Linux Assembly Language Programming

BOB NEVELN
Publisher: Prentice Hall PTR

First Edition July 21, 2000
ISBN: 0-13-087940-1, 272 pages

Master x86 assembly language from a Linux perspective!

Essential information for creating Linux device drivers!

How Linux works "under the hood!"

CD-ROM includes edlinas, the #1 Linux x86 hands-on assembler development simulator!

Linux Assembly Language Programming is the first Linux-centered guide to x86 assembly
language!

In Linux Assembly Language Programming, Bob Neveln explains all the key features of x86
assembly language in the context of the Linux operating system and the C language. The
book’s step-by-step, one-concept-at-a-time coverage will help any hardware programmer
move to Linux, and master essential skills for Linux device driver development. You won’t

W just learn new x86 assembly language skills: you’ll also gain powerful "under the hood"
Wﬁm insight into how Linux works. Bonus CD-ROM includes edlinas, the #1 Linux-based x86

interactive assembler development simulator! This is Linux x86 assembly language
programming, from start to finish:

Place-holding numeration
Logic circuits
Computation

The four-field format
Machine language
Memory

The stack

Linux user programs
NASM

DOS programs
Interrupts

Bit manipulations
Device drivers

And more...

Linux Assembly Language Programming

© 2000 by Prentice-Hall
Published by Prentice Hall PTR
Prentice-Hall, Inc.

Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and
resale.

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
Corporate Sales Department, Phone: 800-382-3419; Fax: 201-236-7141; E-mail: corpsales@prenhall.com;
or write: Prentice Hall PTR, Corp. Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

All products or services mentioned in this book are the trademarks or service marks of their respective
companies or organizations. Screen shots reprinted by permission from Microsoft Corporation.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America
10987654321
Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Asia Pte. Ltd.
Editora Prentice-Hall do Brasil, Ltda.,Rio de Janeiro
Credits

Editorial/production supervision:

Vincent Janoski

Acquisitions editor:

Miles Williams

Marketing manager:

Kate Hargett

Manufacturing manager:

Alexis Heydt

Cover design director:
Jerry Votta

Cover designer:

Nina Scuderi

This book is dedicated to all imprisoned Plowshares activists for attempting to do with iron what also needs
to be done with silicon.

Linux Assembly Language Programming

PREFACE

1. INTRODUCTION
1.1 The Fetch-Execute Cycle
1.2 The Linux Operating System
1.3 The Gnu C Compiler
1.4 The Edlinas Assembler
1.5 NASM
1.6 Other Assemblers

2. PLACEHOLDING NUMERATION
2.1 The Decimal and Pentimal Systems
2.2 Pentimal Arithmetic
2.3 Conversion to Pentimal
2.4 The Binary System
2.5 Memory as a Rectangle of Bits
2.6 The Hexadecimal System
2.7 Base Distinguishing Notations
2.8 * Fractions in Other Bases
2.9 * Converting Fractions

3. LOGIC CIRCUITS AND COMPUTATION
3.1 The NOT Gate
3.2 Boolean Operators
3.3 Logic Gates
3.4 Addition Circuits
3.5 Sequential Circuits
3.6 Negative Number Representation
3.7 Subtraction Using Negation
3.8 * Placeholding Two's Complement
3.9 Memory Circuits
3.10 x86 General Registers and their Ancestry
3.11 The MOV Command
3.12 Addition and Subtraction Commands
3.13 * Multiplication and Division Commands

4. ASSEMBLY LANGUAGE
4.1 The Four Field Format
4.2 Computers from the CPU Standpoint
4.3 Simple Assembly Language Programs
4.4 Assembler Programs with Jumps
4.5 Assembler Programs with Loops
4.6 Signed Comparisons
4.7 Unsigned Comparisons
4.8 Linux .s files

5. MACHINE LANGUAGE
5.1 Assembling Simple Programs
5.2 Opcode Space
5.3 The ModRM Byte
5.4 386 Space (OF +...)

5.5 32-Bit vs. 16-Bit Code
5.6 The 8-Bit Registers
5.7 Linux .0 Files

6. MEMORY
6.1 4-Byte Data Width
6.2 Addresses in Brackets
6.3 Operand Size Ambiguity
6.4 Labels
6.5 Immediate Storage

7. THE STACK
7.1 Push and Pop Operations
7.2 Subprograms
7.3 Parameter Passing
7.4 Recursion

8. LINUX USER PROGRAMS

8.1 Multitasking

8.2 Paging
8.3 Address Translation

8.4 Program Segments

8.5 Other Data Segments

8.6 1/0 Protection

8.7 Executable Files in ELF Format
8.8 Object Files in ELF Format

9. INTERRUPTS
9.1 Polling
9.2 External Interrupts
9.3 ISA Architecture
9.4 Internal and Software Interrupts
9.5 System Calls
9.6 Privilege Levels
9.7 Control Transfer

9.8 Scheduling

10. BIT MANIPULATIONS
10.1 Bitwise Logic Operations
10.2 The AND, OR, NOT, and XOR Commands
10.3 Bit Setting and Testing
10.4 Shift Instructions

11. DEVICE DRIVERS
11.1 Device-Independent Files
11.2 Devices as Files
11.3 Morse Code Speaker Driver
11.4 Serial Port Digitizer Driver

12. DOS PROGRAMS
12.1 Real Mode Segmentation
12.2 Edlinas Environment Variables
12.3 Fixed Memory Areas
12.4 Real Mode Interrupts
12.5 Checking DOS Memory

13. LINUX BOOT TIME PROGRAMS
13.1 Changing to Protected Mode
13.2 Protected Mode Segmentation
13.3 Setting Up the Global Descriptor Table

13.4 Closing

PREFACE

Assembly language is language which gives the programmer direct control over the computer. That is what
appeals to people about assembly language. It is like using a stick shift. Programming with other languages,
high-level languages, is like using an automatic.

Many people who use computers simply run programs. To them a program is a canned software package.
People who like to write programs like to be able to shape the behavior of the machine the way metalsmiths
shape metal into useful mechanical tools. Amongst all the programs on a computer, there is one program
which runs the machine: the operating system. It controls everything. It offers "services" to the other
programs. Most operating systems force programmers to leave their programming skills behind as they
approach the operating system and to use it as they would a canned software package. That is because its
source code is a secret. Linux portends the end of secret code in computing. Because the Linux source code
and a compiler for it are right there on the computer along with the other source code, it allows programmers
to work with the operating system as they do with programs they have written.

Operating systems were once written by programmers employed by computer manufacturers. Revolutions in
hardware produced corresponding revolutions in the software. When Linus Torvalds rewrote Linux so that it
would run on the Alpha architecture, his goal was not to increase its hardware base from one platform to
two, but to make Linux platform-independent. The subsequent ports of Linux, to everything from a Sparc to
a PowerPC, demonstrate the success of his rewrite. The chief value of it is that it provides us with
confidence that Linux is here to stay. We don't have to fear a PowerPC revolution coming along and forcing
us to dump all of our old software.

Assembly code, on the other hand, is intrinsically platform-dependent and is justifiably regarded with
caution for just this reason. It will have to be redone when the next hardware revolution takes place.
Furthermore, people who compare the machine language of the 386 with other machine languages, both real
and ideal, inevitably end up regarding the 386 language as a historical accident. On the other hand, the
genetic code is sometimes referred to as a frozen accident. The term is based on the idea that the genetic
code ceased its evolution when the number of proteins whose code would be "broken" by a mutation in the
genetic code became so large that such mutations became lethal, and so the code became fixed. It remains to
be seen whether 386 machine code has been "frozen" into place by the size of its software base. The threat
of a PowerPC revolution has passed. On the other hand, many Linux enthusiasts anticipate an Alpha
revolution.

But the Alpha revolution has not happened and it may not happen. The 386 language has been around for a
long time. With many RISC machines now emulating the 386 architecture, isn't it time to consider
programming in 386 assembly language? Assembly language is more work but it has its advantages. A very
nice feature of assembly language code, which it shares with Linux itself incidentally, is that from a crass
performance standpoint, it functions beautifully. Relying on compilers to produce good code is usually
justifiable as a time saving measure. But to get the best possible code, there is still no better option than to
use assembly language. When high-level languages were still a novelty and referred to as automatic
programming, many programmers were greatly offended by them. They were convinced that no compiler
program could write code as well as they could. They were right of course. Compilers produce cheaper code
but not better code. To get the full measure of speed and grace that a machine is capable of, there is no
substitute for assembly language.

Furthermore, even if the Alpha revolution arrives on schedule tomorrow, there will remain in the world
millions of processors running a 386 language, which work beautifully and need to be put to a socially
responsible use.

Computers can be programmed to report on our buying habits or to send off nuclear missiles. But they can
also be programmed to communicate with privacy or to support medical research. As siliconsmiths, our job
is to shape the behavior of the machine towards a human agenda.

This book assumes that the reader has some knowledge of C, but it makes no other assumptions.

Starred sections of the book are not needed subsequently and may be skipped when they are not of intrinsic
interest.

I owe thanks to Dave Felter for writing a partial simulator of the 8080. This simulator got me started writing
Edlinas.

I owe thanks to Bruce Grant, Itzick Vatnick, and Kate L.'Armand for working with me on the scalex device
driver.

I owe thanks to the many students who have found errors in earlier drafts of this book. I owe special thanks
to Joe Bissell, Scott Hawkins, Jason Kroll, Nancy Yoshimura, and Joanne Yurchak for their careful,
detailed, and thoughtful crititism. Many errors undoubtedly remain. To those readers who notify me of them
at neveln(@cs.widener.edu I shall be grateful.

Linux-Driven Serial Port Input Device

Chapter 1. INTRODUCTION

In this chapter some necessary tools and background ideas are reviewed.

1.1 The Fetch-Execute Cycle

One of the earliest electronic computers was the ENIAC. When it was first built it could not store programs.
Each new computation required moving plugs and jumper cables. Now, however, nearly all computers store
programs. For these computers, doing a computation means running a program. The place where the
program is stored is called memory. The part of the machine which does the computation is called the
processor. Computer programs generally take the form of a list of instructions. Computation is performed by
the processor using the fetch-execute cycle. The fetch-execute cycle consists of a repeated process that
includes these steps:

Step 1.

The processor fetches an instruction from memory.
Step 2.

The processor executes the instruction.

Step 3.

The processor cycles back to step 1.

Computers based on the fetch-execute cycle are sometimes called Von Neumann computers. Von Neumann
was a well-known mathematician who was also an early computer theorist.

Probably the most important examples of computers which are not based on the fetch-execute cycle are
DNA computers and quantum computers. Of course it may be that these computers will reach a point in
their development when they are ready to leave university laboratories and that by that time, they too will
run stored programs.

Figure 1-1. A Stored Program Computer

Processor Memory

1.2 The Linux Operating System

Most computers do not simply run one program at a time. They run a program running program called an
operating system. It interacts with the user and manages hardware devices such as the disk drives and
printers, and runs other programs. The earliest operating systems were written by computer vendors. Each
computer had its own operating system. The first vendor-independent operating system was the Unix
operating system. It was developed by a handful of researchers at Bell Labs.

AT&T, the principal owner of Bell Labs, soon made Unix available for a nominal fee to academic
institutions, which in turn developed Unix further. This generous behavior on the part of AT&T may have
been influenced by a consent decree entered in 1956, which restricted commercial activity on the part of
AT&T beyond "furnishing common carrier communications services." This decree was the result of a
complaint in 1949 by the Justice Department against Western Electric and AT&T, claiming that they were
trying to leverage their telephone monopoly into other sectors.

The version of Unix developed at the University of California at Berkeley became very widely used. It was
designed to be portable, i.e., easy to transfer from one type of computer to another. It is known as Berkeley
Unix or BSD Unix, (Berkeley Software Division).

Linux is a non-proprietary variant of Unix, which was created by Linus Torvalds on a 386-based computer
and subsequently developed by an online community of users. Although several non-PC versions of Linux
exist, most existing installations of Linux are on Intel-compatible hardware.

Many users of Linux have Linux installed along with another operating system. Having separate disk
partitions for Linux and Windows/DOS is common.

1.3 The Gnu C Compiler

The portability of the Unix operating system was partly a consequence of the fact that by 1973 it had been
rewritten in a high-level language, C. The C language was in turn designed to be a portable language.

The first nonproprietary version of C was developed by Richard Stallman of the Free Software Foundation.
Its name, gnu, which stands for "Gnu's Not Unix," proclaims its escape from proprietary copyright
restrictions. The gnu C compiler is widely used, not only because it's free, but because it has set a standard
for reliability. The Linux operating system depends heavily on the gnu C compiler.

A compiler is a program which translates a program such as a C language program into a machine code
program that can be stored in a computer's memory and run. A program that can be stored in memory and
run is called an executable file or sometimes just an executable.

The gnu C compiler works in stages. See Figure 1-2. To compile a program such as prog.c with the gnu
compiler, one can enter the command

Figure 1-2. Stages of Gnu C Compilation

Source Translation Assembly Object Executable
Code Unit Code Code File

Preprocess

gee -E ——

gcc =5
gcc -c
gcc

linuxbox$ gcc prog.c

This command takes the translation through all the stages and produces an executable file called a.out. To
stop at an earlier stage, one can add a switch to the gcc command line. For example, to produce an assembly
code file, the "-s" switch (upper case) is used. Entering the command

linuxbox$ gcc -S prog.c

yields an assembly language file, prog.s. To finish the compilation, the gcc command may be used on
the .s file

linuxbox$ gcc prog.s

1.4 The Edlinas Assembler

The assembly language in the . s files produced by the gnu compiler is different from the widely used Intel
assembly language for the x86 processors. Edlinas assembly language is essentially the Intel assembly
language. Its object code files run under x86 Linux. Edlinas is an interactive environment consisting of an
editor, an assembler, and a simulator.

1.4.1 Editing

Source code editing uses commands borrowed from EDLIN, a DOS editor. Among the commands are i for
insert, d for delete, ¢ for change, e for exit, q for quit, and h for help. Commands affect the current line,
which is the line that has the asterisk, *. The asterisk is moved using the arrow keys. Entered lines are
checked by the assembler for syntax errors.

1.4.2 Assembling

Code is assembled as it is entered or loaded. Assembly code appears in the default window on the right side
of the screen. Assembled code can be saved at any time using the 0 command.

1.4.3 Interpreting

Code can be executed either from a loaded program or from a command prompt below.

To step through lines of code, the space bar is used. The line about to be executed is displayed in yellow. It
is the line pointed at by the instruction pointer. The enter key resets the instruction pointer to the current
line. Instructions can therefore be executed in any order by moving the asterisk around.

The escape key brings up a cursor at the command prompt below. Commands here are executed
immediately. An empty command exits the command line.

To observe the effects of code execution, various areas of the machine may be brought into view in the right
panel of the screen. The different choices for the contents of the right panel can be cycled through using the
tab key.

The layout of the Edlinas screen, which is adapted from that of an 8080 simulator written by Dave Felter, is
shown in Figure 1-3.

Figure 1-3. The Edlinas Screen

(386) Edlinas 1.0

Registers | Source Code | Memory

User Interaction

Edlinas is a DOS program, EDL.EXE.
1.4.4 Dosemu

The Edlinas assembler is a DOS program. If you have a machine which has a DOS partition, the simplest
way of getting to DOS is by rebooting. But it is not necessarily the most convenient. Further, your machine
may not have a DOS partition. The dosemu program makes it possible to run DOS programs from Linux. It
is available from www.dosemu.org.

To run Edlinas, the s graphics variable in dosemu.conf should be set to (1).
1.5 NASM

The Netwide Assembler, or NASM, is an open source assembler that runs under Linux as well as DOS. Its
use is increasing and has much to recommend it. In particular due to its widespread use, it has been exposed
to a very thorough debugging. It also accepts a broader vocabulary of assembly language instructions than
does Edlinas. Most of the programs in this book may be assembled using either assembler. Edlinas can be
used to step through the example programs in the text, but for the bigger programs such as the interrupt
handler in chapter 11, NASM is definitely the better choice. NASM is an industrial-strength assembler.

To unpack the distribution, which comes with this book, use the command

linuxbox$ unzip -al nasm097s.zip

after copying it to a suitable directory. To build it, you can then copy the appropriate makefile

linuxbox$: cp makefile.unx Makefile
and run
linuxbox$: make

1.6 Other Assemblers

MASM and Turbo-Assembler are assemblers that have been very widely used in connection with DOS. The
fact that Windows is not so easy to work with using assembly language has led to a decrease in the
popularity of these assemblers. Many people have the impression that Linux is not particularly assembler-
friendly either. This impression is partly based on the view of assembly language that you get working with
gcc. Those accustomed to Intel syntax may understandably find the AT&T syntax awkward. Worse, when
assembly language instructions are inserted into C code, the quotation marks required by gcc and the line-
jumbling that occurs are pretty repellent. I hope that by chapter 7, readers will be persuaded that interacting
with Linux using assembly language can be clean and neat.

There are a few other assemblers around. A brief discussion of them can be found in an Assembly-HOWTO
at the Linux Documentation Project's Website, www.linuxdoc.org/HOWTO.

Further Reading
Open Sources,Voices from the Open Source Revolution ChrisDiBona et. al., O'Reilly: 1999.

A Quarter Century of Unix, PeterSalus, Addison-Wesley: 1994.

