

PRELIMINARY*

128Kx32 SRAM/FLASH MODULE FEATURES

- Access Times of 25ns (SRAM) and 70, 90 and 120ns (FLASH)
- Packaging:
 - 66-pin, PGA Type, 1.385 inch square HIP, Hermetic Ceramic HIP (Package 402)
- 128Kx32 SRAM
- 128Kx32 5V Flash
- Organized as 128Kx32 of SRAM and 128Kx32 of Flash Memory with common Data Bus
- Low Power CMOS
- Commercial, Industrial and Military Temperature Ranges
- TTL Compatible Inputs and Outputs
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight 13 grams typical

FLASH MEMORY FEATURES

- 10,000 Erase/Program Cycles
- Sector Architecture
 - 8 equal size sectors of 16K bytes each
 - Any combination of sectors can be concurrently erased. Also supports full chip erase
- 5 Volt Programming; 5V ± 10% Supply
- Embedded Erase and Program Algorithms
- Hardware Write Protection
- Page Program Operation and Internal Program Control Time.

* This product is under development, not fully characterized, and is subject to change without notice.

Note: Programming information available upon request.

Top View **Pin Description** D0-31 Data Inputs/Outputs 12 23 34 45 1 56 A0-16 Address Inputs OFWE₂# ○I/O15 I/O₂₄ Vcc I/O₃₁ SWE1-4# SRAM Write Enable SCS# SRAM Chip Selects ()I/O₉ OSWE₂# ○I/O14 I/O25 () SWE4# () I/O₃₀ OE# **Output Enable** OGND ○I/013 ○I/O₁₀ I/O₂₆ FWE₄# I/O29 Vcc Power Supply GND Ground OI/011 ()A14 ()|/012 A7 () 1/027 1/028 NC Not Connected OOE# ()A10 ()A16 A12 A4() A1 FWF1-4# Flash Write Enable FCS# Flash Chip Select ()A11 $\bigcirc A_9$ ONC SWE1# A5 A_2 ()A0 ()A15 ○FWE1# A13 () A6() A₃() **Block Diagram** SWF FWE₃# SWE₃# EWE4# SWE4# ONC Vcc ()1/07 A8 FWE3# I/O₂₃ OF# SCS ○I/O₀ ○FCS# ○I/O6 I/O₁₆ SWE₃# I/O₂₂ FCS# 128K 128K 128K x 8 Flash 128K ()SCS# ()I/O₅ ○I/O₁ I/O17 GND I/O₂₁ 128K x 8 SRAM 128K x 8 SRAM 128K x 8 SRAM 128K x 8 SRAM I/O₁₉() **○**I/O₃ **1/0**4 I/O₁₈ ○I/O₂ I/O₂₀ 11 22 33 44 55 66 1/0. 1/016 1/02

FIGURE 1 – PIN CONFIGURATION FOR WSF128K32-XH2X

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-55	+125	°C
Storage Temperature	Tstg	-65	+150	°C
Signal Voltage Relative to GND	Vg	-0.5	7.0	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	7.0	V

Parameter	
Flash Data Retention	10 years
Flash Endurance (write/erase cycles)	10,000

NOTE:

 Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	Vcc	4.5	5.5	V
Input High Voltage	Vih	2.2	V _{CC} + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	V

SRAM TRUTH TABLE

SCS#	OE#	SWE#	Mode	Data I/O	Power
Н	Х	Х	Standby	High Z	Standby
L	L	Н	Read	Data Out	Active
L	Н	Н	Read	High Z	Active
L	Х	L	Write	Data In	Active

NOTE:

