128Kx32 EEPROM MODULE, SMD 5962-94585

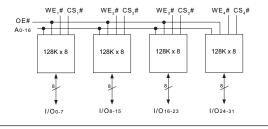
FEATURES

- Access Times of 120**, 140, 150, 200, 250, 300ns
- Packaging:
 - 66-pin, PGA Type, 27.3mm (1.075") square, Hermetic Ceramic HIP (Package 400)
 - 68 lead, 22.4mm sq. CQFP (G2T), 4.57mm (0.180") high, (Package 509)
- Organized as 128Kx32; User Configurable as 256Kx16 or 512Kx8
- Write Endurance 10,000 Cycles
- Data Retention Ten Years Minimum (at +25°C)
- Commercial, Industrial and Military Temperature Ranges
- Low Power CMOS
- Automatic Page Write Operation

- Page Write Cycle Time: 10ms Max
- Data Polling for End of Write Detection
- Hardware and Software Data Protection
- TTL Compatible Inputs and Outputs
- 5 Volt Power Supply
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight

WE128K32-XG2TX - 8 grams typical WE128K32-XH1X - 13 grams typical

FIGURE 1 – PIN CONFIGURATION FOR WE128K32N-XH1X

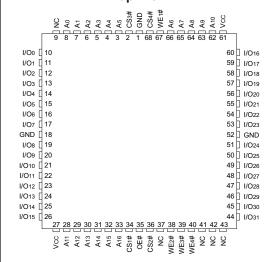

Top View

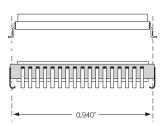
_ 1	12	23	34	45	56
○I/O ₈	○WE₂#	○I/O ₁₅	I/O ₂₄	Vcc 🔾	I/O ₃₁ 🔾
○I/O ₉	OCS2#	○I/O ₁₄	I/O ₂₅	CS4#	I/O ₃₀ 🔾
○I/O ₁₀	GND	○I/O ₁₃	I/O ₂₆	WE4#	I/O ₂₉
○A ₁₃	OI/O ₁₁	OI/O ₁₂	A6 (I/O ₂₇ 🔾	I/O ₂₈ 🔾
○A14	○A₁0	OE#	A7 ()	A3 🔾	A ₀
○A ₁₅	○A ₁₁	ONC	NC 🔾	A4 🔾	A1 (
○A16	A 12	○WE₁#	A8 (A5 (A ₂
ONC	Vcc	○I/O 7	A9 (WE3#	I/O ₂₃
○ I/O₀	○CS₁#	○I/O 6	I/O ₁₆	CS3#	I/O ₂₂
○I/O ₁	$\bigcirc NC$	○I/O 5	I/O ₁₇ 🔾	GND 🔾	I/O ₂₁
○I/O ₂	○ I/O₃	○I/O 4	I/O ₁₈ 🔾	I/O ₁₉ 🔾	I/O ₂₀
11	22	33	44	55	66

Pin Description

1/00-31	Data Input/Output
A0-16	Address Inputs
WE1-4#	Write Enable
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected

Block Diagram

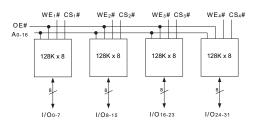

White Electronic Designs Corp. reserves the right to change products or specifications without notice


^{** 120}ns not available for SMD product

^{*}This product is subject to change without notice.

FIGURE 3 – PIN CONFIGURATION FOR WE128K32-XG2TX

Top View



The WEDC 68 lead CQFP fills the same fit and function as the JEDEC 68 lead CQFJ or 68 PLCC. But it has the TCE and lead inspection advantage of the CQFP form.