Chapter 2. PLACEHOLDING NUMERATION

The ENIAC did not use the binary system. Its arithmetic processor used vacuum tubes wired together into
rings, which worked like old desktop adding machine wheels. These were base ten contraptions. Since then,
however, all electronic computers have done their arithmetic using the binary system (base two).
Consequently, descriptions of computer arithmetic are customarily expressed using the binary system or
related systems such as hexadecimal (base sixteen) or octal (base eight). An understanding of these number
systems is essential. Readers already familiar with them may prefer to skip this chapter.

2.1 The Decimal and Pentimal Systems

Before the invention of placeholding decimal notation in the East, probably in India or China, systems of
notation built around powers of ten, which were not placeholding systems, were common. The system used
by Archimedes, for example, is shown in Table 2.1. In this system, SPA represents the number /7. Greek
letters of course, not Latin letters, were used. The most apparent disadvantage of this kind of system is
computational. The notation is no help at all in seeing that

Table 2.1. Non-Placeholding Decimal System

A 1 J 10 S 100
B 2 K 20 T 200
C 3 L 30 U 300
D 4 M 40 \Y 400
E 5 N 50 \% 500
F 6 0 60

G 7 P 70

I R 90
B+C=E

K+L=N and

T+U=W

and all represent essentially the same basic fact. But this is only a problem when notations themselves are
used to do calculations (as we do with pencil and paper). When calculations are done with physical tokens,
such as beads on an abacus or with pebbles, this is no longer a problem. In fact, this kind of notation may
have served to prevent reading errors. Anyone who has received $20.00 when cashing a $200.00 check will
understand this point.

But when the notations themselves are used to do the calculations, it is better to have a notational system
which brings out such basic similarities as the following:

2 + 3 = D
20 + 30 = 50
200 4+ 300 = 500

Placeholding systems do this. Placeholding numerals, sometimes less sympathetically referred to as
"heathen cyphers," were popularized in Europe around the year 1200 by Leonardo of Pisa, also known as
Fibonacci. Fibonacci was presumably relying on a work written in Arabic by al-Khwarizmi (whose name we
see in the word algorithm) around the year 820 in Baghdad. Like all European scholars of the day, Fibonacci
was necessarily versed in Arabic.

All the numeration systems discussed in this book, including the decimal system we use every day, are
placeholding systems. Before proceeding to nondecimal systems, let us consider the role that base ten plays
in the U.S. monetary system.

2.1.1 Purely Decimal Money

The current U.S. monetary system was adopted following the introduction of the metric system in France in
the Revolution of 1789. The purpose of both of these extensions of the decimal system was to simplify
calculations by bringing monetary and measurement units into harmony with the decimal system used to
represent numbers.

To bring the alignment of the monetary and numeral systems into sharp relief, let us imagine a pared down
version of the U.S. monetary system that includes only pennies, dimes, $1 bills, $10 dollar bills, $100 dollar
bills, $1000 dollar bills, and so on.

1 dime
1 dollar bill

10 pennies

10 dimes

100 pennies

10 dollar bills
100 dimes

1000 pennies
and so on

1 ten dollar bill

In this purely decimal monetary system, each denomination except pennies is worth exactly ten times the
next smaller unit. Denominations correspond to place values in the base ten numeration system, and vice
versa. Pennies are ones, dimes are tens, dollars are hundreds, etc.

To carry exact change for any possible transaction in this bare bones monetary system, one would need nine
items of each denomination. For example, to make a purchase whose cost was $56.78, or 5,678 cents, would

require 5 ten dollar bills, 6 dollar bills, 7 dimes, and 8 pennies.

If we actually used this system, our change purses would need to be bulkier than they are. The existence of

nickels, quarters, etc. reduces the amount of change we must carry. To get a less bulky system which was
nonetheless based on simple multiples we could imagine a system based on fives instead of tens.

2.1.2 Pentimal Money

Suppose we imagine a monetary system whose denominations are pennies, nickels, quarters, $1.25 bills,
$6.25 bills, and so on. In this system, the value of each denomination except pennies is exactly five times the
value of the next smaller denomination. Let's call 125 cents a "Big Dollar" and imagine that the currency for
it is a bill with a big "1" on it.

1 nickel = 5 pennies

1 quarter = 5 nickels
= 25 pennies
1 Big Dollar = 5 gquarters
= 25 nickels

= 125 pennies
and so on

To be prepared to carry out any transaction in this system, we would need to carry only four items of each
unit. This would create less bulk in our change purses. But look what would happen to the arithmetic! To
make a purchase of $56.78 would require

one $31.25 bill = $31.25
four $6.25 bills = $25.00
zero $1.25 bills = $0.00
two quarters = $0.50
Zero nickels = $0.00
three pennies = $0.03

= $56.78

This arithmetic is no longer transparently obvious as it is when we have decimal money. This is true despite
the fact that this pentimal monetary system is just as simple as the decimal monetary system. The decimal
monetary system appears to be simpler because it matches our decimal numeration system. However, if we
used a pentimal numeration system as well as pentimal money system, simplicity would return. Every
monetary unit would correspond to a place value in the pentimal numeration system, and vice versa.

2.1.3 Pentimal Numerals

The place values in the pentimal numeral system are one, five, twenty-five, one hundred twenty-five, etc.
Each value is worth five of the next smaller.

Any number can be represented using at most four of any one place value. So the digits 5, 6, 7, 8, and 9 are
not used. All numbers are represented using only the numerals 0, 1, 2, 3, and 4.

The pentimal 24 is the same as the ordinary decimal 14. It means 2 fives and 4 ones, like 2 nickels and 4
pennies. Similarly, 124 is the same as 39 in base ten. In cents it means 1 quarter, 2 nickels and 4 pennies.

Counting goes like this: 1, 2, 3,4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44,
100, 101, 102, 103, 104, 110, 111, and so on. Using pentimal numeration to describe pentimal money, we
get this table:

1 nickel = 10 pennies (10=five)
1 quarter = 10 nickels
= 100 pennies (100 = twenty-five)

1 Big Dollar 10 quarters
= 100 nickels

= 1000 pennies (1000 = one hundred twenty-five)

2.2 Pentimal Arithmetic

Given a base five arithmetic problem:

423
+ 334

we have a choice of methods. We can convert these numbers into base ten, do the arithmetic, and then
convert back to base five. Or we can do the problem without any conversions using the "native arithmetic."

The first method is easier at first since we are used to base ten. Thinking in terms of monetary units: 423 is
four quarters, two nickels and three pennies, i.e., 113 cents in ordinary base ten. Similarly, 334 is 94 cents in

ordinary base ten. So we can do the addition using ordinary base ten arithmetic:

113
+ 94
207

One hundred thirteen plus 94 is 207, or $2.07. To convert back, start by taking out one big dollar, a dollar
and a quarter, and we have 82 cents left. This is three quarters, one nickel and two pennies. So the answer is

1312.

Table 2.2. Pentimal System Place Values

25s 5s 1s Pentimal Decimal
0 0 1 1 1
0 0 2 2 2
0 0 3 3 3
0 0 4 4 4
0 1 0 10 5
0 1 1 11 6
0 1 2 12 7
0 1 3 13 8
0 1 4 14 9
0 2 0 20 10
0 2 1 21 11
0 2 2 22 12
0 2 3 23 13
0 2 4 24 14
0 3 0 30 15
0 3 1 31 16
0 3 2 32 17
0 3 3 33 18
0 3 4 34 19
0 4 0 40 20
0 4 1 41 21
0 4 2 42 22
0 4 3 43 23
0 4 4 44 24
1 0 0 100 25
1 0 1 101 26
1 0 2 102 27
1 0 3 103 28
1 0 4 104 29

110

30

111

31

112

32

—_ =~
—_ = =]~
WIN[—=]1O

113

33

2.2.1 Native Addition

Using the native arithmetic, however, is easier than this, especially when the numbers get larger. About all

that's necessary to remember is that five of any one unit must be carried by converting it to one of the next
larger unit:

423
+ 334

The ones (or pennies) column totals seven, which is 12, which is 2 carry 1:

1
423
+ 334
2

1 +2 + 3 is six, which is 11, which is 1 carry 1:

1
423
+ 334
12

And 1 +4 + 3 is eight, which is 13, which is 3 carry 1:

423
+ 334
1312

Clearly, the native arithmetic is easier once we understand it.
2.2.2 Native Subtraction

Subtraction requires borrowing, for example, converting a quarter to five nickels or a nickel to five pennie
The following subtraction of three from ten illustrates borrowing:

20
=3

Borrow a nickel from the nickels column and convert it into five pennies:

S.

10 (five pennies)
1 (one nickel)

L]

b2 ‘

One nickel is left:

10 (five pennies)
1 (one nickel)
-3

12
So we get one nickel and two pennies left.
2.3 Conversion to Pentimal

Sometimes conversions are unavoidable. For a computer to be able to store a number in binary which is
input in decimal, a conversion is needed. Although conversions can be done by searching for a
representation which works, there are more efficient methods. Consider the conversion of 207 into base five.
To understand this conversion, it may help to look at the answer before we start:

1312=1-5°+3-52+1-5' +2.5°
We can see that 5 can be factored out of this sum, except for the 2 at the end:
1312=(1-5*+3-5" +1-5%) -5+2

But this just says what the quotient and remainder of 207 divided by 5 are. Notice that the remainder is our
units digit. Furthermore, we can calculate this quotient and remainder using base ten, which is what we have
available when we start this conversion:

41

5)207

205
2 and so our ones digit is 2.

We have in base ten that:

207 =41-56+ 2

where again peeking at the answer shows us that:

41=1:52+3-514+1.5°

The quotient, 41, contains the information needed to get all the other digits. They can be obtained using
more divisions:

8
5041
40

—1 and adjoining this digit gives us 12.

1
58

2
3 which gives us 312.

The last division has a zero quotient:
0

51
0
1 or 1312

The algorithm for conversion consists of repeated division by 5, each remainder yielding a digit of the
answer. It proceeds until a zero quotient is obtained.

2.4 The Binary System

Knowing the binary system is important because the native arithmetic of all existing computer processors is
binary arithmetic.

Binary numbers use only two digits: 0 and 1. All binary numbers are constructed from just these two digits.
Counting goes like this: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111,
10000, 10001, 10010, etc.

The binary system is a placeholding system. Each position except for the ones position stands for a unit
which is twice the value of the next smaller unit. See Table 2.3.

2.4.1 Binary Addition

Suppose we want to add

1101
+ 110

which is thirteen plus six. The first column does not require a carry:

1101
+ 110
1

Neither does the second:

1101
+ 110
11

The third column totals two, which is 10, which is 0 carry 1:

1

1101
+ 110
011
The fourth column also totals two, which is again 0 carry 1:
1101
+ 110
10011
This is exactly how a computer adds thirteen and six. We can check that the result is nineteen.
1 x 16 = 16
0 x 8 = 0
0 x 4 = 0
1 x 2 = 2
1 x 1 = 1
19
Table 2.3. Binary System Place Values
32s 16s 8s 4s 2s 1s Binary Decimal
0 0 0 0 0 1 1 1
0 0 0 0 1 0 10 2
0 0 0 0 1 1 11 3
0 0 0 1 0 0 100 4
0 0 0 1 0 1 101 5
0 0 0 1 1 0 110 6
0 0 0 1 1 1 111 7
0 0 1 0 0 0 1000 8
0 0 1 0 0 1 1001 9
0 0 1 0 1 0 1010 10
0 0 1 0 1 1 1011 11
0 0 1 1 0 0 1100 12
0 0 1 1 0 1 1101 13
0 0 1 1 1 0 1110 14
0 0 1 1 1 1 1111 15
0 1 0 0 0 0 10000 16
0 1 0 0 0 1 10001 17
0 1 0 0 1 0 10010 18
0 1 0 0 1 1 10011 19
0 1 0 1 0 0 10100 20
0 1 0 1 0 1 10101 21
0 1 0 1 1 0 10110 22
0 1 0 1 1 1 10111 23
0 1 1 0 0 0 11000 24
0 1 1 0 0 1 11001 25
0 1 1 0 1 0 11010 26
0 1 1 0 1 1 11011 27
0 1 1 1 0 0 11100 28
0 1 1 1 0 1 11101 29

0 1 1 1 1 0 11110 30
0 1 1 1 1 1 11111 31
1 0 0 0 0 0 100000 32
1 0 0 0 0 1 100001 33

2.4.2 Binary Subtraction

Suppose we want to subtract five from twelve:

1100
- 101

It requires borrowing:

10 (two for the ones column)
1 (one for the twos column)
1000
- 101

Doing the subtraction in the first column yields

10 (two for the ones column)

1 (one for the twos column)
1000
- 101
1

In the two's column we subtract zero from one:

1 (one for the twos column)
1000
- 101

11

The fours column requires another borrowing:

10

1101
- J01

111

This is how to subtract five from twelve in binary. But it is not at all how computers do this arithmetic.
Computers do subtractions using negatives like this:

12 — 5 = 12 + (=5)

Since the method that we learned in school for adding a negative was to convert it to a subtraction, this
might seem to be a distinction without a difference. However, computers use a different representation for
negatives than just sticking a minus sign in front of the number, so there really is a difference.
Representation of negative numbers is discussed in chapter 3, section 3.6.

2.4.3 Conversion to Binary

First, we observe that we can determine whether any binary number is even or odd by examining its ones
digit. For example, 19 is odd and its binary representation ends in a 1.

10011=1-164+0-84+0-441-241-1

Further
10011 = (1-8+0-440-2+1-1)-2+1

So if we are working with nineteen using base ten, we have

19=9-2+1

Suppose we convert 19 to binary. The 1 in the above equation is the units digit of 19's binary form. We got
the 9 by dividing by 2.

9 1
2)19
18
1
Repeating the process and writing down the remainder each time gives us the rest of the digits.

4 11 2 011 1 0011 0 10011
2)9 2)4 2)2 2)1
8 4 2 0
1 0 0 1
The conversion is done by dividing by 2 repeatedly. Each remainder furnishes one binary digit.
2.5 Memory as a Rectangle of Bits
On all electronic computers, main memory is organized as a rectangle of bits. Figure 2-1 shows a tiny six bit

by four bit memory. As shown in the figure, memory is divided widthwise into rows. Each row is called a
word. Transfers of data to and from computer memory are done a word at a time, or in multiples of words.

Figure 2-1. Memory with Six Four-Bit Words

A ddresses Words

0 0111
i | 1100

L 1 1 UU

0000
10060
1111
9 1010

The number of bits in a word is called the word size. The word size of the memory in Figure 2-1 is four bits.
A computer with such a memory would be said to have four-bit words. Each word in this memory holds a
number representable in four binary digits, i.e. a number from 0 through 15. So for example, a processor
requesting the word located at the address 3 would be given the number 8. When designing a chess playing
computer, for example, it might be a good idea to use 64-bit words, one bit for each location on the chess
board.

=~ W Do

Words in computer memory are numbered consecutively, starting from zero. These numbers are called
addresses. In Figure 2-1, the addresses are the integers from 0 through 5. A computer with » words will
have addresses from 0 through n-1. When requesting data transfers into or out from memory, computer
processors use addresses to specify which data words are to be transferred.

The total capacity of a computer memory is the number of words in the memory times the word size, length
times width. The little memory in Figure 2-1 has a capacity of 24 bits. Memory capacity is often measured
in bytes instead of bits. One byte of memory is the same as eight bits.

Computers based on Intel processors use eight-bit words. A warning note is in order here. Because
documentation from Intel and Microsoft use the term word to refer to a 16-bit object, this usage has become
fairly standard. This is unfortunate. It is better to leave the term with its machine-dependent meaning. In any
case, the number of bytes in the memory of an Intel-based machine is the same as the number of addresses.

Because the number of words in a computer memory is typically a large power of two or a small multiple
thereof, several names for these large powers of two have been adapted from the metric system. For
example, 21945 1024 and 1024 is approximately 1000. In the metric system the letter K, from kilo, is used to
stand for 1000. In reference to computer memory, kilo means 1024. Other metric prefixes which have been

adapted are shown in the following table.

Exact Value Symbol Prefix Approximate Value
210 1,024 K| kilo thousand
220 1,048,576 M mega million
230 1,073,741,824 G giga billion
240 1,099,511,627,776 T tera trillion

Large Powers of Two

The use of the approximate equalities in this table makes possible simplified computations involving large

powers of two. For example, the maximum memory capacity of an IBM AT computer is 2% bytes of
memory. To express this amount in more familiar terms, we may break down 224 as follows:

224 _— 94 910 ,, 910
163 1K »x 1K,

This is approximately 16 million bytes. Since 220=1K x 1IK=1 Meg, the exact amount of memory is 16
Megabytes or 16,777,216 bytes.

2.6 The Hexadecimal System

Base sixteen is important because it is easier to read and write than binary, but is nonetheless readily
convertible to and from binary.

Base sixteen is also the first base we have considered which is greater than ten. Instead of putting some
numerals out of work, base sixteen requires the employment of additional numerals. Since numerals are
needed for all numbers less than sixteen this means positions are open for the numbers ten, eleven, twelve,
thirteen, fourteen, and fifteen. It is the custom to fill these positions with the letters A, B, C, D, E, and F.

So in base sixteen, counting goes like this: 1,2, 3,4,5,6,7,8,9,A,B,C,D, E, F, 10, 11, 12, 13, 14, 15, 16,
17,18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, and so on. See Table 2.4.