1. FCS# must remain high when SCS# is low.

CAPACITANCE

Ta = +25°C

Parameter	Symbol	Conditions	Max	Unit
OE# capacitance	COE	V _{IN} = 0 V, f = 1.0 MHz	80	pF
F/S WE1-4# capacitance	CWE	V _{IN} = 0 V, f = 1.0 MHz	30	pF
F/S CS# capacitance	Ccs	V _{IN} = 0 V, f = 1.0 MHz	50	pF
D0-31 capacitance	Ci/o	Vin = 0 V, f = 1.0 MHz	30	pF
A0-16 capacitance	CAD	Vin = 0 V, f = 1.0 MHz	80	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 $V_{CC} = 5.0V, V_{SS} = 0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	ILI	V_{CC} = 5.5, V_{IN} = GND to V_{CC}		10	μA
Output Leakage Current	ILO	SCS# = VIH, OE# = VIH, VOUT = GND to Vcc		10	μA
SRAM Operating Supply Current x 32 Mode	ICCx32	SCS# = VIL, OE# = FCS# = VIH, f = 5MHz, Vcc = 5.5		670	mA
Standby Current	Isb	FCS# = SCS# = VIH, OE# = VIH, f = 5MHz, Vcc = 5.5		80	mA
SRAM Output Low Voltage	Vol	IoL = 8mA, Vcc = 4.5		0.4	V
SRAM Output High Voltage	Vон	Іон = -4.0mA, Vcc = 4.5	2.4		V
Flash Vcc Active Current for Read (1)	Icc1	FCS# = VIL, OE# = SCS# = VIH		220	mA
Flash V _{CC} Active Current for Program or Erase (2)	Icc2	FCS# = V _{IL} , OE# = SCS# = V _{IH}		280	mA
Flash Output Low Voltage	Vol	IoL = 8.0mA, Vcc = 4.5		0.45	V
Flash Output High Voltage	Vон1	Іон = -2.5 mA, Vcc = 4.5	0.85 x Vcc		V
Flash Output High Voltage	Vон2	Іон = -100 µА, Vcc = 4.5	Vcc -0.4		V
Flash Low Vcc Lock Out Voltage	Vlko		3.2		V

NOTES:

1. The Icc current listed includes both the DC operating current and the frequency dependent component (@ 5 MHz).

The frequency component typically is less than 2 mA/MHz, with OE# at V_{IH} .

2. Icc active while Embedded Algorithm (program or erase) is in progress.

3. DC test conditions: $V_{IL} = 0.3V$, $V_{IH} = V_{CC} - 0.3V$

PRELIMINARY

SRAM AC CHARACTERISTICS

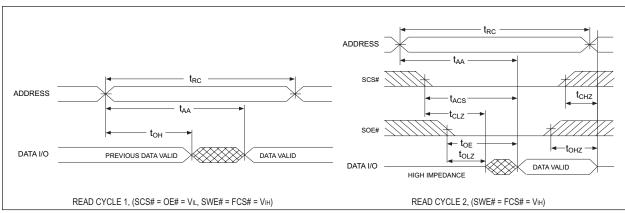
 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter Read Cycle	Symbol	ymbol -25 Min Max		Units
Read Cycle Time	t _{RC}	25		ns
Address Access Time	taa		25	ns
Output Hold from Address Change	tон	0		ns
Chip Select Access Time	tacs		25	ns
Output Enable to Output Valid	toe		15	ns
Chip Select to Output in Low Z	tcLz ¹	3		ns
Output Enable to Output in Low Z	toLz ¹	0		ns
Chip Disable to Output in High Z	tcHz ¹		12	ns
Output Disable to Output in High Z	toHz ¹		12	ns

1. This parameter is guaranteed by design but not tested.

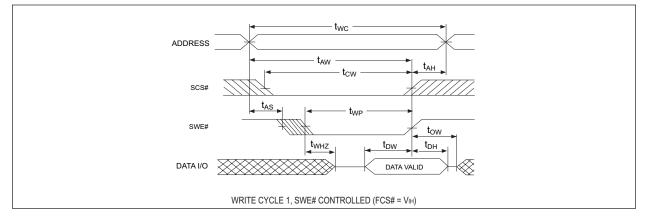
SRAM AC CHARACTERISTICS

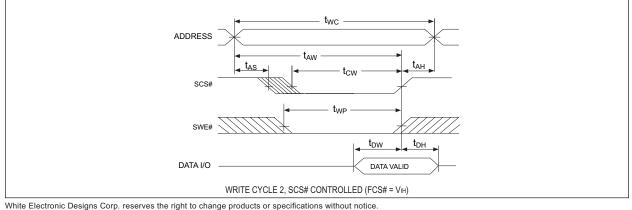
 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$