Pin Description

	•
1/00-31	Data Input/Output
A0-16	Address Inputs
WE1-4#	Write Enable
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
NC	Not Connected

Block Diagram

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol		Unit
Operating Temperature	TA	-55 to +125	°C
Storage Temperature	Tstg	-65 to +150	°C
Signal Voltage Relative to GND	V _G	-0.6 to + 6.25	V
Voltage on OE# and A9		-0.6 to +13.5	V

NOTE:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	V
Input High Voltage	ViH	2.0	Vcc + 0.3	V
Input Low Voltage	V _{IL}	-0.5	+0.8	V
Operating Temp. (Mil.)	TA	-55	+125	°C
Operating Temp. (Ind.)	TA	-40	+85	°C

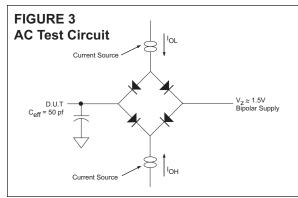
TRUTH TABLE

CS#	OE#	WE#	Mode	Data I/O
Н	Х	Х	Standby	High Z
L	L	Н	Read	Data Out
L	Н	L	Write	Data In
Х	Н	Х	Out Disable	High Z/Data Out
Х	Х	Н	Write	
Х	L	Х	Inhibit	

CAPACITANCE

 $T_A = +25$ °C

Parameter	Symbol	Conditions	Max	Unit
OE# capacitance	COE	V _{IN} = 0 V, f = 1.0 MHz	50	pF
WE1-4# capacitance HIP (PGA)	CwE	V _{IN} = 0 V, f = 1.0 MHz	20	pF
CQFP G2T			20	
CS1-4# capacitance	Ccs	V _{IN} = 0 V, f = 1.0 MHz	20	pF
Data I/O capacitance	C _{I/O}	V _{I/O} = 0 V, f = 1.0 MHz	20	pF
Address input capacitance	CAD	V _{IN} = 0 V, f = 1.0 MHz	50	pF


This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 $V_{CC} = 5.0V$, GND = 0V, -55°C $\leq T_A \leq +125$ °C

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	ILI	V _{CC} = 5.5, V _{IN} = GND to V _{CC}		10	μA
Output Leakage Current	I _{LOx32}	CS# = V _{IH} , OE# = V _{IH} , V _{OUT} = GND to V _{CC}		10	μA
Operating Supply Current (x32)	Iccx32	CS# = V _{IL} , OE# = V _{IH} , f = 5MHz		250	mA
Standby Current	IsB	CS# = V _{IH} , OE# = V _{IH} , f = 5MHz		2.5	mA
Output Low Voltage	VoL	I _{OL} = 2.1mA, V _{CC} = 4.5V		0.45	V
Output High Voltage	Voн	I _{OH} = -400μA, V _{CC} = 4.5V	2.4		V

NOTE: DC test conditions: $V_{IH} = V_{CC} - 0.3V$, $V_{IL} = 0.3V$

AC TEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	V _{IL} = 0, V _{IH} = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V

Notes: Vz is programmable from -2V to +7V.

IoL & IoH programmable from 0 to 16mA.

Tester Impedance Z0 = 75Ω .

Vz is typically the midpoint of VoH and VoL.

IoL & IoH are adjusted to simulate a typical resistive load circuit.

ATE tester includes jig capacitance.

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

WRITE

A write cycle is initiated when OE# is high and a low pulse is on WE# or CS# with CS# or WE# low. The address is latched on the falling edge of CS# or WE# whichever occurs last. The data is latched by the rising edge of CS# or WE#, whichever occurs first. A byte write operation will automatically continue to completion.

write cycle timing

Figures 5 and 6 show the write cycle timing relationships. A write cycle begins with address application, write enable and chip select. Chip select is accomplished by placing the CS# line low. Write enable consists of setting the WE# line low. The write cycle begins when the last of either CS# or WE# goes low.

The WE# line transition from high to low also initiates an internal 150 µsec delay timer to permit page mode operation. Each subsequent WE# transition from high to low that occurs before the completion of the 150 µsec time out will restart the timer from zero. The operation of the timer is the same as a retriggerable one-shot.