Table 2.4. Hexadecimal System Place Values

16s 1s Hexadecimal Decimal
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15
10 16
11 17

—_
[\)
—_
o0

—_—
(98]
—_—
\O

—_
N
[\
(=)

—_
9
o
—

—
N
N
\®)

—_
~
N
o8]

—_
o0
[\
N

—
\O
N
(92

,_.
>
D
[N

,_.
o}
[\
N

—_
O
)
0

el Bl Bl B B Y e B Y Y) B Y Y K= =) E=) Kl Kl Rl fel ol Fall o) o) Fal Fal fo) o)

= [l I==1 k= 1= 11 BS1 =N £ PSS 81 11 =9 £=1 el Besd =l Rl ewd o B2 121 B =N O PN 1S TS |

,_
)
)
O

1 E 1E 30
1 F IF 31
2 0 20 32
2 1 21 33

There is value in being able to add and subtract in hex. Debuggers generally display registers in hex. and it
is handy to be able to check the arithmetic being displayed without having to convert back to base ten.

Addition and subtraction are easy to do in hex if we remember that carrying and borrowing are done with
16.

2.6.1 Addition in Hex

To add

47BC
+ AT78

we start with twelve plus eight, which is twenty, which is 14H, which is 4 carry 1:

1
47BC
+ AT78
4

1 plus eleven plus seven is nineteen, which is 13H, which is 3 carry 1:

11
47BC
+ A78

34

1 + 7 + A = eighteen, which is 12H, which is 2 carry 1:

L1l

47BC

+ AT8
234

Finally, 1 +4=5:

L11
47BC
+ AT8
5234

2.6.2 Subtraction in Hex

To subtract

47BC
— A4E

we start by borrowing:

1C
47TA
— A4E

1C — E is twenty-eight minus fourteen, which is fourteen:

1C

4TA
— A4E
E

A — 4 is ten minus four is 6:

1C

47A
— A4E
6E

Again borrowing

171¢

37A
— A4E
6E

17 - A is twenty-three minus ten, which is thirteen or D:

171C
37A

— A4E

D6E

Finally 3-0=3:

171C

37A
— A4E

3D6E

2.6.3 Conversion to Hex

To convert a number into base sixteen, we can divide by 16 as many times as necessary. Suppose we convert
1000 into hexadecimal:

62 8 3 E8 0 3E8
16)1000 16)62 16)3
96 48 0
40 14 3
32
R

To demonstrate the easy convertibility of base two into base sixteen, we again consider the number 1000,
only this time we convert it into base two:

500 0 250 00 125 000 62 1000
2)1000 2)500 2)250 2)125
1000 200 250 124
0 0 0 1
31 01000 15 101000 7 1101000
2)62 2)31 2)15
62 30 14
0 1 1

3 11101000 1 111101000 0 1111101000
oY 2)3 2
6 2 0

1 1 1

The fact that dividing by 2 four times is essentially the same thing as dividing by 16 suggests that four
stages of this conversion must correspond to one stage of hexadecimal conversion. If we group the binary
digits into fours, we do in fact observe this relationship.

11 1110 1000
3 E 8

These lumps of four digits, when treated as individual numbers, 11, 1110, and 1000, give us the
hexadecimal digits 3, E, and 8. This is the base sixteen representation of one thousand. It is clear how to
convert in the other direction as well. The conversion between the two is easy enough that it can be done
without thinking. See Table 2.5. This makes it possible to use hexadecimal as a human readable form of
binary, a kind of highlevel machine language(!). Consider the following two representations of the same
number:

1011 0010 1001 0101 0000 0111 1010 1000 1000
B 2 9 5 0 7 A 8 8

Table 2.5. Hex-Binary Conversion

Binary Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Suppose you had to read one of these to a hardware support person over the phone, or copy it onto a
postcard. Is there any doubt that using hex would be easier and less liable to error?

Computer programs originally consisted of line after line of binary code. There is a bittersweet irony here.
Filling out coding sheets with zeros and ones was a job typically done by women. As a result, many women
got in on the very beginning of the computer programming field.

2.6.4 Why not Octal?

Octal numbers can be converted back and forth from binary in the same way as hex numbers, merely
grouping by threes instead of fours. Octal also has the advantage over hex in that no alphabetic numerals are
needed. However, the increasingly widespread use of the byte as the fundamental unit of memory has led to
a decrease in the importance of octal.

2.7 Base Distinguishing Notations

Since all the digits in decimal are valid in hexadecimal, it is not possible to determine without additional
information whether numeration, such as "50," is intended as decimal or hex. A common convention for
indicating hexadecimal is the use of an appended H. When this convention is used, '50' just means fifty; but
'S0H' means fifty in hex, i.e., eighty. Occasionally, particularly with assemblers, B and D are appended to
indicate binary and decimal. Appending O for octal would obviously not be a good idea. In the C language,
octal is indicated by prepending a 0 and hexadecimal is indicated by prepending a 0x. This book places
primary reliance on decimal, hexadecimal, and binary numeration. To distinguish these bases, the following
conventions will be used:

e Hexadecimal, except in C programs, will always be indicated by an appended H. (In addition, because
of a problem discussed in section 3.11, hex numeration used in the assembly language will also have a
prepended 0.)

e Binary will be indicated by grouping digits into clumps of four, separated by spaces.

e Base ten numeration is the default. It is assumed for all numeration whose base is not otherwise
indicated.

2.8 * Fractions in Other Bases

Much computation involving fractions is done using scientific notation. Because scientific notation involves
both decimal fractions and explicit powers of ten, it allows for freedom in the location of the decimal point.
For example:

2345.6789 x 102 = 23.456789 x 104

Consequently scientific notation is sometimes referred to as floating point notation. The floating point
property of the representation is a result of the fact that all parts of the representation, including the
fractional part, use powers of ten. In order to take advantage of the floating point property in computer
computations which use the binary system, all fractions and explicit powers must be binary instead of
decimal.

Nondecimal placeholding fractions were used by the Babylonians and persist today in our time and angle
unit systems, where we see minutes and seconds as base 60 fractions.

Decimal fractions of course are our everyday standard. For example:

B 1.{%}1 ..;.2.{%0.}2 +5.{.1.1.§]3 = 125 _ 1

We find this base ten fraction using long division,

125
8)1.000
8
20
16
40
40
0

Suppose we want to find one-eighth as a pentimal fraction. We can use long division in base five using the
pentimal multiplication table where necessary. (The pentimal representation of eight is 13).

0303 ... (3 x 3 = 14, which is 4 with 1 to carry)

13)1.0000
14

10
0
100
_44
1

33333... = }

This is a repeating fraction similar to
system is

in the decimal system. So one eighth in the pentimal

1‘—3 = .030303030303...

an infinitely repeating fraction. Its meaning represented using ordinary decimal notation is that

L0 (3P 43 (2P+0-(3P+3- (D) +

If we use long division to get the hexadecimal fraction we get a finite representation.

.2 (2-8 = 10 = sixteen)
8J1.0
10

0

1

9. 1

1
This is certainly correct since 16 — 8°. In base two the same division looks like this:

001
1000)1.000

1000
0

This is correct since

=0-(3)'+0-(3)* +1-(5)°

Q=

In early Intel systems, computations based on floating point numbers were done on separate processors such
as the 80387. Since the 486, these floating point units were incorporated into the main processor. In C, a

programmer may send computations to the floating point unit by using a floating point data type such as
double.

2.9 * Converting Fractions

In the previous section we used long division to find a placeholding fraction, given the numerator and
denominator as integers. For example, to find a base two place-holding fraction, we could do long division
in base two. If we are given instead a placeholding fraction in some other base, we can use a multiplicative

process to do the conversion. For example, suppose we are given the decimal fraction .33333333..., and we
wish to convert that into a binary fraction. Let b,,b,,b5,... be the unknown digits in our binary fraction:

.b1b2bs...

If we use the equality

3333333...= by - (1)1 + by - (1)2 + b3 - (1) + ..

[]

we can determine their values as follows. Suppose we double both sides of this equation.
6666666... = by + by - (3)' + bs - {%)z 0

The integer parts of both sides must agree. The integer part of the left side is zero, so b, = 0. Hence we have

our first digit and we also have the equation
6666666... = by - (1)* +b3 - (3)2 +b4- (1) +...

If we double this equation, we get

1.333333... = by + b3 - (1) +ba - (1)% +...

Again the integer parts of both sides must agree, so b, = 1. Subtracting 1 = b, from this equation yields the

equation
333333...=bs - (L) +bg- (A)2 + 05 (3P + ...

Continuing in this way we get by =1,5,=0, b

.01010101...

We have just found a binary fraction from a decimal fraction by multiplying by 2 repeatedly. To find a
pentimal fraction from a decimal fraction, we begin with a similar equation and multiply by 5 repeatedly.

5 =1, b=0, etc. Hence the binary form of .333333 is

By definition, the base five coefficients make this equation true:
3333333... = by « (1)L + by - ()2 + B+ (1)2 +..
Multiplying this equation by 5 yields

1.666666... = by + by - (£)! + b3 - ()% + ...

The integer part of both sides must agree. Hence b, = 1. Subtracting 1 = b, yields:

6666666... = by - (1)* + b3+ (2)2 +ba-(2)% +
Multiplying this equation by 5 yields
3.333333...=by +b3- (})' +bs-(3)% + ...

From this we get b, =3 and

3333333...= bs - (1) + by - (2)2 + b5 - (1)3 +...
Continuing in this way, we get b3 =1, b4 =3, b5 =1, b6 =3, etc. So the pentimal equivalent is .13131313... .

Further Reading

Number Words and Number Symbols: A Cultural History of Numbers, KarlMenninger, Dover Books: 1992.

Chapter 3. LOGIC CIRCUITS AND COMPUTATION

Electronic computers are made of logic circuits. The aim of this chapter is to explain how the basic
computer functions of arithmetic and storage can be done using these circuits. It culminates in a brief
discussion of the App and MOV commands.

The most basic logic circuits are called gates. Gates are controller circuits. The simplest logic gate is the
NOT gate. In the next section, it is shown how a NOT gate can control a flashlight.

3.1 The NOT Gate

The simple flashlight circuit shown, in Figure 3-1, is controlled by the switch at the top, which is shown in
the open position. The negative end of the battery is connected directly to the bulb, but the positive end is

only connected to the bulb by way of the switch. So when the switch is open, current will not flow and the
bulb is off. When the switch is closed, current can flow and the bulb comes on. The control is mechanical.

Figure 3-1. A Simple Flashlight

e

|

Battery Bulb

|

3.1.1 Logic Gate Terminals

A logic gate is a circuit which works like a switch. Figure 3-2 shows a generic logic gate hooked up to a
battery. As shown in the figure, a logic gate has four or more terminals.

Figure 3-2. A Generic Logic Gate

Positive
Power
[] ® Output
A Input] e
Battery _
Negative
— Power
[&

1. Output Terminal. This terminal is switched so that it is connected either to the positive or the
negative power terminal. The switching is done by solid-state electronics imbedded in silicon and
involves no moving parts.

2. Positive Power Terminal. This terminal is always connected to the positive battery or power supply
terminal.

3. Negative Power Terminal. This terminal is always connected to the negative battery or power
supply terminal.

4. Input Terminal. A logic gate has one or more input terminals. These terminals carry the input

signals which determine whether the output terminal is switched to the positive or the negative power
terminal. Different types of logic gates make this determination in different ways.

Logic Value Conventions

Because the two power terminals on the logic gate are always connected to the corresponding terminals on
the battery or power supply, the output terminal always supplies a connection to either the positive or the
negative battery or power supply terminal. For circuits in this book

o A gate terminal connected directly or indirectly to the positive battery or power supply terminal is
described as being "at logic 1."

¢ A gate terminal connected directly or indirectly to the negative battery or power supply terminal is
described as being "at logic 0."

Because the input terminals are generally connected directly or indirectly to the battery or power supply
terminals just like output terminals, they can also be described as being at logic 1 or at logic 0. The fact that
the input terminals are designed to be at logic 1 or logic 0 has as a further consequence that the output of one
logic gate can be connected to the input of another with predictable results.

3.1.2 Behavior of the NOT Gate

The NOT gate is a logic gate which has one input terminal. To describe the behavior of the NOT gate, all
that is needed is to describe how its input determines its output. The rules are:

o Ifthe input is at logic 1, the output is at logic 0.
o If the input is at logic 0, the output is at logic 1.

We can now put a flashlight together by hooking the output of the NOT gate to a bulb and the input to a
mechanical switch. Figure 3-3 illustrates this hookup. When wires in a diagram are shown crossing at a
black dot, it means that the wires are connected. When wires cross and there is no black dot, it means that
they are not in contact with each other. The flashlight in this figure is ultimately controlled by a mechanical
switch, just like the flashlight in Figure 3-1. When the switch is in the down position as shown in the figure,
the flashlight is on. The down position connects the input terminal of the NOT gate to the negative battery
terminal, which puts it at logic 0. Therefore, because of the way a NOT gate works, the output is at logic 1.
This means that the output terminal is connected internally by the NOT gate to the positive power terminal
and therefore to the positive end of the battery. Hence the bulb gets current and the flashlight is on.

Figure 3-3. A NOT Gate-Controlled Flashlight
+ v | NOT

Battery

3.1.3 Truth Table for the NOT Gate

Logic values make it easy to summarize the behavior of a NOT gate with a small table. Such a table is called
a truth table. Table 3.1 shows the truth table for the NOT gate.

Table 3.1. Truth Table for NOT Gate

Input Output
1 0
0 1

3.1.4 Gate Level Diagrams

A logic circuit diagram which shows the individual logic gates but not their internal make-up is called a gate
level diagram. In a gate level diagram, the power terminals on the logic gates are usually not shown. The
symbol for the NOT gate used in gate level diagrams shows only two terminals, the input and the output:

The wire shown on the left represents the input; the wire on the right is the output.

Figure 3-4 shows the diagram of the NOT gate-controlled flashlight using the schematic symbol. This
diagram can be confusing because the main power connections to the NOT gate are not shown. In this
figure, the only battery connection is at the signaling input to the NOT gate. Although the power
connections are not shown, they must be there or the circuit will not work. Figure 3-4 represents exactly the
same hookup as Figure 3-3.

Figure 3-4. This Flashlight is On!

I_I_‘ @
+ 10

Battery

3.2 Boolean Operators

The NOT gate discussed in the last section is an example of a logic gate. Logic gates are circuits whose
behavior is modeled on Boolean operators.

The most basic Boolean operators are AND, OR, XOR, and NOT. In the C language, we have the symbols
&& for AND, || for OR, and ! for NOT. The workings of these operators can be illustrated with two
examples from C. In these examples,

Table 3.2. Truth Table for OR

(p OR q)

(=) Kol Rl Bl (=]
(=0 Lol k=1 Ly K=

ol—[~|—

the C language statements are evaluated using a step-by-step simplification process.
3.2.1 The OR Operator

The first example is an i f statement involving the Boolean OR operator. In what follows, we suppose that x
has already been given the value 7.

if ((x > 0) |l (x <5)) y=10;

o First the truth values of the operands may be determined. In this case, because (x > 0) is true, it has
the value 1; because (x < 5) is false, it has the value 0. These evaluations result in the following
simplification of the C language statement.

if (1 11 0) y = 10;

e The Boolean OR operator may be applied next. The only thing OR sees is the truth values resulting
from the operand evaluations. OR is given a 1 and a 0, from which it produces a 1.

if(1) y = 10;

e The if can go to work next. All it sees in the parentheses is a 1. Hence it produces the simple
assignment statement

y = 10;

The end result of the process is that y is set to the value 10. Notice that the OR operator never saw the value
of x. It needs only Os and 1s to do its job. Consequently, the workings of the OR operator can be described
in a truth table just like the truth table for the NOT gate. Table 3.2 shows the truth table for the OR operator.
In truth tables for Boolean operators, the letters p and q are often used as variables for the truth values 0 and
1. Variables which have only these two possible values are sometimes called Boolean variables. Notice that
the decision made in the C example could have been inferred from the second line of Table 3.2.

Table 3.3. Truth Table for AND

p q (p AND q)
1 1 1
1 0 0
0 1 0
0 0 0

3.2.2 The AND Operator

The AND operator can also be described with a truth table. See Table 3.3. The next example shows the use
of this table in evaluating a C language statement containing an AND operator.

e Again suppose that x = 7.

if((x > 0) && (x < 5)) z = 20;

o Again the operands have the values 1 and 0.

if(l && 0) z = 20;

e The operation of the AND operator can be referred to the second line of Table 3.3, from which we see
that a O results.

if(0) z = 20;
o The 0 in the parentheses results in a null statement. Nothing happens.

From these examples, it is clear that the job of the Boolean operators is to operate on truth values and
produce a truth value.

3.2.3 Boolean Expressions
Just as operators in C may be nested as in the statement
if(((x > 0) && (x < 5)) || (x =7)) w= 30;

so Boolean operators by themselves may be nested
((p AND q) OR 1)

The resulting expressions are called Boolean expressions. Just as Boolean operators have truth tables, so do
Boolean expressions. The truth table for the expression just shown is given in Table 3.4.

Table 3.4. Truth Table for a Boolean Expression

p q r ((p AND q) OR 1)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

3.3 Logic Gates

Table 3.5 shows the truth table for the Boolean NOT operator. It is very similar to the truth table for the
NOT gate shown in Table 3.1. If we think of p as the input and (NOT p) as the output, there is in fact no
difference. One should even think of the NOT gate as a silicon implementation of the NOT operator. The
Boolean operators AND, OR, and XOR are also implemented in silicon.

Table 3.5. Truth Table for NOT

p (NOT p)

—_—

0

0 1

3.3.1 The OR Gate

The OR gate is a circuit with two input terminals. It is represented in gate level diagrams with the symbol

N N
L

Table 3.6. Truth Table for XOR

p q (p XOR q)
1 1

1 0 1

0 1 1

0 0 0

The inputs are shown on the left. The output is on the right. From Table 3.2, we may infer that
¢ If both input terminals are at logic 0, then the output terminal will be at logic 0.
o [f either input terminal is at logic 1, then the output terminal will be at logic 1.