Parameter Write Cycle	Symbol	-2 Min	25 Max	Units
Write Cycle Time	twc	25		ns
Chip Select to End of Write	tcw	20		ns
Address Valid to End of Write	taw	20		ns
Data Valid to End of Write	tow	15		ns
Write Pulse Width	twp	20		ns
Address Setup Time	tas	3		ns
Address Hold Time	tан	0		ns
Output Active from End of Write	tow ¹	3		ns
Write Enable to Output in High Z	twnz1		15	ns
Data Hold from Write Time	tон	0		ns

1. This parameter is guaranteed by design but not tested.

FIGURE 2 – AC TEST CIRCUIT


PRELIMINARY


FIGURE 3 - SRAM TIMING WAVEFORM - READ CYCLE

White Electronic Designs _____

FIGURE 4 – SRAM WRITE CYCLE - SWE# CONTROLLED

FIGURE 5 - SRAM WRITE CYCLE - SCS# CONTROLLED

October 2004

PRELIMINARY

FLASH AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS, FWE# CONTROLLED

$V_{CC} = 5.0V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$									
Parameter	Syn	Symbol		-70 Min Max		-90 Min Max		-120 Min Max	
Write Cycle Time	tavav	twc	70		90		120		ns
Chip Select Setup Time	telwL	tcs	0		0		0		ns
Write Enable Pulse Width	twLwH	twp	45		45		50		ns
Address Setup Time	tavwl	tas	0		0		0		ns
Data Setup Time	tdvwн	tos	45		45		50		ns
Data Hold Time	twhdx	tDH	0		0		0		ns
Address Hold Time	twlax	tан	45		45		50		ns
Chip Select Hold Time	twhen	tсн	0		0		0		ns
Write Enable Pulse Width High	twnwL	twpн	20		20		20		ns
Duration of Byte Programming Operation (min)	twhwh1		14		14		14		μs
Chip and Sector Erase Time	twhwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery Time Before Write	tghwl		0		0		0		μs
Vcc Set-up Time		tvcs	50		50		50		μs
Chip Programming Time				12.5		12.5		12.5	sec
Output Enable Setup Time		toes	0		0		0		ns
Output Enable Hold Time (1)		tоен	10		10		10		ns

1. For Toggle and Data# Polling.

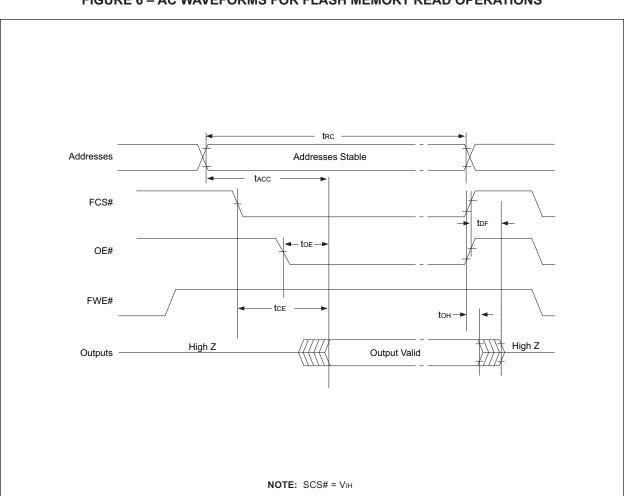
FLASH AC CHARACTERISTICS - READ ONLY OPERATIONS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Syn	nbol	-7 Min	70 Max	۔ Min	0 Max	-1 Min	20 Max	Unit
Read Cycle Time	tavav	trc	70		90		120		ns
Address Access Time	tavqv	tacc		70		90		120	ns
Chip Select Access Time	tELQV	tce		70		90		120	ns
OE# to Output Valid	tglav	toe		35		40		50	ns
Chip Select to Output High Z (1)	t _{EHQZ}	tor		20		25		30	ns
OE# High to Output High Z (1)	tgнaz	tDF		20		25		30	ns
Output Hold from Address, FCS# or OE# Change, whichever is first	taxqx	toн	0		0		0		ns