AC WRITE CHARACTERISTICS

 $V_{CC} = 5.0V$, GND = 0V, -55°C $\leq T_A \leq +125$ °C

Write Cycle Parameter	Symbol	Min	Max	Unit
Write Cycle Time, TYP = 6ms	twc		10	ms
Address Set-up Time	tas	0		ns
Write Pulse Width (WE# or CS#)	twp	100		ns
Chip Select Set-up Time	tcs	0		ns
Address Hold Time	tан	100		ns
Data Hold Time	tон	10		ns
Chip Select Hold Time	tcsн	0		ns
Data Set-up Time	t _{DS}	50		ns
Output Enable Set-up Time	toes	0		ns
Output Enable Hold Time	tоен	0		ns
Write Pulse Width High	twph	50		ns

FIGURE 5 – WRITE WAVEFORMS WE# CONTROLLED

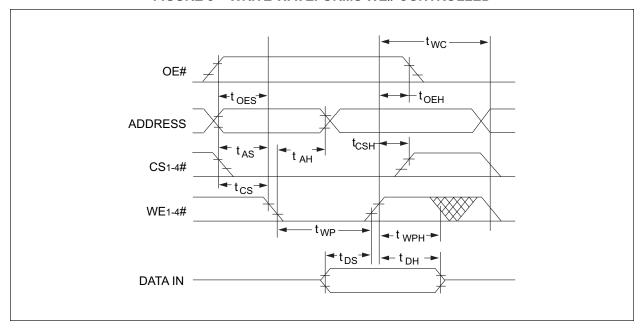
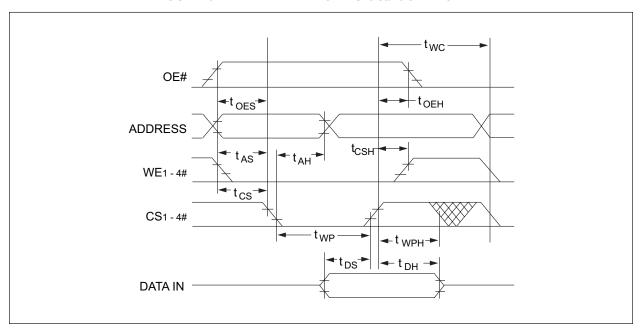
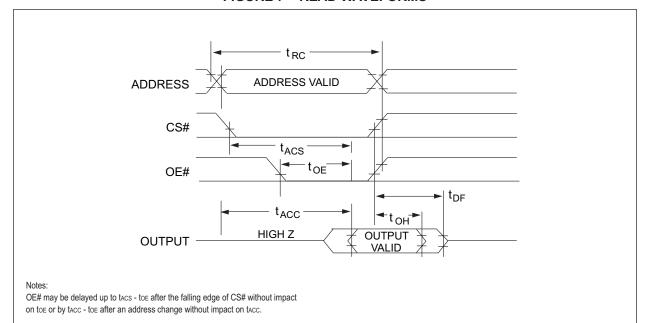



FIGURE 6 - WRITE WAVEFORMS CS# CONTROLLED

READ


The WE128K32-XXX stores data at the memory location determined by the address pins. When CS# and OE# are low and WE# is high, this data is present on the outputs. When CS# and OE# are high, the outputs are in a high impedance state. This two line control prevents bus contention.

AC READ CHARACTERISTICS

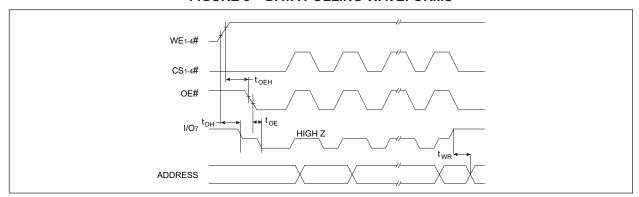
 $V_{CC} = 5.0V$, GND = 0V, -55°C $\leq T_A \leq +125$ °C

Bood Cools Bossesster	Completed	-120		-140		-150		-200		-250		-300		11
Read Cycle Parameter	Symbol	Min	Max	Unit										
Read Cycle Time	t _{RC}	120		140		150		200		250		300		ns
Address Access Time	tacc		120		140		150		200		250		300	ns
Chip Select Access Time	tacs		120		140		150		200		250		300	ns
Output Hold from Add. Change, OE# or CS#	tон	0		0		0		0		0		0		ns
Output Enable to Output Valid	toe	0	50	0	55	0	55	0	55	0	85	0	85	ns
Chip Select or OE# to High Z Output	tor		60		70		70		70		70		70	ns