In the following circuit, for example, unless the logic values applied to all of the Filter inputs are equal to 0,
the output will be at logic 1. If a logic 0 is applied to each of the Filter inputs, then the output logic value
will be the same as the input logic value. In this case, one can think of the input signal as having passed
through the gates. Note that the gate analogy makes sense in terms of the propogation of a signal, not the
propagation of a voltage. A logic 1 applied to any of the Filter inputs guarantees that the output will be at
logic 1, but this should be thought of as the closing of the gate. A change in the input will not make it
through to the output. The circuit does not allow signals to pass. Hence it makes sense to think of these OR
gates as closed when a regulatory input is at logic 1.

Input j : [B ,_D_ Output
Filter Filter Filter

#1 #2 #3

3.3.2 The AND Gate

The AND gate is also a two-input gate. Its symbol is

J

From Table 3.3 we may infer that

e If both input terminals are at logic 1, then the output terminal will be at logic 1.

e If either input terminal is at logic 0, then the output terminal will be at logic 0.

In the following circuit, the logic values applied to all the Filter inputs must equal 1; otherwise the output
will be at logic 0. If a logic 1 is applied to each of the Filter inputs, then the input logic value passes through
the gates and becomes the output value.

Input D_, D_, j Output
| Filter];i;r lﬂr

#1) #3

3.3.3 Boolean Circuits

AND, OR, and NOT logic gates can be used to build up a great variety of logic circuits. For any Boolean
expression, there is a corresponding circuit. For example, corresponding to the Boolean expression

((p AND q) OR 1)

one can construct the circuit
Ir D

The truth table for this circuit is the same as the truth table of the Boolean expression it comes from. It is
given in Table 3.4.

The truth table for the Boolean operator XOR is shown in Table 3.6. One can find a Boolean expression for
XOR by using the lines of its truth table that have a logic 1 output. Using the table, we find two such lines,
one where p =1 and q = 0 and one where p =0 and q = 1. These are the lines for which the expressions (p
AND (NOT q)) and (NOT p) AND q) are true. Hence the expression

((p AND (NOT q)) OR ((NOT p) AND q))

has the same truth table as XOR and may be used to construct a circuit for XOR

st
p Do—ﬂ

q * |/

The Boolean expression ((p OR q) AND (NOT (p AND q))) also has the same truth table. Therefore the
logic circuit which corresponds to this expression also works as an XOR circuit. That circuit looks like this:

)

] >)

.

The standard symbol for XOR is

XOR may be implemented using any circuit which has the correct truth table, including the two just shown.
3.3.4 Propagation Delay

Some essential features of logic circuit behavior are left out of any description based only on Boolean
expressions and truth tables. One such feature is the propagation delay, the time required for a change in an
input signal to cause a change in the output. The propagation delay of a gate used in a 100 MHz processor,

for example, must be less than 10 nanoseconds. This is because 100 MHz means 100 million cycles per
1

second (cps). So the length of each processing cycle is 108,000,000 gecond, which is the same as
10

1,000,000,000 gecond or 10 nanoseconds.

Frequency Cycle Length
1 Hz 1 cps s 1 sec
1 kHz 1,000 cps 1 ms lé—nﬂ sec
1 MHz 1,000,000 cps 1 ps 'im{"}"f%mﬂ[}ﬁ sec
1 GHz 1,000,000,000 cps 1 ns rﬁm geC

Considering that the execution of one processing cycle might require a signal to pass through, say, five such
gates in succession, the limit could drop to 2 nanoseconds or less. Reducing this time delay is one of the
main goals in current fabrication technology. The less the propagation delay, the faster the clock speed at
which a circuit can be run.

Also important is the amount of power dissipated. When many circuits are packed together on a chip, the
temperature may increase to unacceptable levels unless the power dissipated by each circuit is reduced to a
very low level. Reducing power dissipation is another primary goal of processor design.

The architecture point of view leaves these problems out of the picture. From that standpoint, all we need to

know about a Boolean circuit is contained in its truth table. The architecture point of view is more often
suitable in computer science than in electrical engineering.

3.4 Addition Circuits

This section shows how addition is done using logic circuits.

Consider the addition of 13 and 6 again and observe that in each column, we have two digits to add along
with a carry digit from the preceding column.

1{0{0
1jfo1 13

+1l10 6
11 3

An addition circuit which can do the work involved in one column of such an addition is called a full adder.
It produces the sum of the two digits in that column and a carry digit from the previous column. It also
produces an output carry digit. The addition of 13 and 6 as shown requires the use of four full adder circuits.
Because the binary system is being used, the Boolean truth values 0 and 1 may be used as binary digits.
Table 3.7 shows the truth table for a full adder circuit. It is not hard to construct a full adder. The Output
Sum circuit can be built from two XOR circuits. The Output Carry circuit can be built from three ANDs and
two ORs. See Figure 3-5. A full adder has three inputs and two outputs, which together function as one
column of an adding machine.

Input

Input

Figure 3-5. Full Adder Circuit

Input

Digit #1 Digit #2 Carry

Output Carry

;]D—Di Output Sum
)
L

| S

Table 3.7. Truth Table for a Full Adder

Input Digit #1 Input Digit #2 Input Carry Output Sum Output Carry
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Input Input
Digit #1 Digit #2

S

| Full
Qutput Carry =—— Adder +«— Input Carry

l ol

Output Sum

A circuit which adds four-digit binary numbers requires four full adders ganged together.

i | i 0 1
l 0 l 1 l 1 J 0
} }] |
Full | 1 [Full | o [Full | ¢ [Full
1 +— Adder | Adder [Adder [~ Adder [0
} } } !
0 0 1 1

This is what the adding circuits in a four-bit processor look like. Shown here is the same calculation of
thirteen plus six illustrated at the beginning of this section. In binary, that is 1101 plus 0110. The resulting
total is 0011. There is also an output carry value of 1. The input carry is not used here. Surprisingly enough,
there is a need for it however. We will see what that is in section 3.7.

It is one of the characteristics of a four-bit processor that it adds binary numbers four bits at a time.

A computer with a four-bit processor would not be limited to small number arithmetic, but its software
would need to break large numbers down into numbers no bigger than 16.

3.5 Sequential Circuits

In all the circuits shown so far, the output is determined by the inputs. By using the truth tables of the
component gates, one can construct a truth table for the whole circuit. It might seem that this should be the
case with all logic circuits. However, if an output is fed back around to an input, then a vicious circle is
introduced into the process of determining the truth table. Circuits with feedback loops are called sequential
circuits.

Circuits without feedback loops are not capable of storing logic values. The output of a Boolean circuit is a
function of its inputs, its present inputs. That means, for example, if you tried to use a Boolean circuit as a
memory, then no matter what you decided upon as the memory fetch command, this input would always
produce the same output, namely the output specified by the truth table, so it would not be a true memory
fetch. The output from a true memory fetch would depend upon what was stored at some time in the past.

Sequential circuits are important because they can store logic values.
3.5.1 A Flip-flop

Figure 3-6 shows an example of a circuit called a flip-flop. The S in the figure stands for set and the R stands
for reset. The output of this circuit may be set if S =1 and R = 0. In this case, the AND gate fed by the R
input is forced to output a 0. Hence both inputs on the other AND gate are 1. Hence its output is 1 and the
final output is 1.

Figure 3-6. Flip flop

Input S

Output
Input R) I>

If S =0 and R = 1, the situation is just reversed and the final output is 0.

However, if S=1 and R = 1, the output is not determined by the truth tables. The feedback loops make that
impossible. It turns out, however, that if the S = R = 1 state was entered from either the set or the reset state,
then the final output is left alone. It does not change.

3.5.2 A Latch

Figure 3-7 shows an example of a circuit called a /atch. This circuit stores one bit. It is called a latch because
it "latches onto" a value.

Figure 3-7. Latch

Input Dc
Freeze/
Copy#
Do) Qutput

The Freeze/Copy# label in this figure uses the Intel # convention that when a signal is labeled with a
meaningful word, then the meaning truthfully applies when the line is at logic 1, unless the label has a #
appended, and then the opposite is the case. So the Freeze/Copy# label tells us that logic 1 means Freeze and
logic 0 means Copy.

e When the Freeze/Copy# line is zero, the OR gates are opened and the circuit is turned into a flip-flop,
where the input is either set or reset. The NOT gate makes the S and R inputs opposite to each other.

The input value is copied to the output.

e When the Freeze/Copy# line becomes 1, both OR gates are forced to 1 and this freezes the output.
When the output is frozen, subsequent changes in the input have no effect on the circuit. The output
value remains just what it was the last time the Freeze/Copy# line turned from 1 to 0, i.e. the last time
it froze.

That output value is in storage.
3.5.3 Registers
Four latches used together in parallel can store four bits. This is an example of a register. A four-bit register
is a collection of circuits that can store four bits. Different registers in a processor do not have to store the

same number of bits, but it is easier to make things work when they do. The number of bits in a "typical"
register is one of the attributes of a processor which determines whether it is called a four-bit processor, an

eight-bit processor, or whatever.

The contents of a four-bit register are very naturally specified using a four-digit binary number. The four-
digit binary numbers are the integers from 0 through 15. An eight-bit register holds an integer from 0
through 127.

We see that the most natural way of specifying the contents of a register leaves no room for negative
numbers. The representation of negative numbers will be discussed in the next section.

3.5.4 Bit Significance

Because binary numbers are used to describe the contents of registers and memory locations, the numerical
concept of a significant digit is useful in singling out individual bits of a specific storage location. For
example, if a four-bit register holds the binary number 1100, then the four digits in order of significance are
1, 1, 0, and 0. So the most significant digit is 1, and the least significant digit is 0. The three most significant
digits are 110. The three least significant digits are 100. Sometimes in this text, the most significant bits will
be referred to as the top or upper bits and the least significant as the bottom or lower bits.

3.6 Negative Number Representation
The customary way to represent a negative number is to prepend a minus sign. Putting a - in front of a 3
makes a -3. This method of representing negatives is called signed magnitude representation. It can be
implemented on the computer by allocating one bit of storage for a sign bit. To change the sign of a number
that is stored using signed magnitude representation, one can simply flip the sign bit. Signed magnitude
representation is not generally used for integers on the computer. The reason is that in order to do addition
with signed magnitude representation, you need to do it the way it is taught to youngsters.
3.6.1 Signed Magnitude Addition

To add x and y:

Case I. If x and y are both positive, just add and make your answer positive.

Case II. If x and y are both negative, remove the negative signs, add the numbers, and tack a
minus sign onto the result.

Case III. If x and y have different signs, subtract the smaller magnitude from the larger
magnitude, and if the larger magnitude had a minus sign, then tack this onto the result.

Implementing signed magnitude addition with logic circuits on a chip would be a terrible waste of
transistors.

3.6.2 Easy Addition
The method which is actually used with logic circuits to add x and y works like this:
Pay no attention to whether x and y are positive or negative; just add them!

Such a method would seem to be no method at all. But it works. It works because a special system for
representing negatives is used, and because a register has a finite size, like an odometer.

3.6.3 Odometer Arithmetic
An odometer is an adding machine. It adds up the miles that you drive. Mileage is always considered to have

a positive value. (Would a negative value imply driving backwards, or what?) However, consider the
following equation, which we would ordinarily think of as making sense only for negative numbers.

x + 10 = |

Table 3.8. Odometer Negatives

-1[99,999
-2[99,998
-3[99,997
-4]99,996
-5]99,995
-6[99,994
-7]99,993
-899,992
999,991
-10[99,990
-11]99,989
-12]99,988

etc.|.

The obvious solution is x = -5. However, there is an odometer interpretation of this equation as well.
Suppose you drive 10 miles in your car and the odometer reads 5 when you finish, then what did it read
when you began? It must have read 99,995. Similarly if you have a car whose odometer reads 10 miles and
you drive it 99,995 miles (!) then the odometer should read 5 miles when you finish. The point here is that
99,995 acts just like -5 when added on the odometer. Table 3.8 shows what odometer negatives look like.
Notice that to get the number that works as the negative of a number x, you subtract x from 100,000.

Arithmetic on the odometer works this way because the odometer turns over at 100,000 miles. Computer
registers turn over also— but not at 100,000.

3.6.4 Register Arithmetic

A four-bit register turns over at binary 1 0000 = 2%=16. The table of negatives for a four-bit register can
easily be listed completely. See Table 3.9. The only difference between this table and the odometer table is
that 16 is a lot smaller than 100,000. As with the odometer, you can use subtraction instead of the table to
find the number which works as the negative of some number x. In the case of a four-bit register, you
subtract x from 16 instead of from 100,000. Otherwise it is the same.

But in one respect, Table 3.9 is a little alarming. For example, it gives us the fact that 11 works the same as -
5. This means we now have a serious ambiguity. If a four-bit register contains 1011, we cannot tell whether
this actually means 11 or -5. Some convention is needed. The convention that is used is to take the first bit
as a kind of sign bit. When the first bit is 0, the number is positive (or zero). When the first bit is 1, the
number is negative. The resulting system is called the two's complement system. When the two's
complement system is used, the ambiguity is

Table 3.9. Four-Bit Register Negatives (Ambiguous!)

Decimal Binary
-1 15 1111
-2 14 1110
-3 13 1101
-4 12 1100
-5 11 1011
-6 10 1010
-7 9 1001
-8 8 1000

-9 7 0111
-10 6 0110
-11 5 0101
-12 4 0100
-13 3 0011
-14 2 0010
-15 1 0001
Table 3.10. Four-Bit Two's Complement Representation

Decimal Binary
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001

Notice that although the first bit in a two's complement system is a sign bit, it is not just a sign bit. For
example, if we change the sign bit on 1011, we get 0011. This changes -5 to 3, not 5.

3.6.5 Signed vs. Unsigned Numbers

If all arithmetic done on computers were done using two's complement representation, there would never be

any problem interpreting the contents of a numerical register. But unfortunately this is not the case.
Sometimes arithmetic is done and it is assumed that the numbers are represented using the plain binary
system. So when a four-bit register has a 1011 in it, does this mean -5 or 11? If we are using two's

complement, then we know it is -5. But we could be using just plain binary! Then we have 11. Computing
practice is not consistent about this. Both systems are used. It could be either one. It is up to the software to

make the distinction. The terminology signed vs. unsigned is often used. Signed integers are two's
complement integers. Unsigned integers are plain binary integers.

Although when we are adding numbers, it doesn't matter if the numbers are signed or unsigned — the

adding hardware works either way — many other operations require different implementations depending
on whether the operand is intended as a signed or an unsigned number. Consider inequality testing. Suppose
four-bit hardware is asked to determine whether 1011 <0010 is true or not. While 0010 represents 2 in both

the signed and the unsigned systems, 1011 is -5 as a signed number and 11 as an unsigned number. The

signed interpretation, -5 < 2, yields a true, whereas the unsigned interpretation, 11 <2, yields a false. The
hardware must make a different response in the two cases. This means that a single "less than" command
cannot work. Two are needed, one for signed numbers and one for unsigned numbers. This issue comes up

over and over again in assembly language.

In the C language, integers may be declared as unsigned int or as signed int. The unspecified int
declaration means the same as signed int.

3.7 Subtraction Using Negation

This section explains how subtraction may be done using the circuits described so far.
3.7.1 Two's Complementation

Since we have an adder that works with negatives, we should be able to use it to do subtractions, such as 5 -
3, since

5—3=5+4+(-3)

But there is a problem. Converting 3 to -3 is not as easy as just sticking on a minus sign or flipping a bit. If it
were, tables such as Table 3.8 and Table 3.9 would not be necessary. Although we do have a formula which
explains these tables, it is unfortunately based on subtraction. For example, according to the formula for the
four-bit table, to get the negative of 3, you subtract 3 from 16. But since our goal is to find a way to do
subtraction, we appear to be trapped in a vicious circle. The situation is not as bad as it seems, however.
Subtracting 3 from 16 in binary can be done even if we don't know how to subtract and even though the
binary representation of 16 requires one more bit than our four-bit registers can hold. We are saved by two
facts.

1. 16-x=(15-x)+1.

i) 16 — 2 = (15 — z) + 1.
il. Subtracting from 15 can be done by just flipping the bits. Notice what happens when we subtract 3
from 15 in binary.

1111
— 0011
1100

The bits in 0011 are flipped and we get 1100. We have hardware that can flip bits. We can feed each bit into
a NOT gate. Adding 1 then gives the result.

1100
§ . |
1101

The unused input carry on the addition circuit comes into its own here. (See section 3.4.) It's just what's
needed to add 1 to a total. The process of flipping the bits and adding one is called two's complementation. It

subtracts a number from the turnover value. The turnover value for an n-bit two's complement number is 2"
If n = 4, this value is 16.

So we may do 5 - 3 as an addition

0101
+ 1101
0010

or to really see how the computer does it,

1

0101

+ 1100
0010

The final carry bit is ignored. That is how a computer subtracts 3 from 5.

The use of the word complement is justified by the fact that

16—(16—z) =2

Note that this faithfully reflects the fact that

—(—z)==2x

3.7.2 Two's Complementation in Hex

The two's complement process is done by flipping the bits and adding one. If we think of flipping the bits of
a hex digit, we see that this can be done by subtracting from 15. To do the two's complement of a number in

hex then, we can subtract each of its digits from fifteen and then add one. For example, given an eight-bit
number 23H,

FF DC
— 23 and then + 1
DC DD

Hence the two's complement of 23H is DDH. On the other hand if we use the fact that finding the two's
complement is really subtraction from the turnover value, we can just do the subtraction.

