{C}$

*NOTICE: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

DC Characteristics

2.5V

Specified at $\mathrm{VDD}=+2.5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Buffer	Min	Typ	Max	Unit	Conditions
TA	Operating Temperature	All	-40		+85	${ }^{\circ} \mathrm{C}$	
VDD	Supply Voltage	All	2.3	2.5	2.7	V	
ІІн	High level input current	cMOS			10	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VdD}, \mathrm{VDD}=\mathrm{VDD}($ max $)$
		PCI			10		
IIL	Low Level input current	CMOS	-10			$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{Vss}, \mathrm{VdD}=\mathrm{VDD}(\mathrm{max})$
		PCI					
Ioz	High-Impedance State Output Current	All	-10		10	$\mu \mathrm{A}$	VIN = VDD or Vss, VdD = Vdd (max), No Pull-up
Ios	Output short-circuit current	PO11		9		mA	$\begin{aligned} & \text { Vout }=\text { VDD,VDD }=\text { VDD }(\max) \\ & \text { VOUT }=\text { VSS, VDD }=\text { VDD }(\max) \end{aligned}$
		PO11		6			
VIH	High-level Input Voltage	cMOS	$\begin{gathered} 0.7 \mathrm{VDD} \\ 0.475 \mathrm{VDD} \\ 0.7 \mathrm{VDD} \end{gathered}$			V	
		PCI					
		CMOS Schmitt		1.5			
VIL	Low-Level Input Voltage	cmos			0.3 VDD	V	
		PCI			0.325 VDD		
		CMOS Schmitt		1.0	0.3Vdd		
Vhys	Hysteresis	CMOS Schmitt		0.5		V	
Vон	High-Level output voltage	PO11	$\begin{aligned} & 0.7 \mathrm{VDD} \\ & 0.9 \mathrm{VDD} \end{aligned}$			V	$\begin{gathered} \mathrm{IOH}=1.4 \mathrm{~mA}, \mathrm{VDD}=\mathrm{VDD}(\mathrm{~min}) \\ \mathrm{IOH}=-500 \mu \mathrm{~A} \end{gathered}$
		PCI					
Vol	Low-Level output voltage	PO11			0.4	V	$\begin{gathered} \mathrm{IOL}=1.4 \mathrm{~mA}, \mathrm{VDD}=\mathrm{VDD}(\mathrm{~min}) \\ \mathrm{IOL}=1.5 \mathrm{~mA} \end{gathered}$
		PCI			0.1 VDD		

Specified at $V_{D D}=+3.3 V \pm 5 \%$

Symbol	Parameter	Buffer	Min	Typ	Max	Unit	Conditions
TA	Operating Temperature	All	-40		+85	${ }^{\circ} \mathrm{C}$	
$V_{\text {DD }}$	Supply Voltage	All	3.0	3.3	3.6	V	
IIH	High level input current	CMOS				$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VDD}, \mathrm{VdD}=\mathrm{VDD}(\mathrm{max})$
		PCI			10		
IIL	Low Level input current	CMOS	-10			$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{Vss}, \mathrm{VdD}=\mathrm{VDD}(\mathrm{max})$
		PCI					
Ioz	High-Impedance State Output Current	All	-10		10	$\mu \mathrm{A}$	Vin = Vdd or Vss, Vdd = Vdd (max), No Pull-up
los	Output short-circuit current	PO11		14		mA	$\begin{aligned} & \text { VOUT }=\text { VDD, VDD }=\text { VDD }(\max) \\ & \text { VOUT }=\text { VSS, VDD }=\text { VDD }(\max) \end{aligned}$
		PO11		-9			
VIH	High-level Input Voltage	CMOS, LVTTL	$\begin{gathered} \hline 2.0 \\ 0.475 \mathrm{VDD} \\ 2.0 \end{gathered}$	1.7		V	
		PCI					
		CMOS Schmitt					
VIL	Low-Level Input Voltage	CMOS			0.8	V	
		PCI			0.325Vdd		
		CMOS/TTL-level Schmitt		1.1			
Vhys	Hysteresis	TTL-level Schmitt		0.6		V	
Vor	High-Level output voltage	PO11	$\begin{aligned} & 0.7 \mathrm{VDD} \\ & 0.9 \mathrm{VDD} \end{aligned}$			V	$\begin{gathered} \mathrm{IOH}=2 \mathrm{~mA}, \mathrm{VDD}=\mathrm{VDD}(\mathrm{~min}) \\ \mathrm{IOH}=-500 \mu \mathrm{~A} \end{gathered}$
		PCI					
Vol	Low-Level output voltage	PO11				V	$\begin{gathered} \mathrm{IOL}=2 \mathrm{~mA}, \mathrm{VDD}=\mathrm{VDD}(\mathrm{~min}) \\ \mathrm{lOL}=1.5 \mathrm{~mA} \end{gathered}$
		PCI			0.1VdD		

5V
Specified at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}+/-5 \%$

Symbol	Parameter	Buffer	Min	Typ	Max	Unit	Conditions
TA	Operating Temperature	All	-55		+125	${ }^{\circ} \mathrm{C}$	
VDD	Supply Voltage	5V Tolerant	3.0	3.3	3.6	V	
VdD5	Supply Voltage	5V Compliant	4.5	5.0	5.5	V	
ІІн	High level input current	CMOS			10	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VDD}, \mathrm{VDD}=\mathrm{VDD}($ max $)$
IIL	Low Level input current	CMOS	-10			$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{Vss}, \mathrm{VdD}=\mathrm{VDD}(\mathrm{max})$
Ioz	High-Impedance State Output Current	All	-10		10	$\mu \mathrm{A}$	VIN = VdD or Vss, VdD = Vdd (max), No Pull-up
Ios	Output short-circuit current	PO11V		$\begin{gathered} 8 \\ -7 \end{gathered}$		mA	$\begin{aligned} & \text { Vout }=\text { VDD,VDD }=\text { VDD }(\max) \\ & \text { VOUT }=\text { VSS,VDD }=\text { VDD }(\max) \end{aligned}$
VIH	High-level Input Voltage	$\begin{gathered} \hline \text { PICV5 } \\ \hline \text { CMOS/TTL-level } \\ \text { Schmitt } \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.7 \end{aligned}$	5.5	V	
VIL	Low-Level Input Voltage	$\begin{gathered} \text { PICV5 } \\ \hline \text { CMOS/TTL-level } \\ \text { Schmitt } \end{gathered}$		0.5 Vcc 1.1	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	
Vhys	Hysteresis	TTL-level Schmitt		0.6		V	
Voh	High-Level output voltage	$\begin{gathered} \text { PO11V } \\ \hline \text { PO11V5 } \end{gathered}$	$\begin{aligned} & 0.7 \mathrm{VDD} \\ & 0.7 \mathrm{Vcc} \end{aligned}$			V	$\begin{aligned} & \mathrm{IOH}=-1.7 \mathrm{~mA} \\ & \mathrm{IOH}=-1.7 \mathrm{~mA} \end{aligned}$
Vol	Low-Level output voltage	$\begin{aligned} & \hline \text { PO11V } \\ & \hline \text { PO11V5 } \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	$\mathrm{IOL}=1.7 \mathrm{~mA}$

I/O Buffer

Symbol	Parameter	Typ	Unit	Conditions
C IN	Capacitance, Input Buffer (Die)	2.4	pF	3.3 V
C оuт	Capacitance, Output Buffer (Die)	5.6	pF	3.3 V
C ı/O	Capacitance, Bidirectional	6.6	pF	3.3 V

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2003. All rights reserved. Atmel ${ }^{\circledR}$ and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