FIGURE 7 - READ WAVEFORMS

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

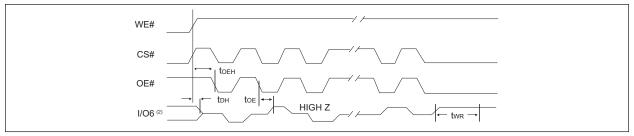
DATA POLLING


The WE128K32-XXX offers a data polling feature which allows a faster method of writing to the device. Figure 8 shows the timing diagram for this function. During a byte or page write cycle, an attempted read of the last byte written will result in the complement of the written data on D7 (for each chip.) Once the write cycle has been completed, true data is valid on all outputs and the next cycle may begin. Data polling may begin at any time during the write cycle.

DATA POLLING CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{SS} = 0V, T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Symbol	Min	Max	Unit
Data Hold Time	tDH	10		ns
OE# Hold Time	tOEH	10		ns
OE# To Output Valid	tOE		55	ns
Write Recovery Time	tWR	0		ns


FIGURE 8 - DATA POLLING WAVEFORMS

TOGGLE BIT: In addition to DATA# Polling another method for determining the end of a write cycle is provided. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle.

TOGGLE BUT CHARACTERISTICS(1)

Symbol	Parameter	Min	Max	Units
tон	Data Hold Time	10		ns
tоен	OE# Hold Time	10		ns
toE	OE# to Output Delay			ns
toehp	OE# High Pulse	150		ns
tWR	Write Recovery Time	0		ns

NOTE:

- 1. Toggling either OE# or CS# or both OE# and CS# will operate toggle bit.
- 2. Beginning and ending state of I/O6 will vary
- 3. Any address location may be used but the address should not vary.

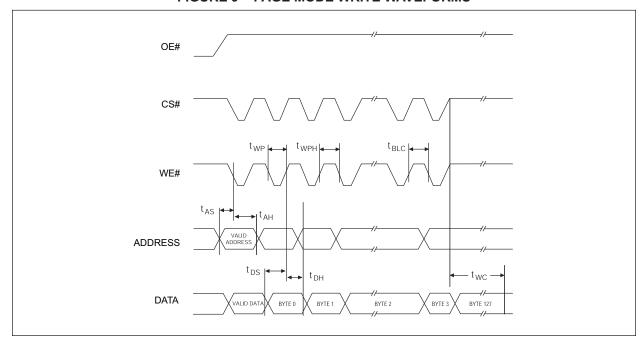
White Electronic Designs Corp. reserves the right to change products or specifications without notice.

PAGE WRITE OPERATION

The WE128K32-XXX has a page write operation that allows one to 128 bytes of data to be written into the device and consecutively loads during the internal programming period. Successive bytes may be loaded in the same manner after the first data byte has been loaded. An internal timer begins a time out operation at each write cycle. If another write cycle is completed within $150 \mu s$ or less, a new time out period begins. Each write cycle restarts the delay period. The write cycles can be continued as long as the interval is less than the time out period.

The usual procedure is to increment the least significant address lines from A0 through A6 at each write cycle. In this manner a page of up to 128 bytes can be loaded in to the EEPROM in a burst mode before beginning the relatively long interval programming cycle.

After the $150\mu s$ time out is completed, the EEPROM begins an internal write cycle. During this cycle the entire page of bytes will be written at the same time. The internal programming cycle is the same regardless of the number of bytes accessed.


PAGE WRITE CHARACTERISTICS

 $(V_{CC} = 5.0V, V_{SS} = 0V, T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$

Page Mode Write Characteristics	Symbol			Unit
Parameter		Min	Max	
Write Cycle Time, TYP = 6ms	twc		10	ms
Address Set-up Time	tas	0		ns
Address Hold Time (1)	tah	100		ns
Data Set-up Time	tos	50		ns
Data Hold Time	tон	10		ns
Write Pulse Width	twp	100		ns
Byte Load Cycle Time	tBLC		150	μs
Write Pulse Width High	twph	50		ns

^{1.} Page address must remain valid for duration of write cycle.