100
- 23
DD

3.7.3 Conversions

When debuggers display register contents for us, negatives will be shown to us in hex. Consequently, it is
worthwhile to become handy with two's complement values in hex. Suppose we are shown the 16-bit value
FF42H, and we would like to know what value it represents. First we observe that if we take this to be a
signed number, then it is negative since its first bit is 1 — if the first hex digit is any of the hex digits 8, 9,
A, B, C, D, E, or F, then the first binary digit is 1. To find the corresponding positive number, we can
perform the two's complement in hex.

10000
= F]:‘ 42
BE

And BEH is 11 x 16 + 14 = 190. Consequently, the represented value is -190.

You could also convert everything to binary, take the two's complement, and then convert to decimal. Of
course you could also convert FF42H to decimal and subtract the result from 65,536! Probably working in
hex as much as you can is the easiest.

3.8 * Placeholding Two's Complement

Two's complement can be thought of as a placeholding system. If the place value of the most significant bit
is thought of as standing for the negative of its ordinary binary value, then this yields a place value
interpretation for two's complement numbering. Table 3.11 shows the place values in the four-bit two's
complement system. Using the table, we see that -5 can be expressed as (-8) +2 + 1.

Table 3.11. Four-Bit Two's Complement Place Values

-8s 4s 2s 1s Binary Decimal
1 1 1 1 1111 -1
1 1 1 0 1110 -2
1 1 0 1 1101 -3
1 1 0 0 1100 -4
1 0 1 1 1011 -5
1 0 1 0 1010 -6
1 0 0 1 1001 -7
1 0 0 0 1000 -8
0 1 1 1 0111 7
0 1 1 0 0110 6
0 1 0 1 0101 5
0 1 0 0 0100 4
0 0 1 1 0011 3
0 0 1 0 0010 2
0 0 0 1 0001 1

3.9 Memory Circuits

The latch circuit shown in Figure 3-7 has the property that if a logic 0 is applied to the Freeze/Copy# line,
then the value on the Input propagates through to the Output. On the other hand, if a logic 1 is applied to the
Freeze/Copy# line, then the Output signal is held to whatever value it had at the time of the "freeze." This

value is in storage and the input is ignored.

Data In

Freeze /Copy#

D Latch

Data Out

To see how this circuit might serve as one bit of a memory circuit, imagine many of these circuits arranged
in a rectangle, each row forming a word of memory. Each row would respond to a selection signal picking
that row out from all the other rows in memory. The memory would be required to remain dormant
whenever the selection signal was not present. To use this circuit as one bit of a memory, let us suppose we
have a W/R# control signal and a selection signal, Sel. W stands for write, which means that the processor
wants to write to the memory circuit. R stands for read and means that the processor wants to read from the
memory circuit. All the circuits in the entire memory will be connected to the same W/R# signal, but only
the circuits in the same word are connected to a single Sel signal.

Data In I Ltk Data Out

| e

W/R#

Sel

When Sel is 0, the NOT gate outputs a 1, which freezes the circuit. When Sel is 1 and the W/R# input is 0,
meaning the processor wants to read, then again the circuit remains frozen. When Sel is 1 and the W/R# is 1,
then the NOT gate outputs a 0, which causes the Data In to be stored.

This circuit would work alright except for the fact that the number of Data wires for the entire memory is the
same as the number of bits in one word. For example, this means that the least significant bit of the word
must share its Data Out wire with the corresponding Data Out wire from every other word in memory as
well as with the corresponding Data In wire. The same goes for each of the other bits. A memory with four-
bit words has only four data wires, regardless of how many words it has. To avoid causing massive conflicts,
circuits which have what is called a #ri-state output are used.

3.9.1 Tri-State Outputs

Figure 3-2 shows a generic logic gate. The output of this gate can be switched either to the positive or the
negative power terminal. Because its output has two possible values, it is called a two-state gate. Figure 3-8
shows a generic tri-state logic gate. Its output has three possible values. The output of this gate can be a
logic 1 or a logic 0, but the output can also be switched to a disconnected state so that the output is not
hooked up to anything. This is sometimes referred to as a don't care state and is sometimes denoted by the
letter X. When a logic gate switches to this state, it releases control over its output. If there is conflict on the
horizon, switching to this state is a good way to avoid it. A simple tri-state circuit is the tri-state buffer
whose truth table is given in Table 3.12. The symbol for this circuit is

Figure 3-8. A Tri-State Logic Gate

Positive
Power

[1 — .i Output
o nput e

Battery)
Negative
— Power
‘ @
Table 3.12. Truth Table for Tri-State Buffer
Control Input Output
0 0 X

»—no><

0
1
1

el =1

[

When a tri-state buffer is added to the latch, as shown in Figure 3-9, the data wire can be shared by the input
and the output. The processor, of course, needs a tri-state buffer on its end too. This circuit has only three
external connections. Suppose we represent it as follows as shown in Figure 3-10. Four of these circuits used
in parallel could store four bits, all under the control of the same two signals, W/R# and Sel.

Figure 3-9. A One-Bit Memory Circuit

Data

(Data In) facah (Data Out)
W/R#
Sel

Figure 3-10. One-Bit Memory

D

W/R# — 1obit
Sel —— Mem

D3 D2 D1 DO

1-bit 1-bit 1-bit 1-bit
— Mem — Mem — Mem Mem

W/R#
Sel

Suppose we represent a four-bit memory like this:

D3D2D1D0

W/R#
Sel/ J 4-bit Mem

Figure 3-11 shows a memory consisting of four of these circuits. Two address wires suffice to address this
memory. This memory circuit has four words. Each word holds four bits. The data wires DO, D1, D2, and
D3 are all shared. The address wires A0 and Al control the four different Sel inputs. The address wires select
which of the four Sel wires is selected. The other three will have the value 0. It is not possible to turn on two

at a time.

Figure 3-11. Four-Word Memory. Each Word Holds Four Bits

2-Bit Control 4-Bit,
Address Bus Wire Data Bus
Al AD W/R# D3 D2 D1 DO

4-Bit Mem
Address = 0

.

4-Bit Mem
Dc j Address = 1

4-Bit Mem

T [) Address = 2

|
4-Bit Mem
b——— Address = 3

If we imagine this as the memory of a tiny little computer, then this computer would have a four-bit data
bus, a two-bit address bus, and a one-bit control bus. To fetch an item from memory the processor for this
little computer would put its W/R# pin at logic 0 and a two-bit address on the address bus. This would
activate the Sel signal for exactly one word of memory. If we imagine a fetch-execute cycle in progress, the
processor would need a two-bit register to keep track of the address of the instruction it was executing. All
processors performing the fetch-execute cycle need such a register. It is often called the Program Counter.
In Intel machines, it is called the Instruction Pointer.

Definition of Memory Capacity

Any physical memory is an object or device which is stable in more than one state. Its capacity is the number
of its stable states. Since a computer memory is laid out as a rectangle of objects with two stable states each,
the number of stable states in the memory is 2" where I and w are the length and width of the rectangle. /
is also called the number of words, and w is the width of each word in bits. For convenience, the capacity is
often given (in bits) as just / x w, i.e. the base two logarithm of the number of stable states. The capacity in

bytes, of course, is one eighth of the capacity in bits.
SRAM vs. DRAM

When memory circuits are built out of logic circuits, it is called static memory or SRAM. Memory circuits
can also be made out of capacitors. A charged capacitor represents a stored 1; a discharged capacitor
represents a stored 0. Since fewer transistors are required, these circuits can be packed with greater density
on a chip. Small, closely packed capacitors have the disadvantage that they discharge rapidly. They require
constant rechecking. Every capacitor which is not completely discharged must be pumped back up again.
Because the memory is being constantly "refreshed," it is called dynamic memory, or DRAM. Dynamic
memory is like a bookshelf without the shelf, except that in the case of a book falling four feet, say, to the
floor, you would have .5 seconds to catch it before it hit the floor. These little capacitors discharge in .0001
seconds. The memory refresh must be done approximately every 100 ps. Unlike many developments which
have numerous contributors, dynamic memory was invented by a single person, Ted Hoff, around 1970.
Dynamic memory is cheaper and slower than static memory. Static memory is usually used for cache
memory, while dynamic memory is used for RAM.

One drawback of DRAM is that it makes hardware debugging much more difficult. The simplest way to do
hardware debugging would be to slow the computer's clock way down. Aberrant behavior could then be
observed as it happened. But because of DRAM's rapid refresh requirements, there is no easy way to do this.

3.10 x86 General Registers and their Ancestry

One of the reasons behind the market success of the Intel x86 line of processors has been that each new
processor in the line was designed subject to the requirement that it be compatible with previous processors.
Intel never wiped the slate clean and started from scratch as Motorola and IBM did with the PowerPC chip
and DEC did with the Alpha processor. This minimized the amount of hardware and software retooling
necessitated by an upgrade. Consequently, a description of the x86, and in particular its registers lends itself
to a historical approach. We begin with the 8080 processor.

3.10.1 8080 Registers

The 8080 was the first really mass-produced microprocessor. It was used as the CPU in several early
microcomputers, including the Atari. This processor has registers A, B, C, D, H, and L, which are all eight-
bit registers. The very first personal computer also utilized the 8080 processor. It was the Altair, which
appeared on the cover of Popular Science magazine of January 1975. The fact that its registers, memory
addresses, and data transfers were all eight bits in size makes this computer a very good example of an
eight-bit computer. All the registers shown are eight-bit registers. The address bus and the data bus each
have eight wires.

Figure 3-12. Altair Computer

8080

Memory

ve
e W N~ O

8-bit, !
H >
Address Bus
L
8-bit _
, Data Bus
255

The L register is used to store addresses. The Altair memory has bytes numbered 0 to 255. This memory is
shockingly small, but on the other hand it was filled one byte at a time by flipping eight bit switches!

There are extant versions of the 8080 on the market, the 8085 and the Z80. Radio Shack's TRS-80 was based
on the Z80.

When IBM introduced the PC, they chose the Intel 8088 as its processor because in its dealings with
memory and the system board, it acts like an eight-bit processor. In particular, it acts a lot like the 8080
processor.

3.10.2 8086 Registers

Although the Altair was a nearly pure example of an eight-bit computer, the 8080 processor did have some
16-bit features. In particular, it was designed so that it could be used with a 16-bit memory addressing
system. It did this by allowing two of the eight-bit registers, the H and the L, to pair up and form a 16-bit
register, which could then be used for addresses. When this high byte-low byte pair was referenced by a
command, an X was used in the command. For example the 16-bit increment command was INX. The eight-
bit command was INR. The X stood for extended, and was used whenever 16-bit register pairs were being
referenced. When the 16-bit 8086 processor, shown in Figure 3-13, was designed this X was recruited for
use in the 16-bit register designations AX, BX, CX, and DX. The 16-bit registers AX, BX, CX, and DX are
pairs of high and low byte registers AH and AL, BH and BL, CH and CL, DH and DL. The other 16-bit
registers, SP, BP, SI, and DI, have no X in their names and are not byte pairs. The data bus has 16 wires.

Also shown are the 65,536 (= 216) memory locations in one 8086 memory segment. In spite of the above
picture, the 8086 is not really a good example of a 16-bit computer. The address bus has 20 wires, and there
is a clumsy mechanism for using a handful of segments at a time. So the memory is not actually limited to

64K, but there is no convenient way to use all 220 bytes at once.

Figure 3-13. 8086 Computer (Partial Model)

8036

Memory Segment,

AX
AH| AL 0

BX
BH | BL

CX
CH | CL

[= S o T e T

DX
CH | DL

Sp 20-bit!

Y

Address Bus
BP

16-bit

SI <

Data Bus

DI

65,035

3.10.3 80386 Registers

Many of the wrinkles visible in the design of the 8086 are smoothed out in the 80386, shown in Figure 3-14.
The eight registers whose names begin with E are all extensions of the corresponding registers on the 8086.
The bottom half of each 32-bit register is a 16-bit register inherited from the 8086. The address bus and the

data bus each have 32 wires. Also shown are the 4,294,967,296 (= 23 2) memory locations which an 80386 is
capable of addressing. An 80386 computer is a very good example of a 32-bit computer. The 80486 and the
Pentium are also 32-bit processors. In fact, in terms of registers sizes, memory addressing, and so on, there
are no changes at all. Up until the Pentium II and Pentium Pro were released, the main developments
consisted in increasing the speed without changing the basic architecture. Figure 3-14 could just as well be
labeled "Pentium Computer" as "80386 Computer," except that the Pentium has a 64-bit data bus.

Figure 3-14. 80386 Computer (Partial Model)

Memory

80386
AX
EAX | [AH| AL | 0
1
BX
EBX [| BH | BL | 2
3
CX
ECX | [CH]CL] 4
DX
EDX | | DH| DL |
SP 32-bit)
ESP | | | ;
Address Bus
BP
EBP | I |
32-bit
SI -
ESI | [| Data Bus
DI
EDI | | |
4,294 967,295

3.11 The Mov Command

This section introduces the Mov command. It is a very important instruction. MoV is a storage command. It
copies a value into a location. It has many different valid forms. The reg,imm and reg,reg forms are

especially important.

3.11.1 MOV reg,imm

e reg stands for register. It may be any of the registers listed in Table 3.13.

o imm stands for immediate. The term immediate is used to refer to a numerical value given directly by
a decimal or hexadecimal representation as opposed to a register or memory location containing that

value.

For example, in
MOV AX, 54

the number 54 occurs as an immediate value. This command stores the number, 54, into the 16-bit register
AX. This register is the same as the bottom 16 bits of the register EAX. The top 16 bits are unmodified.
Since 54 = 36H, the command is the same as the command

MOV AX, 36H
The value assigned to the location must fit. The command

MOV AL, 999

is not valid because 999 will not fit into an eight-bit register. NASM and Edlinas allow signed integers.
Hence

MOV AL, -128
is valid and does the same thing as
MOV AL, 128

But is not valid in Edlinas because -129 is not in the eight-bit signed range. NASM doesn't balk until it gets
to -257. NASM allows characters to represent ASCII codes. For example,

Table 3.13. x86 General Registers

8-bit 16-bit 32-bit
AH AX EAX
AL BX EBX
BH CX ECX
BL DX EDX
CH BP EBP
CL SP ESP
DH SI ESI
DL DI EDI

MOV AL, -129
MOV AL, 'A'
stores the ASCII code for the letter A, which is 65, in AL.

Code using 32-bit registers will not run on x86 processors prior to the 80386. Although it is a characteristic
of so-called "32-bit code" to use 32-bit registers, some "16-bit code" does also. The actual difference

between 32- and 16-bit code is discussed in chapter 5, section 5.5.

3.11.2 MOV reg,reg

Mov reg,reg copies from the second register into the first. The two-operand commands described in this book
use the syntax COMMAND destination, source. Hence the command

MOV EAX, EBX

does not change the EBX register. It means
let EAX = EBX
not move EAX to EBX.

There are assemblers which use the opposite syntax, such as the AT&T-style assembler used by gcc. In its
syntax, the exact same command is written

movl %ebx, %eax

The two registers used in a MOv command must be the same size. The following command, for example, is
not valid.

MOV EBX, DX
3.11.3 Ambiguity Problem
According to the append H hex convention discussed in chapter 2, section 2.7, the register names AH, BH,

CH, and DH are also valid hexadecimal names for the numbers ten, eleven, twelve, and thirteen. This would
make commands such as

MOV BL, AH

ambiguous. This command would be a valid example of both the reg,reg form and the reg,imm form of the
Mov command. The customary resolution of this ambiguity is to require all hexadecimal numbers used in
assembly language commands to begin with one of the digits 0, 1, ... 9. This modification of the append H
convention will be observed in this text and is required by both NASM and Edlinas. Hence Mov BL, AH is
actually not a valid example the reg,imm form. It is an example of the reg,reg form. To store the immediate
value ten into BL we must use either

MOV BL, OAH

or

MOV BL, 10

3.12 Addition and Subtraction Commands

This section describes the reg,imm andreg,reg forms of the App and sus commands. These are very
fundamental arithmetic instructions.

3.12.1 ADD reg.imm

ADD reg, imm

means to add the immediate value to the register. For example

ADD BL, 10
can be thought of as
let BL=BL + 10

3.12.2 ADD reg.reg

The command

ADD reg,reg

means to add the contents of the second register to the first. So the command

ADD BL, AL
means
let BL=BL + AL
The register AL is not changed by this command.
3.12.3 SuB reg.imm
The command
SUB BL, 10
for example, means
let BL=BL -10
3.12.4 SUB reg.reg
SUB BL, AL
for example, means

let BL=BL - AL
3.13 * Multiplication and Division Commands

If the multiplication command were to function similarly to the App and sus command, we would expect to
see commands such as

MUL EAX, EBX

which would mean to multiply the contents of the register EAX by the value in EBX. However, the multiply
command does not work like this. One reason is that because multiplying numbers together typically
doubles them in size, it does not make sense to use the same size registers for the answer as for the
multiplied numbers.