1. Guaranteed by design, not tested.

PRELIMINARY

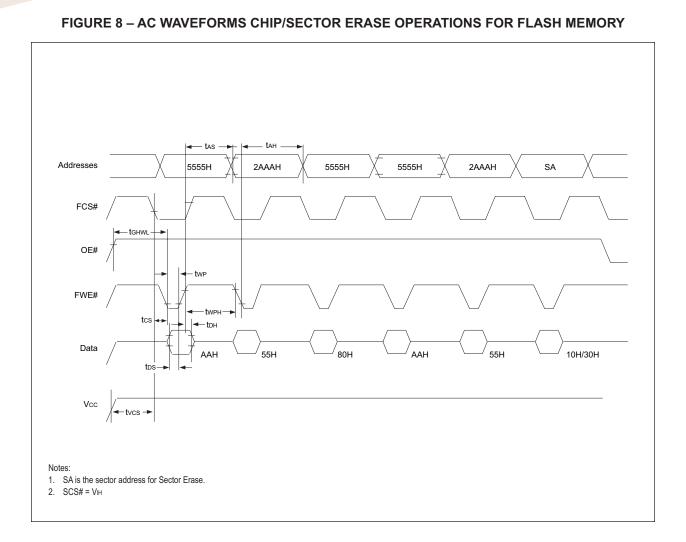

FLASH AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS, FCS# CONTROLLED

Parameter	Svn	Symbol		70	-90		-120		Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	70		90		120		ns
FWE# Setup Time	twlel	tws	0		0		0		ns
FCS# Pulse Width	teleн	tcp	35		45		50		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	tdveh	tos	30		45		50		ns
Data Hold Time	tehdx	tрн	0		0		0		ns
Address Hold Time	telax	tан	45		45		50		ns
FWE# Hold from FWE# High	tенwн	twн	0		0		0		ns
FCS# Pulse Width High	tehel	tсрн	20		20		20		ns
Duration of Programming Operation	twhwh1		14		14		14		μs
Duration of Erase Operation	twhwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery before Write	tghel		0		0		0		ns
Chip Programming Time				12.5		12.5		12.5	sec