FIGURE 9 – PAGE MODE WRITE WAVEFORMS

FIGURE 10 - SOFTWARE BLOCK DATA PROTECTION ENABLE ALGORITHM(1)

LOAD DATA AA TO ADDRESS 5555

LOAD DATA 55 TO ADDRESS 2AAA

LOAD DATA A0 TO ADDRESS 5555

WRITES ENABLED(2)

LOAD DATA XX TO ANY ADDRESS⁽⁴⁾

LOAD LAST BYTE TO LAST ADDRESS ENTER DATA
PROTECT STATE

NOTES:

- Data Format: D7 D0 (Hex);
 Address Format: A16 A0 (Hex).
- 2. Write Protect state will be activated at end of write even if no other data is loaded.
- 3. Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 128 bytes of data to be loaded.

FIGURE 10 – SOFTWARE BLOCK DATA PROTECTION DISABLE ALGORITHM(1)

LOAD DATA AA TO ADDRESS 5555

LOAD DATA 55 TO ADDRESS 2AAA

LOAD DATA 80 TO ADDRESS 5555

LOAD DATA AA TO ADDRESS 5555

LOAD DATA 55 TO ADDRESS 2AAA

LOAD DATA 20 TO ADDRESS 5555

LOAD DATA XX TO ANY ADDRESS⁽⁴⁾ EXIT DATA
PROTECT STATE(3)

LOAD LAST BYTE TO LAST ADDRESS

SOFTWARE DATA PROTECTION

A software write protection feature may be enabled or disabled by the user. When shipped by White Microelectronics, the WE-128K32-XXX has the feature disabled. Write access to the device is unrestricted.

To enable software write protection, the user writes three access code bytes to three special internal locations. Once write protection has been enabled, each write to the EEPROM must use the same three byte write sequence to permit writing. After setting software data protection, any attempt to write to the device without the three-byte command sequence will start the internal write timers. No data will be written to the device, however, for the duration of two. The write protection feature can be disabled by a six byte write sequence of specific data to specific locations. Power transitions will not reset the software write protection.

Each 128K byte block of the EEPROM has independent write protection. One or more blocks may be enabled and the rest disabled in any combination. The software write protection guards against inadvertent writes during power transitions, or unauthorized modification using a PROM programmer.

HARDWARF DATA PROTECTION

These features protect against inadvertent writes to the WE128K32-XXX. These are included to improve reliability during normal operation:

a) Vcc power on delay

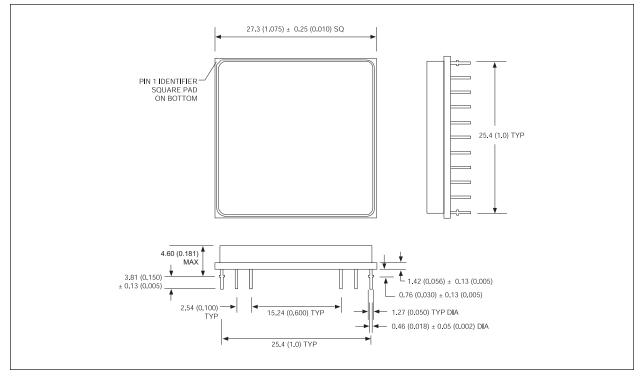
As V_{CC} climbs past 3.8V typical the device will wait 5msec typical before allowing write cycles.

b) Vcc sense

While below 3.8V typical write cycles are inhibited.

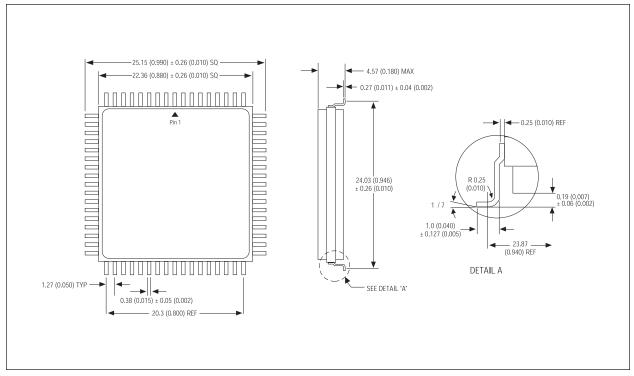
c) Write inhibiting

Holding OE# low and either CS# or WE# high inhibits write cycles.