3.13.1 The Mur. Command

The syntax for the multiply command is

MUL reg

reg may be any of the 24 general registers listed in Table 3.13. If the register used is an eight-bit register, for
example

MUL BH

then the command means:

let AX=AL « BH

When an eight-bit register is used, it always multiplies by AL and stores the result in AX. When a 16-bit
register is used, for example,

MUL BX
then the command means
let DX;:AX =AX +*BX

where the 32-bit answer is stored in two 16-bit registers. The top 16 bits are stored in DX, the bottom 16 bits
in AX. When a 32-bit register is used, for example,

MUL EBX
then the command means

let EDX:EAX =EAX « EBX
A single register is all that you specify when you use the MuL, command. The other registers are always
implied. The situation is similar to that with the Abb command on the 8080 processor, where addition results
are always stored in the A register. The command App B in 8080 assembly language means

letA=A+B

Unlike the 2pp and suB commands, the MUL command has no immediate form. The command

MUL 7
is not valid.
3.13.2 The p1v Command

The p1v command closely resembles the MUL command in syntax and is essentially its inverse. It forms both
a quotient and a remainder

dividend remainder quotient
32-bit form EDX:EAX EDX EAX
16-bit form DX : AX DX AX
8-bit form AX AH AL

For example, if AX held the value 17 and BH held the value 3, then

DIV BH

would store 2 in AH and 5 in AL. The command would be recognized as an eight-bit command because BH
is an eight-bit register.

Division by zero produces an error called an exception. Exceptions are dealt with in chapter 9.

It is important to note that because of the sizes of the registers involved in division, zero is not the only
divisor which can cause an exception. For example, when AX is divided by a number stored in an eight-bit
register, the quotient is supposed to be stored in AL, an eight-bit register. But dividing a 16-bit number by
an eight-bit number does not always produce a number which can be stored in eight bits. For example, 1024
+2 =512, or in hex, 400H+2 = 200H. But 200H requires at least ten bits of storage. This means that the

following code will cause an exception:

MOV AX, 400H
MOV BH, 2
DIV BH

This error is called a division overflow.
3.13.3 Negative Numbers and Congruences

Two's complement representation is used for negative numbers, in part because it allows addition and

subtraction hardware to be used irrespective of whether the bits being operated on are intended as signed
integers or as unsigned integers. The mathematical explanation for why two's complement representation
works like this is based on a concept due to C. F. Gauss, a remarkable nineteenth century mathematician.

Gauss defined a = h(mod m) to mean that a and b differ only by some exact multiple of m. In two's
complement representation, a negative number and the positive number used to represent it differ by the
turnover value of the registers being used. If four-bit registers are being used, then each negative and its

positive representation differ by 2% or 16, as shown in Table 3.9. In Gauss' notation, for example, -5 =11
(mod 16). So when the computer does (-2) + (-3) as 14 + 13, it depends on the fact that 14 + 13 =27 =-5
(mod 16). The four-bit addition hardware produces 11 because a carry of 16 is lost. But that is okay. Eleven
is the correct representative for -5.

Congruence Addition Theorem

This reasoning is summarized in the following theorem due to Gauss:

If a =b (mod m) and ¢ = d (mod m)

then a +c=b+d (mod m)

This theorem says that congruences can be added just like equations. Gauss devised the congruence notation
in order to make the point that a congruence is similar to an equation.

Congruence Multiplication Theorem
The following theorem states that congruences can also be multiplied just like equations.

If a =b (mod m) and ¢ = d (mod m)
thena-¢c=b-d(mod m)

Because of this nice theorem, we should be able to use both signed and unsigned numbers with MuL just like
apD and have no problems! Except for one thing.

We want to double the register size as we go. So the theorem we really need is this one:

= b (mod m) and ¢ = d (mod m)

9
}1{‘-‘11 a-c=b-d (mod m?)

Unfortunately, this isn't a theorem. It's a falsehood. For example, in the eight-bit case where m = 256 and m’

=65,536,ifa =-16,b =240,and c =d = 2, we geta * ¢ = -32 and b * d = 480. So the theorem says
—32 = 480 (mod 256), which is correct.

Removing the eight-bit turnover value of 256 from 480 leaves 224. Hence if we considered the answer to be

224 unsigned or -32 signed, then everything would be okay. Two hundred twenty-four is the two's
complement positive that is equivalent to -32 in the eight-bit system. But we're not content with eight bits.
We want 16. And

—32 = 480 (mod 65,536) is wrong.

In the 16-bit system, -32 is represented by 65504, not 480. Consequently, we can't use MUL (or p1V) for both
signed and unsigned numbers. MUL and p1v work for unsigned numbers. There are different commands
which work for signed numbers: 1MuL and 1p1v. This is an example of the issue raised in section 3.6.5.

Further Reading
The Microprocessor, A Biography, MichaelS.Malone, Springer: 1995.

The Anatomy of a High-Performance Microprocessor, Shriver and Smith, IEEE: 1998.

Chapter 4. ASSEMBLY LANGUAGE

A computer program is something which can be stored in a computer's memory. If the memory has one-byte
words, we can then say that the computer program consists of bytes. These bytes are also called machine
language. Writing a program by listing these bytes explicitly is called machine language programming. 1t is
the original form of programming. It is definitely the most tedious. Assembly language was devised as a
way of specifying machine code without actually having to write it down. Assembly language may be mere
shorthand or it may involve complex macros, some of which may even resemble if or while statements in
C. But whether it is primitive or fancy, its defining characteristic is that it gives the programmer control over
the machine language.

Three good reasons for learning assembly language are

1. In truly time-critical sections of code, it is sometimes possible to improve performance by coding in
assembly language.

2. Itis a good way to learn how a particular CPU works.

3. In writing a new operating system or in porting an existing system to a new machine, there are
sections of code which must be written in assembly language.

Assembly languages are written to fit hand-in-glove with a specific processor. Given the considerable
variety of processors and instruction sets, one might expect there to be a considerable variety in the
instruction formats for the various assembly languages as well. But this is not the case. Assembly languages
generally follow one universal format which might be called the four field format.

4.1 The Four Field Format

According to this format every assembly language program consists of lines. Every line consists of four
fields. The four fields are the label field, the mnemonic field, the operand field, and the comment field.

1. The label field is used for a label which specifies the target of a jump instruction. A jump is the same
as a go to instruction. Examples of jump instructions are given in section 4.4.

2. The mnemonic field contains an instruction specifier. Examples of mnemonics are MOov, ADD, SUB,
etc. The word mnemonic suggests that it makes the machine code easy to remember, although it
doesn't; it makes the machine code unnecessary to remember.

3. The operand field contains the object or objects on which the instruction is operating. If there is more
than one operand, they are separated by commas. As we noticed above, ADD takes two operands. Jup

on the other hand takes one. Some mnemonics take none at all.

4. The comment field contains documentation. It begins with a semicolon. In any computer language,
documentation is important. In assembly language, documentation is especially important because an
assembly language program is especially hard to read without it. A line may consist of nothing but a
comment.

Program 4.1 is an example of an x86 assembly language program. The reader should note the consistent four
field layout even though some of the fields on some of the lines are empty. Many of the instructions in
Program 4.1 are making their first appearance here in this book. These new instructions are all discussed in
this chapter.

Program 4.1

’

; Greatest common divisor program

MOV EDX, O ; 0 is the only Edlinas input port
IN EAX, [DX] Get the user's first input
MOV ECX, EAX Get the input out of harm's way

IN EAX, [DX] Get the user's second input

MOV EDX, EAX Use EDX for the larger of the two inputs
ORD: SUB EAX, ECX Use EAX as a working copy of EDX

JZ GCD When equality is obtained we are done.

JNS NXT We want EDX to be larger. No swap needed

Ne Ne Ne Ne Ne Ne Ne Ne N

MOV EAX, ECX
MOV ECX, EDX

Swap EDX and ECX (Takes three MOV's)

NXT: MOV EDX, EAX ; If there was no swap then EDX = EDX-ECX
JMP ORD ; End of the loop

GCD: MOV EAX, EDX ; The GCD is in EDX
MOV EDX, 1 ; We need EDX for the output port number
OUT [DX],EAX ; Display the answer to the user
RET

4.2 Computers from the CPU Standpoint

Computers are often described as consisting of three parts: the CPU, the memory, and the input/output, or
I/O system. A diagram drawn according to this picture looks like Figure 4-1. Included in the I/O system are
the monitor, the keyboard, the hard drive, the printer, the modem, the sound card, and the CDROM. These
are all just I/O devices. This is a processor-centric view. Just as members of a group sometimes categorize
people in terms of how they relate to the group, this picture of a computer defines parts of a computer
according to how they relate to the CPU. Since assembly language is all about working with the CPU,
however, it is a useful point of view for us to adopt.

Figure 4-1. All Computers are Divided into Three Parts

Address Bus

CPU Memory I/0

Data Bus

If we imagine the CPU in the picture to be a 386, then we can think of the data bus as a set of 32 wires
connected to 32 pins on the CPU, and the address bus as another set of 32 wires also connected to the CPU.
Notice that the memory and I/O systems are connected to the processor in essentially the same way. If we

imagine viewing the bits flowing on the buses, a data transfer between the CPU and the memory looks
almost exactly like a data transfer between the CPU and the I/O system. The difference actually boils down
to a single pin on the CPU. This pin is called the M/IO# pin. When this pin is at logic 1, it signals a memory
transfer. When it is at logic 0, it signals an I/O transfer. The above diagram does not really make sense
without an M/IO# wire. It also needs a W/R# wire to signal whether data is to flow into or out of the
processor. These wires are called control wires and are part of the control bus.

The reader is urged to compare Figure 4-1 with Figure 3-11, which shows in greater detail how the wires
from the three different buses hook up to a memory circuit.

4.2.1 Memory vs. I/O
In Table 4.1 we see two imm forms of the Mov command compared with the corresponding I/O commands.
These commands carry out transfers between the AL register and the memory or I/O device located at

address 12. The processor

Table 4.1. Examples of Memory and I/O Transfer Commands

Memory 1/0
Read MOV AL,[12] IN AL,[12]
Write MOV [12],AL OUT [12],AL

signals read vs. write using the W/R# pin and memory vs. I/O using the M/IO# pin. Otherwise the
transaction is very similar.

One significant difference between memory and I/O addressing on the x86 is that memory addresses
undergo processing before they leave the processor. This processing has two stages: segmentation and
paging. Segmentation is described in chapter 12 and paging is described in chapter 8.

Another difference between the 1/0 system and the memory is that they do not have the same range of valid
addresses. As discussed in chapter 3, the range of valid memory addresses varies from one x86 processor to
another. (It depends on the number of address pins the processor has.) The range of valid I/O addresses on
the other hand is the same on all x86 processors. It is the 16-bit range from 0 to 65,535. Incidentally, this
means that the I/O system does not need to be connected to all 32 address wires, only to the bottom 16. The
addresses in this range are called ports or port numbers.

Many existing I/O devices, such as disk drives, printers, and serial ports, use a handful of ports each. Table
4.2, for example, lists the eight addresses used by the standard serial ports. (Clearly the port numbers 1
through 4 in the table are not port numbers in the specific sense we are considering here. But the following
hex addresses are perfect examples of these port numbers.) A relatively complete

Table 4.2. Standard Serial Port I/O Addresses

Com Port I/0 Addresses
1 3F8H-3FFH
2 2F8H-2FFH
3 3E8H-3EFH
4 2F8H-2FFH

list of the port numbers used on a standard PC may be found in Appendix A of Shanley's IS4 System
Architecture. The 1/0 ports in use on a Linux machine may be accessed via the /proc directory using the
command

linuxbox$ cat /proc/ioports

The close similarity of memory and I/O transfers is not fully reflected in x86 assembly language, which has
many commands involving memory access but only a few, 1n and ouT for example, controlling I/O access.
The use of Mmov and many other commands to access memory is discussed in chapter 6, section 6.2. The 1IN
and ouT commands are discussed next.

4.2.2 The 1xn Command

The input command transfers data from an I/O port into the processor. There are six valid forms of this
command

IN EAX, [DX]
IN AX, [DX]
IN AL, [DX]
IN EAX, [imm]
IN AX, [imm]
IN AL, [imm]

where imm is any one-byte number. Notice that the general
COMMAND destination, source

format is adhered to in this instruction. The valid destination registers are EAX, AX, and AL. The I/O
device whose port number is stored in DX or given by imm is the source.

Notice that DX is a 16-bit register. This makes sense because a port number is a 16-bit number. Most Intel
assemblers, including NASM, do not use brackets around the port number. If you do, however, you can
think of the command 1n a1, [Dx], for example, as

let AL = [DX]

where the [DX] refers to data located at the address DX. This is done in Edlinas for the sake of consistency.
Memory commands use brackets in the same way. Brackets become a dereferencing operator like * in the C
language. In both Edlinas and NASM, all references to data in memory by means of an address use brackets
around the address. NASM does not use brackets for I/O references. Hence, in using NASM, the brackets in
the 1N and ouUT instructions are omitted.

Because the imm forms of the 1n command accept only one-byte ports, only the bottom 256 of the 65.536
ports are accessible using the imm forms. Notice that the Tn command was not given as 1n reg, [reg]. This is
because forms such as IN EBX, [DX] and IN EAX, [CX] are not valid.

4.2.3 The outr Command

The output command transfers data from the processor to an I/O device. The six valid forms of this
command are

OUT [DX], EAX
OUT [DX], AX
OUT [DX], AL
OUT [imm], EAX
OUT [imm], AX
OUT [imm], AL

where again imm is any one-byte number. The order of the operands is opposite to what it is in the 1N
command because the data is flowing in the opposite direction. The source is either the EAX, the AX, or the
AL register, and the destination is an I/O device. Again, NASM doesn't use brackets with ouT.

4.2.4 Memory Mapped 1/0

When addresses in the memory address space are connected, in fact, to I/O devices, this is referred to as
memory mapped I/0. The video buffer on the standard PC is an example. Characters stored at the 4000 bytes
starting at the memory address BEOOOH are output to the monitor.

Using a separate address space for I/O devices is not the only conceivable approach to I/O addressing. Many
architectures use a single set of addresses and simply reserve some of them for I/O.

Reserved addresses are also used on PCs for ROM, or read-only memory. If memory writes are done to read
only memory, the processor will send the appropriate write signals out onto the buses, but no change will be
made in the "stored" data.

4.3 Simple Assembly Language Programs

Simple high-level language programs often have a three-part format: input data, do calculations, and then
output the results. Using Edlinas, simple programs of the same style can be written in x86 assembly
language.

4.3.1 Edlinas Ports

The imaginary machine simulated by Edlinas uses only two port numbers.
e 0 is the port for the keyboard input.
e 1 is the port for the screen output.

Keyboard input is echoed at the lower left of the screen and output is displayed at the lower right. When 1n
EAX, [Dx] is used with Edlinas, the value stored in DX should be 0. When port 0 is addressed, the user is
prompted for an input value. When ouT [Dx], Eax is used, the value stored in DX should be 1. When port 1
is used, the output value is displayed in base ten at the bottom right of the screen. The use of these two ports
allows very simple programs to be written in genuine x86 assembly language and run on the Edlinas
simulator.

Programs using Edlinas ports will not run under DOS or Unix. In chapter 8, section 8.4.7 it is shown how
these I/O commands to the simulated machine may be replaced by calls to the C library functions scanf ()
and printf () . In this way, simple Edlinas programs using real I/O can be run under Linux.

4.3.2 The ReT Command

Programs are set in motion by the operating system. When the program is finished, it must return control to
the operating system. RET does this. Subprograms also use RET to return control to a calling program. RET
works using the stack and is discussed in chapter 7, section 7.2.

4.3.3 Program to Add Two Numbers

We now have all the commands we need to write some simple but complete programs. Here is an Edlinas
program to add two numbers:

Program 4.2
MOV EDX, O ;Making all 32 bits zero makes DX zero.
IN EAX, [DX] ;User enters the first number via port zero.
MOV EBX, EAX ;Get the first number out of the way.
IN EAX, [DX] ;User enters the second number.
ADD EAX, EBX ;Add the first number to the second.
MOV EDX, 1 ;The Edlinas output port is one.

OUT [DX], EAX ;The result is output to the user.
RET ;End the simulation.

4.4 Assembler Programs with Jumps
High-level languages need loops in order to be able to do their work. These loops must be turned into
assembly code by a compiler. For example, as illustrated in Figure 4-2, to do a C language while loop in the

most straightforward way requires both a conditional jump forward and an unconditional jump backward.

Figure 4-2. while (test) Body;

—

(r)

Truth|Value

Conditional False

Jump

True

(Body)

Y

Unconditional
Jump

4.4.1 The omp Command

The fetch-execute cycle works by calculating the address in memory of the next instruction. This address is
normally determined by just going to the first address

beyond the current instruction. In order to support if-then statements or loops in high-level languages,
however, jumps are needed. The oMp command transfers execution to the address specified by a label.

The gmp command has the form

JMP label

The label is created by the programmer. It is wise to devise labels which help in understanding the program.
For this purpose, long labels are useful. On the other hand, the screen space used by Edlinas is very limited
and so labels beyond three characters are truncated when they are displayed unless they are on a line by
themselves. The label in the label field specifies the target of the jump and often has a colon appended to
make it clear that it is a label and not an arcane mnemonic. Many jump commands may point to the same
target, but no two lines may carry the same label in their label field. In the following program, the last line
transfers control to the preceding line. This program continues adding 2 to the EAX register forever. It is an
infinite loop. Infinite loops are usually written only by mistake.

4.4.2 Conditional Jumps and Flags

A conditional jump is a jump carried out on the basis of a truth value. The information on which such
decisions are based is contained in one-bit registers called flags. When a flag contains 1, it is referred to as
being set. When it contains 0, it is referred to as being cleared. Two very important flags are the zero flag
and the sign flag.