White Electronic Designs _____

WSF128K32-XH2X

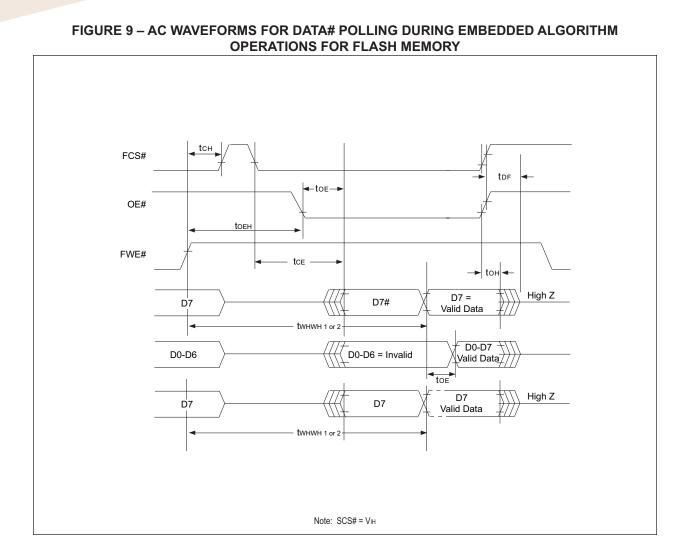
PRELIMINARY


FIGURE 6 - AC WAVEFORMS FOR FLASH MEMORY READ OPERATIONS

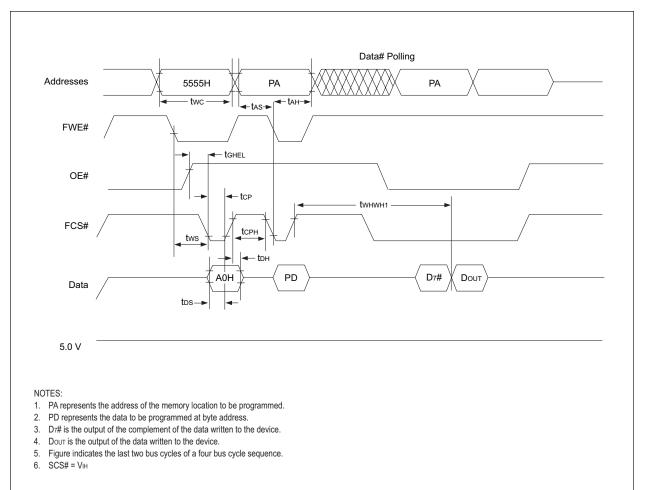
PRELIMINARY

FIGURE 7 - WRITE/ERASE/PROGRAM OPERATION, FLASH MEMORY FWE# CONTROLLED Data# Polling Addresses 5555H PA PA twc ← tan→ tRC -tas-FCS# tghwi i 🗲 OE# twr twnwn1 FWE# twph tcs tDF toH **to**F PD D7# Dout A0H Data tos — toн 5.0 V tce 🖛 -NOTES: 1. PA is the address of the memory location to be programmed. 2. PD is the data to be programmed at byte address. 3. D7# is the output of the complement of the data written to the device. 4. DOUT is the output of the data written to the device. 5. Figure indicates last two bus cycles of four bus cycle sequence.

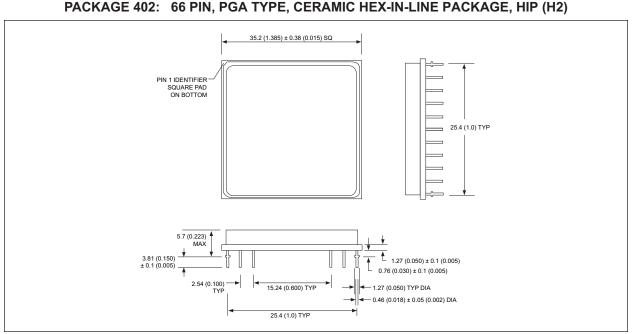
6. SCS# = VIH


PRELIMINARY

WHITE ELECTRONIC DESIGNS

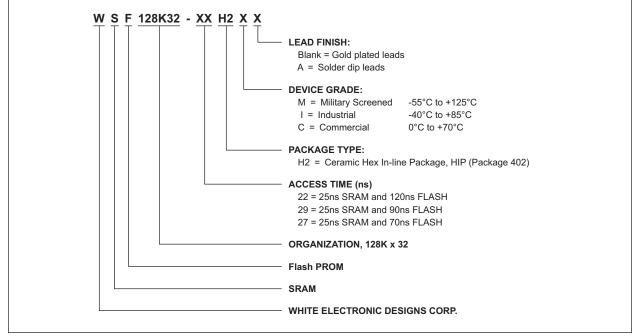

WSF128K32-XH2X

PRELIMINARY



PRELIMINARY

FIGURE 10 - WRITE/ERASE/PROGRAM OPERATION FOR FLASH MEMORY, CS# CONTROLLED



PRELIMINARY

ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

ORDERING INFORMATION