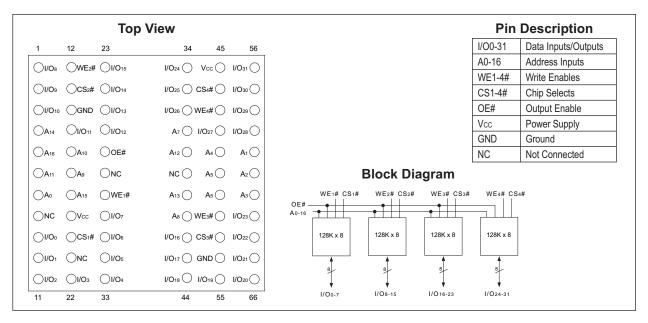

d) Noise filter

Pulses of <8ns (typ) on WE# or CS# will not initiate a write cycle.

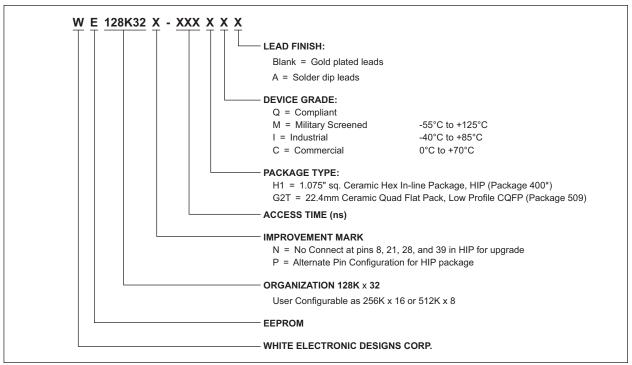
NOTES:


- Data Format: D7 D0 (Hex);
 Address Format: A16 A0 (Hex).
- Write Protect state will be activated at end of write even if no other data is loaded.
- Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 128 bytes of data may be loaded.

PACKAGE 400: 66 PIN, PGA TYPE, CERAMIC HEX-IN-LINE PACKAGE, HIP (H1)


ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

PACKAGE 509: 68 LEAD, CERAMIC QUAD FLAT PACK, CQFP (G2T)



ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

FIGURE 12 – ALTERNATE PIN CONFIGURATION FOR WE128K32NP-XH1X

ORDERING INFORMATION

White Electronic Designs Corp. reserves the right to change products or specifications without notice

DEVICE TYPE	SPEED	PACKAGE	SMD NO.
128K x 32 EEPROM Module	300ns	66 pin HIP (H1)	5962-94585 01H5X
128K x 32 EEPROM Module	250ns	66 pin HIP (H1)	5962-94585 02H5X
128K x 32 EEPROM Module	200ns	66 pin HIP (H1)	5962-94585 03H5X
128K x 32 EEPROM Module	150ns	66 pin HIP (H1)	5962-94585 04H5X
128K x 32 EEPROM Module	140ns	66 pin HIP (H1)	5962-94585 05H5X
128K x 32 EEPROM Module	300ns	66 pin HIP (H1, P type pinout)	5962-94585 01H6X
128K x 32 EEPROM Module	250ns	66 pin HIP (H1, P type pinout)	5962-94585 02H6X
128K x 32 EEPROM Module	200ns	66 pin HIP (H1, P type pinout)	5962-94585 03H6X
128K x 32 EEPROM Module	150ns	66 pin HIP (H1, P type pinout)	5962-94585 04H6X
128K x 32 EEPROM Module	140ns	66 pin HIP (H1, P type pinout)	5962-94585 05H6X
128K x 32 EEPROM Module	300ns	68 lead CQFP/J (G2T)	5962-94585 01HMX
128K x 32 EEPROM Module	250ns	68 lead CQFP/J (G2T)	5962-94585 02HMX
128K x 32 EEPROM Module	200ns	68 lead CQFP/J (G2T)	5962-94585 03HMX
128K x 32 EEPROM Module	150ns	68 lead CQFP/J (G2T)	5962-94585 04HMX
128K x 32 EEPROM Module	140ns	68 lead CQFP/J (G2T)	5962-94585 05HMX