Program 4.3

MOV EAX, O

MOV EBX, 2
XYZ: ADD EAX, EBX
JMP XYZ
The Zero and Sign Flags

The app and suB commands affect not only their destination registers but also many of the flags. Suppose
the command

ADD EAX, EBX

is executed. The result of this command will be in the EAX register. If this result is 0, then the zero flag is
set. If it is not 0, then the zero flag is cleared.

The value given to the sign flag after an ApD instruction is the value of the most significant bit of the result.
This bit is 1 if the result is negative when viewed as a signed number. Thus if executing the AbD EAX, EBX
command gives EAX a value which is negative, as a four-byte signed number, then the sign flag is set;
otherwise the sign flag is cleared.

4.4.3 The gz, Js, Jnz, and ons Commands

The following conditional jump commands all have the same format as the Jvp command.

They each take a label in the operand field. The meanings of these commands are as follows:

Jz
Js
JINZ
JINS

Jz
Js
JNZ
JNS

label
label
label
label

the
the
the
the

if
if
if
if

Jump
Jump
Jump
Jump

zZero
sign
Zero
sign

flag
flag
flag
flag

is
is
is
is

set.
set.

not
not

set.
set.

The following assembly language program illustrates the use of the Js instruction in a program to determine
which of two user inputs is larger. Program 4.4 seems air tight. In fact it has a bug.

Program 4.4

; If the first input is larger output 1

; If the second input is larger output 2

; The program uses subtraction:

; B <A is true if and only if B — A is negative.
; A subtraction followed by a JS does the job

’

MOV EDX, O
IN EAX, [DX]
MOV EBX, EAX ; The first input is now in EBX
IN EAX, [DX] ; The second input is now in EAX.
SUB EBX, EAX ; This is (first - second).
JS SIB ; Second is Bigger
MOV EAX, 1 ; Otherwise First is Bigger
JMP END ; Don't drift into the other case!
SIB: MOV EAX, 2 ;
END: MOV EDX, 1 ; Either way now EAX is ready.
OUT [DX], EAX
RET

4.5 Assembler Programs with Loops

Conditional jumps are used to implement loops and if-then statements. Suppose we consider the following

program, which does multiplication using repeated addition. For exampletodo 7 x Swecando5+5+ 5+
5+ 5+ 5+5. In Program 4.5 the number 1 is added in one line and subtracted in another. There are special

commands for this which take less memory space.

Program 4.5
MOV EDX, O
IN EAX, [DX] ; First input is the multiplier

MOV EBX, EAX ;
IN EAX, [DX] ;

Put Multiplier in EBX
Second input is the multiplied number

RPT:

MOV
ADD
SUB
JINZ
MOV
ADD
OouT

ECX,
ECX,
EBX,
RPT
EAX,
EDX,
[DX],

0
EAX
1

ECX
1

EAX

; Initialize the running total.

; Do one addition.

; One less yet to be done.

; If that's not zero, do another.
; Put the total in EAX

; Output the answer.

RET
The 1Nc and DEc Commands

The following increment and decrement commands add and subtract 1:

INC reg

and

DEC reg

reg may be any of the 24 general registers. These commands are often used to increment or decrement a

loop counter. In Program 4.5, suB EBX, 1 can be replaced by bpEc EBx and ADD EDX, 1 can be replaced by
INC EDX.

4.6 Signed Comparisons

4.6.1 Comparison-Based Jumps

High-level languages often use comparisons in if-then statements. Using the sign flag to test the result of a
subtraction, as was done in section 4.4, seems to be a reasonable way to implement this testing since it is a
mathematical fact that

B < A ifand only if B - A is negative.

Since the sign flag indicates the sign of the result of a subtraction we would seem to be on solid ground. But
in fact this is not true.

4.6.2 The Overflow Flag

Suppose we are using one-byte signed numbers and we wish to test whether

100 < =50

In one-byte registers:
100 — (—50) = —106

An overflow has occurred. The result is negative. The sign flag is set and the comparison will be judged as
true! Using the sign flag to determine a jump gives the wrong answer. But since an overflow always changes
the sign of a result to the opposite of what it should be, the jump condition can be fixed.

1. Ifno overflow has occurred, jump if the sign flag is set.

2. Ifan overflow has occurred, jump if the sign flag is not set.
The x86 processor has an overflow flag. It is used in order to implement this fixed-up jump condition. If we
use SF for the binary value of the sign flag and OF for that of the overflow flag, we can restate the fixed
jump condition as just

Jump if (SF XOR OF)

This jump condition will produce a jump following a subtraction such as

SUB AL, BL

if and only if AL <BL. There is an x86 command for this jump. The mnemonic for it is g, which stands
for jump if less than.

4.6.3 The cMp Command

When a subtraction is performed only for the sake of a comparison, it may be done with the cMp instruction.
This command sets the flags in the exact same way as suB but has the advantage of not wasting register
space by storing an unneeded result. Using the g1 and cmp instructions we can rewrite the Program 4.4 as
follows:

Program 4.6

; If the first input is larger output 1

; If the second input is larger output 2

; The program uses subtraction:

; B <A is true if and only if B - A is negative.

MOV EDX, O
IN EAX, [DX]
MOV EBX, EAX ;The first input is now in EBX
IN EAX, [DX] ;The second input is now in EAX.
CMP EBX, EAX ; This is first - second.
JL SIB ; Second is Bigger
MOV EAX, 1 ; Otherwise First is Bigger
JMP END ; Don't drift into the other case!
SIB: MOV EAX, 2 ;
END: MOV EDX, 1 ; Either way now EAX is ready.
OUT [DX], EAX
RET

Program 4.6 works correctly for all numbers in the unsigned four-byte range.
4.6.4 More Jump Commands

Following a cMp EAX, EBX command, the J1 command executes a jump if the condition EAX < EBX is
true. The commands

CMP EAX, EBX
JL ABC

mean
Compare EAX to EBX and
Jump if EAX is less than EBX .
What is going on here is subtraction and flag checking, but the well-designed syntax allows us to overlook
that. The less than condition is not the only condition conveniently accessed following a cMp command. A

list of several other conditional

jump commands is given here.

JL less than EAX < EBX
JLE less than or equal EAX = EBX
JG greater than EAX > EBX
JGE greater than or equal EAX = EBX
JE equal EAX = EBX
JNL not less than EAX ? EBX
JNLE not less than or equal EAX ? EBX
JING not greater than EAX ? EBX
JNGE not greater than or equal EAX ? EBX
JNE not equal EAX ? EBX

Because these various jump commands are so easily interpreted, they turn the compare command into a kind
of syntactical windfall.

4.7 Unsigned Comparisons

In section 4.6 it was shown how flags could be used to determine the truth values of inequalities so that
these inequalities could be used in conditional jumps. The conditions obtained work for unsigned numbers.

But suppose we consider the same example

100 < =50

that we considered in the last section and note that when this same inequality is stated in terms of unsigned
numbers it becomes

100 < 206

This inequality has the opposite truth value. So a "jump if less than" command for unsigned numbers must
execute a jump in this case. The JT. command will not do so. The signed jump commands of the previous
section do not work for unsigned numbers. If AL = 64H = 100 and BL = CEH = 206. then a Ji will not
execute a jump because it is acting on 100 <-50. An unsigned "jump if less than" is needed.

4.7.1 The Carry Flag

In the case of unsigned numbers, the inequality A < B turns out to be easier to test than its signed
counterpart. Since a subtraction of unsigned numbers 4 - B cannot go out of range on the high side, it is out
of range if and only if it is negative. Out of range errors for unsigned numbers are called carry errors. Hence
A <B s true if and only if the subtraction 4 - B produces a carry error. So a flag which signals carry errors
will signal negative results of a subtraction. The x86 processors have a carry flag to indicate these errors.
Using CF to denote the value of this carry flag, we can easily state the condition used to implement the
unsigned "jump if less than" command as "jump if CF."

Like the sign flag, the zero flag, and the overflow flag, the carry flag responds to conditions occurring
whenever ADD or suB are used. Unlike these other three flags, it is unaffected by the 1nc and bEC commands.

4.7.2 Out of Range Flag Summary

Arithmetic commands such as App and suB are performed on binary bits without any information specifying
whether the bits are being used to represent signed or unsigned numbers. It is the responsibility of the
software to keep track of this.

When the software uses the processor to do arithmetic on signed numbers, then it should consult the
overflow flag to determine whether or not an out of range error has occurred. When the software uses the
processor to work on unsigned numbers, then the software should consult the carry flag to check for an out
of range error.

The hardware has no way of knowing whether the numbers are signed or unsigned. And it doesn't matter.
For example, on one-byte registers the command to add FFH to FFH may be coming from software that is

working with signed numbers. In this case the sum FEH is not a problem. The software sees the arithmetic
that has just happened as

—14-1=-2,

This is okay.

On the other hand the command may be coming from software that is using unsigned numbers. In this case
the software sees the arithmetic that has just happened as

295 + 259 = 254.

This is not okay. The true answer, 510, has gone out of the one-byte unsigned range, 0-255. Hence the
addition of FFH to FFH clears the overflow flag because the signed arithmetic answer is okay and sets the
carry flag to notify software that there is an unsigned, out of range error.

As another example, suppose that one-byte registers receive a command to add 40H to 40H. The sum is
80H. If the command has come from software working with unsigned numbers then the arithmetic just done
will appear as

64 + 64 = 128.

This is okay.

Suppose that the command has come from software working with signed numbers. Then the arithmetic
looks like this:

64 4+ 64 = —128.

This is not okay. The true answer, +128, is outside the one-byte signed range, -128 to +127. The hardware
sets the overflow flag because this is an out of range error in the signed number system, and clears the carry
flag because there is no out of range error in the unsigned system. The hardware does not know which
system the software is using, so it has to take care of both flags.

Both the carry and the overflow flags are out of range indicator flags. The carry flag is set if the arithmetic
interpreted in the unsigned system has produced an out of range error. The overflow flag is set if the
arithmetic interpreted in the signed system has produced an out of range error.

4.7.3 Still More Jump Commands

Given that we need a different command for "jump if less than" for use with unsigned numbers, we also
need a different mnemonic. Moreover, considering all the other jump conditions, "greater than," "greater
than or equal to," etc., we need a whole new set of commands and mnemonics. To systematize this new set,
the words above and below are used in place of the phrases greater than and less than. Hence the "jump if
less than" command which works for unsigned numbers uses the mnemonic Jg, for "jump if below." The
full set of these commands is as follows:

JB below EAX < EBX
JBE below or equal EAX = EBX
JA above EAX > EBX
JAE above or equal EAX = EBX
JNB not below EAX ? EBX
JNBE not below or equal EAX ? EBX
JNA not above EAX ? EBX
JNAE not above or equal EAX ? EBX

4.8 Linux . s files

One of the intermediate steps that gcc uses in the translation of a C source program into an a.out file is an

assembly language file. This file is the output of the compiler proper and the input to the assembler, gas. To
see these assembler files, one can direct gce to output the assembler file once this stage is reached using the
-s switch. This output has a . s file extension. Consider for example the following C program, mult.c:

Program 4.7

main ()
{
int x, y;
register int a, b, c;

printf ("Enter a number: ")
scanf ("%sd", &x);
printf ("Multiply it by what number? ");

scanf ("%d", &y);

a = x;
b =vy;
c = 0;
while (b != 0)
{
c =c+ a;
b=5b-1;

printf ("The result is %d.\n.",c);

}

Suppose that the numbers x = 5 and y = -7 are entered. This program actually outputs the correct answer, -
35, and to calculate it, the loop executes 232 7=4,294,967,289 times. Note that

(B2 -T)x5=22x5-7Tx5

,232

Each time the running total, b, exceeds the turnover value of 232 is dropped from the total. This

happens four times. The resulting value of b is 232 - 35, which is the two's complement representation of -
35.

One of the main practical uses of assembly language programming is in the coding of loops that execute so
many times that an improvement in the time required for each execution actually makes a noticeable
difference in the total run time. In a test on a 120 MHz Pentium, the 5 x -7 calculation required 110.90
seconds. To obtain the assembly code for this program, one can use the command

linuxbox$ gcc -S mult.c

The resulting file, mult.s, is the assembly code which was used by gcc to produce the executable file. The
syntax of this assembly code differs from that of the widely used Intel assembly language used in this book,
but it can still be deciphered. Comments for this purpose are added. The first line uses TEsT. It is an
instruction

Program 4.8
.L2:
testl %esi.%esi ; Is ESI = 0
jne . L4 ; If not go to L4
Jmp . L3 ; otherwise go to L3
L4
addl %ebx, $edi ; Let EDI = EDI + EBX
decl %esi ; Let ESI = ESI - 1
Jmp . L2 ; Go to L2

.L3:

similar to cvp, which will be discussed in the next chapter, sesi refers to the ESI register. Like cvp, the
TEST command sets the zero flag if ESI = 0. The 1 at the end of many of these commands is used to specify
the length of the operand, "long" in this case, and that means four bytes. Notice that the add uses a
"COMMAND source destination" operand order, the opposite of that used in this book.

The loop consists of the six instructions shown. If we note that we can take some jumps out of the loop by
testing whether ESI is zero at the end of the loop, we can reduce the loop from six instructions to three. The
only change made was

Program 4.9
L2
testl %esi, %esi
Jjne .L4
Jmp .L3
L4
addl %ebx, $edi
decl %esi
jne .L4 ; If ESI isn't 0 go to L4
L3

to the jump at the end of the loop. The modified file was compiled using using gcc.
linuxbox$ gcc mult.s
The resulting program was run and the computation of 5 x -7 took 76.14 seconds on the same machine.

4.8.1 The Pentium's Dual Pipeline

If we look at the time for each instruction to execute, in the first case we get

110.0 = :
191,967 289%6 — 2903 ns

This arithmetic assumes that the program spent all of its time in the loop. Comparing this with the length of
one clock cycle,

1 = 8.333 ns

120,000, 000

we find the amazing result that the time for two instructions to execute, 8.606 nanoseconds, is just a little
over one clock cycle. Since one instruction per clock cycle is ideal under ordinary circumstances, what we
have here is something special. It is an illustration of the Pentium's dual pipeline. When possible, the
Pentium pairs instructions off and executes two at once. This is how rates of more than one instruction per
clock cycle can be achieved. (There is actually another pipeline for floating point numbers.) The instruction
pairing also explains why the 2:1 improvement we might have expected when we reduced the number of
instructions in the loop from six to three did not materialize. What happened apparently was that the number
of instruction pairs went from three to two, one of the two "pairs" being half-empty. The time 76.14
nanoseconds is .687 of 110.9 nanoseconds. This is approximately two-thirds, suggesting the use of two
instruction pairs instead of three for each pass through the loop.

Chapter 5. MACHINE LANGUAGE

Machine language is the language seen by the processor. The bytes fetched in the fetch-execute cycle are
bytes of machine code. Assembly language can be defined as language which gives the programmer control
over the machine code. Assembly language specifies machine code. This characteristic feature of assembly
language will not be apparent without some familiarity with machine language. In this chapter the main
features of x86 machine code are presented.

The process of converting assembly code into machine code is called assembling. A program which takes
assembly language as input and produces machine language as output is called an assembler. It is similar to
a compiler but it operates at a lower level.

Conversely, the process of turning machine code into assembly language is called unassembling. A program
which does this is called an unassembler.

5.1 Assembling Simple Programs

To tell the whole story of the machine code for the x86 processors involves a lot of tricky detail. However, it
is quite easy to specify machine code for the subset of the x86 assembly language used in all the numbered
programs used in sections 4.3 through 4.5. Coding for this portion of x86 assembly language is given in
Table 5.1. Most of the machine code is given in hex, but some of the bytes have to be given in binary. The
number of bytes varies from one to six. The first line of the table, for example, shows that the code for mov
reg,reg is a two-byte code, the first of which is given in hex and the second in binary. The bytes given in
binary are those which incorporate register codes. S S S in the binary coding represents the three-bit code for
the source register. D D D represents the three-bit code for the destination register. The register codes are
given at the bottom. Each "imm" occurring in a command specifies four additional bytes, which must be
supplied by the programmer. Examples follow. Using Table 5.1, Program 5.1 can be machine assembled as
follows:

Table 5.1. Some 32-Bit Machine Coding

First Byte Second Byte 4 More
MOV reg, reg 89 11SSSDDD
MOV reg, imm 10111DDD -
ADD reg, reg 01 11SSSDDD
ADD reg, imm 81 11000DDDW -
SUB reg, reg 29 11SSSDDD
SUB reg, imm 81 11101 DDDMU -
INC reg 01000DDD
DEC reg 01001 DDD
IN EAX, [DX] ED
oUT [DX], EAX EF
RET C3
JMP imm E9 -
Jz imm OF 84 -
JNZ imm OF 85 -
Js imm OF 88 -
JNS imm OF 89 -

(yf reg is EAX, there is a shorter machine code.

5.1.1 Register Codes

The first byte of the first command, BA, is encoded using the 1011 1DDD code given for mov reg,imm. The
DDD bits are filled in with the register code 010 for EDX, which results in a binary code of 1011 1010 or a
hex code of BA.

The second MOv command, Mov ECx, EaX is encoded as 89 C1 using the first line of the chart which specifies
the second byte as 11 SSS DDD. EAX is the source register and its code is 000. ECX is the destination
register and its code is 001. The resulting second byte is 11 000 001, which is C1.

Program 5.1

Label Source Code Address Machine Code

MOV EDX, O 0 BA 00
2 00 00
4 00
IN EAX, [DX] 5 ED
MOV ECX, EAX 6 89 C1
IN EAX, [DX] 8 ED
MOV EDX, EAX 9 89 C2
ORD SUB EAX, ECX B 29 C8
JZ GCD D OF 84
F 11 00
11 00 00
JNS NXT 13 OF 89
15 04 00
17 00 00
MOV EAX, ECX 19 89 C8
MOV ECX, EDX 1B 89 D1
NXT MOV EDX, EAX 1D 89 C2
JMP ORD 1F E9 E7
21 FF FF
23 FF
GCD MOV EAX, EDX 24 89 DO
MOV EDX, 1 26 BA 01
28 00 00
2A 00
OUT [DX], EAX 2B EF
RET 2Cc C3

5.1.2 Little Endian Immediate Codes

The first and last Mov commands in this program both contain immediate values. Both of these store four-
byte values in four-byte registers. Notice in the last Mov command, the four-byte immediate value
00000001H is stored as 01 00 00 00.

5.1.3 Relative Jumps

The jump encoding used by x86 processors uses relative rather than absolute addresses when this is feasible.
All the jump instructions in this program encode jumps as relative jumps. An absolute jump would specify
an actual address as the target of a jump, whereas relative encoding specifies the number of bytes to jump
starting from the beginning of the next instruction. This value may be interpreted as a signed number, a
negative value for a backwards jump. The encoded value is added by the processor to the address of the next
instruction to obtain the address of the instruction being jumped to. For example, the oMp NXT instruction
has a little endian encoded 4; counting four bytes from the 89 byte that begins the Mov EAX, ECX, brings
you to the 89 byte that begins Mov EDx, Eax. This command is the target of JMp NxT. The Jvp ORD
instruction contains the relative jump value FFFFFFE7H = -25. Counting backwards 25 bytes from the 89

byte that begins the Mov EAX, EDx, brings you to the 29 byte that is the first byte of the code for sur EaX,
ECX.

5.1.4 Short Jumps

The relative jump values in the program are each encoded in four bytes, in spite of the fact that the values
17, 4, and -25 fit easily in the one-byte signed range. There are alternate encodings which can be used to
save space on one-byte jumps. These jumps are called short jumps. The short jump encoding for the Jns
NXT instruction, for example, is 79 04. The machine codes for the conditional short jumps can be obtained
from their 32-bit counterparts by dropping the OF byte and subtracting 10H from the second byte. The short
code for the smp command is EB. In Edlinas, a long jump can be converted to a short jump using the s key.
In NASM, the unadorned Jvp instruction always means a short jump. A JMp instruction which can't be
encoded in one-byte gets an error message. To specify a jump which uses the longer encoding, JMP NEAR is
used. In the present context, jumping "far" would seem to make more sense than jumping "near," but a far
jump actually refers to a jump which uses absolute encoding as will be seen in chapter 12.

Since most jumps are no more than 128 bytes, it makes sense to have a special encoding for them. The
instruction set for the 8086 actually had only the short versions of the conditional jumps. The OF long jump

codes did not appear until the 80386.

5.2 Opcode Space

The machine codes given in the last section can be used to assemble a great variety of simple programs. On
the other hand, taken together they represent only a small portion of the complete x86 instruction set. In this
section an overview of the entire set of x86 machine codes is given. Table 5.2 shows what information is
conveyed by the first byte of machine code.

Most of the entries in the table contain both mnemonic and operand information. In a few cases, this
information specifies both completely. The entry in the table for the byte EE, for example, is

ouT
[DX],AL

In other cases, the mnemonic is given but a class of allowable operands are described using letter keys.
e 1 stands for register.

m stands for memory.

1 stands for immediate.

b stands for byte

2 stands for 2 bytes.
e v means 32 bits or 16 bits.
e ¢ means E in 32 bits and disappears in 16 bits.
These keys were used by Stephen Morse in the excellent book 80386/387 Architecture.

Consider the entry in the table for the byte 03.

ADD
rv, rmv

Since the first operand position contains rv, this indicates that the first operand must be a 16- or a 32-bit
register. Since the second position contains rmv, the second operand must be a 16- or 32-bit register or
memory operand. Since EDI and EAX are 32-bit registers, we see that AbD EDI, EAX is an example of an
instruction which can be encoded with code whose first byte is 03. Another example is ADD EDI, [1234H] .
The type of information conveyed by the first byte of code can be broken down into cases.

1. Ina few cases, this one-byte suffices to completely specify an instruction. F4, for example, specifies
the halt instruction, HLT.

2. In many other cases, although the first byte determines which operation is to be performed, it does not
specify the operands. In these cases, a second byte is often sufficient to carry the operand information.
This second byte is called the ModRM byte. For example, if the first byte is 89, then the table entry is
mMov rmv,rv. In addition to specifying the operation Mov, the rmv,rv operand keys convey information
on how the ModRM byte is to be interpreted.

3. There are also cases where the first byte does not fully specify an operation, but merely a general type
of operation, and the ModRM byte is used to complete the specification of the operation as well as
carry operand information. For example, if the first byte is C2, then the table entry is Shift rmv,ib. In
these cases the full interpretation of the ModRM byte requires moving to Table 5.3. Shift is not a
mnemonic. It is only a pointer into Table 5.3. This is indicated in the table by the fact that not all of its

letters are upper case.

4. Ifthe first byte is OF, then a whole raft of possibilities is opened up. The information conveyed by OF
is merely "go to Table 5.4."

Table 5.2. First Byte of Opcode Space

L1} 1 1 5 4 5 & T 8 9 A B C 1] E F
[ano Jaop [app [app [apo [aoo |euse |Por | om | om | Ok | om | om | o |PUSH | 8
o Irmb\.rh ey | rborend | reamey | ALS | eAd v | ES ES | mebeb | myvy | rhomb | eeomye | ALLL | eAX v | OS5 mpace |
ADC | ADC | ADD |ADC | ADC | ADC | PUSH | POF | SBE SBE | SBB | S5EB | SBB | SBE |FUSH | POP
1 b | vy | ehomd | nome | AL | eAMiv | S5 55 meboh | v,y | rhomb | eeomy | ALE | eAN v | DS (i
AND | AND | AND | AND} | AND | AND A | SUB SUB | SUB | SUB SUB | SUB | AS
H bl | rovey | ehoesd ey | AL | eAN v | ES: meboh | v,y | rbemb | eermy | AL MIH'._' _J'_‘S:]
XOE | XOR HOR NOEL | XOWR KR AAA | CMP CMP | CMP | CMP CMPF Cup AAS
. mebgh | mmvey | ehaesd | rvamy | AL | eAN v | 55 mebh | mmyv,ry (rbemb | evemy | AL | eAdiv | DS
m e 118 I e g 18 I DEC DEC DEC DEC DEC DEC DEC DEC
4 eAX | oCX | eDX | eBX 1 eBP | £S5 eDl eAX | X | DX | eBX 5P | cBP 25l el
5 PUSH |PUSH |PUSH | PUSH | PUSH | FUSH | PUSH | PLSH | POP POP il PP POP BOE POF POP
eAX | aUX el eBx eh eBP 51 el eAX elX | eDX eBX eRPF | eBP esl el
PUSHA | POFA | BOUND | ARPL PUSH | IMUL | PUSH | IMUL [IN8B [msp | ourse | ouTsn
L] PUSHAD | POPAD | regmde | 2 el F5&: % |Oplen | AdLen 1Y [P | ih |nerevib
I JHO 1B JAE TE INE IBE A 15 ms | o NP I IGE e IG
T Hii] -] ite [1] 1] -] ik L] 1] ik | 1] =] [[=] i] 1]
lissal | D Issad | TEST | TEST | NCHG | XCHG | MOV | MDY | MOV | MOV [MOV | LEA | MOV | POP
. bl | e iv vt | embyrb | rmvory | rmbgrs) ey | ommboh| mmere) thomb | vy | mmssgr | o, m | segrom| o ormy
9 NOPF | XCHG | XCHG | XCHG | XCHG | NOHG | XCHG | XCHG | CWDE | WG % FWAIT |PUSHE | POFF | SAHF | LAHF
eAN N oA D e AN RY | cAM P (AN CHP (cANcS] [eadaDl | CHW | CIM) | o=
Y MOV | MOV | MOV | MOV | MOVER | MOWSD CMPSS | CMPSD | TEST i TEST | STOSH | STOSD | LODSH LODSD | SCASH | SCASD
ALV | e fivg| VAL wleaX ALt | eAX.Iv
MOV | MOV | MOV | MOV | MOV | MOV | M0V | MOV | M0V l MOV | MOV | MOV | MOV | MOV | MOV | MOV
B ALk | Olib | DL | BLab | AHGb | CH.ib | DHib | BHES JeaXliy | eCNbv | eDXv [eBX.v | eSPbv | eBRIv |eSliv | eDliv
C Shily | Shah RET | RET | LES LDS | MOV | MOV | ENTER | LEAVE |RETF |RETF INT | INT | INTO | IRET
rmbsiby | rmwib i Fm,rep | Fnp | ek B (e v | 2,08 | [3 ik
D Shift Skift | Shift | Shif AAM | AAD KLATE &7 E7 i a7 B7 ET B? B
rmbs 1 | rmy, | b CL| emoCle SPACE | IPaie | SpacE APECE | EpY FpEIC | SPACE | Apacs
g |LoomE oo jLoce |scxz | I | IN | OUT | OUT | CALL| JMP ME o Imp | B | W | ouT | ouT
shon | shen | shon | sbor | ALJS] | eaxga) AL | mesx] v iv em | b | ALIDK] [eAxgox] [DXLAL DX e
F | REF HLT | CMC | Unary |Unary | OLC | STC | CLI ET | CLD | ST |l | Fodir
LOCK | rEsne| REPE mmb | o rob | emy

5. [Ifthe first byte is in the range D8-DF, then the command is a floating point command. These
commands are not dealt with in this text.

6. There are also prefix bytes which modify the subsequent commands. In Table 5.2, the prefix bytes
such as the Lock prefix FO are shown as bottom-sitters.

These various cases are dealt with one by one in the following sections.

5.3 The ModRM Byte

The ModRM byte is used to carry operand information when the first byte cannot do so. The ModRM byte
consists of three parts.

Mod R M
7 | 6 5 | 4 | 3 2 | 1 | 0

1. Bits 7 and 6 are the Mod bits. When the Mod bits are 11, the M bits designate a register. Otherwise
the M bits are used for memory coding.

2. Bits 5, 4, and 3 are the R, or register, bits and are often designated using a slash notation, /r.

3. Bits 2, 1, and 0 are the M, or memory, bits, and are used to specify or help specify a memory location
except when the Mod bits are 11.

5.3.1 rv,rmv Coding

The entry in Table 5.2 for the byte 03 is

ADD
rv, rmv

We can use this entry to assemble the Abp EDI, EAX command. The AbD EDI, EAX command requires a
ModRM byte. The m in the second operand position specifies not only that the second operand may be a
memory operand, but also that it must be encoded in the M bits of the ModRM byte. Since the second
operand is the register EAX, the bit code for EAX, 000, occupies the M bits in the ModRM byte. Since we
are using a register for the M bits, the two Mod bits must be 11. The first operand, which as the r indicates
must be a register, is therefore encoded in the R bits of the ModRM byte. EDI is the first operand and its
code is 111. Consequently the ModRM byte is:

Mod R M
7 6 5 4 3 2 1 0
1 1 1 1 0 0 0
1111 1000 = F8H

Combining the 03 with the ModRM byte yields the code 03 F8 for AbD EDI, EAX.

If in this code we change the two Mod bits from 11 to 00, we get the code for App EDI, [EAX] . Here the M
bits are used for an actual memory operand. The codes 01 and 10 are used to code for immediate
displacements such as ApD EDI, [EAX + 5], where the displacement is either of type ib or iv. Hence the
code for aDD EDI, [EAX + 5] 1S 03 78 05. The code for ADD EDI, [EAX + 87654321H] is 03 B8 21 43 65
87. If this coding were done uniformly, however, it would leave no room in the coding space for the
complicated formats seen in chapter 6, section 6.2.3. To make space for coding these formats, the code for
the ESP register is removed to provide an escape into another byte of the coding space called the SIB byte.

5.3.2 rmv.rv Coding

When the rmv and rv keys are reversed, this turns the three-bit codes around. As an example, suppose we
want to code the instruction Mov EDI, Eax. The entry for 8B matches and could be coded with the same
ModRM byte as the abp EDI, Eax code. But the entry 89 also matches:

MOV
rmv, rv

Using this entry, we note that the first operand may be a register and is coded in the M bits. Hence the code
for EDI goes into the least significant bits. The second operand, EAX, is coded in the R bits.

Mod

R

M

4

1

0

1

11000111 = C7H

Hence, using the 89 entry in Table 5.2, we obtain the encoding 89 C7 for Mmov EDI, EAX.

5.3.3 Nonregister R Bits

In some cases, the first byte is insufficient to specify an operation, but the R bits of a ModRM byte are used
to complete the specification. These cases are listed in Table 5.3. suB ECcx, 32 is an example. The entry in

Table 5.2 for &3 is

Immed
rmv, ib

Since the row of Table 5.3 labeled "Immed" has a suB under /r = /5, we learn that instructions matching

SUB
rmv, ib

can be coded using 83 as the first byte and 101 for the R bits of the ModRM byte. Since the first operand,
ECX, is not memory, the Mod bits must be 11, and the M bits will be filled with 001, the code for ECX. So
the required ModRM byte is

Table 5.3. Instructions Specified by R Bits

/r /0 000 /1001 /2010 /3011 /4 100 /5101 /6 110 /7111
Immed ADD OR ADC SBB AND SUB XOR cMP
Shift ROL ROR RCIL RCR SHL, SHR SAR
Unary TEST i NOT NEG MUL IMUL DIV IDIV
IncDec INC DEC
Indir INC DEC CALL m CALL FAR m JMP JMP FAR PUSH
Mod R M
7 6 5 4 3 2 1 0
1 1 1 0 1 0 0 1

1110 1001 = E9H

The ib stands for an immediate byte. So the code for sur Ecx.32 is 83 E9 20.

5.4 386 Space (OF +...)

On an 8086, the byte OF codes for the instruction pop cs. On subsequent processors this instruction was
removed to make the OF code available for a significant expansion in the instruction set. Table 5.4 reveals
the space which was opened up. Like Table 5.2, it shows the information conveyed by a single byte, in this

case the byte following an initial OF byte. A few of the instructions in Table 5.4 appeared first on the 80286,
the 80486, or the Pentium, but most of them appeared first on the 80386. The bulk of the instructions new to
the 80286 are in Table 5.2.

1. As with Table 5.2, sometimes one entry specifies exactly one instruction. For example, OF CA is the
code for the instruction Bswap EDx, (Byte SWAP the EDX register).

2. Sometimes a ModRM byte is needed to convey operand information. The xADD instruction whose first
two bytes are OF Cl1 is an example of this.

3. Sometimes a ModRM byte is used to specify an operation. For example, if the first two bytes of the
instruction are OF 01, then we must check R bits of the ModRM byte to determine the operation.
From Table 5.5 we see that if the register bits in the ModRM byte were 011 then the instruction would
be an LIDT instruction (Load the Interrupt Descriptor Table).

Table 5.4. 386 Space

0 1 2 3 4 5 1] 7 8 9 A B C D E F
0 | LocalT | GlobalT] LAR | LsL Losou, | CLTS | INVD Warevn
v,y | vy
1|
2 iw MOV | MOV | MOV | MOY MOV
| $3,CW | e2,D0r | CRar2 | DRerd | r2,TRe THRrasl
3 |wm ROTSC | ROMSR
4
5
6 BB | MMX | MMX | MMX | MMX) MM | MMX | MMX | MW | MMX HM.'(‘MM."’. AMMX | MMX
HpaCe | EpECE | RPALE | A0S | SRBNE TRpEOC | AgNdd | Spao | Apace | space space | sace Spare | apace
] MWK | MM | MMX | MMX LHHK MMX | MMX MAMK | MMX
SDECE | AnECe Fiatite] ANEOE | Sl R [T PO LR

L . . ke gewere y eee g e , N e T
8 s INE B IAE | INE IBE A L] INE | IP NP | IL IGE | ne | G
iv v Iw o W 38 iw W i i i iv iv i iv i
9 SETD | SETNG) SETE | SETAE| SETE | SETNE| SETBE| SETA | SETS |SETNS| SETP | SETMP| SETL | SETGE|SETLE | 5ETG
rmibe b | mob | smb | emb | Fmb rend | emb | emh | mmb | Amb nmb | b mb | b | rmb
A FUSH | POP | CPID| BT | SHLD | SHLD IMUL | FLESH | POFP | BSM | BTS | SHED | SHRED | IMUL
[] F5 my b (vl reamv| GS o] .y e | rv,rmy
B ouros jowrons | LSS | BTR LFS | LGS | seoveo | sovex Bits BTC | BSF | DSR [MOVEX |MOVEX
rmbrb| vy | oy, mmp | mmr | v, mmp | oy, i | regml | evem2 mr | rm r.rm n_r__!-!niﬁ_rr,mz
C XADD | XADD agsrscs] BEWAP | BSWAF | BEWAP | BSWAP | BEWAP | BSWAP | BSWAP | BEWAF
reib.b| Py mi | EAX | ECX | EDX | EBX | ESP | EBP | ESI | EIM |
D MWL | MMY | MY MM MM | MMX IMMY | MM | MDMX Bl
spacc | space | space space space | apacs space | space | space space
MWD | MMY | MY MMX | MMX MMN | MMX | MMX MNAX
E = .-?:_:E_ b b s i lnaiad A '1-]?“ SRR SpaCE Spase
F MR | MMX | MMX MM MMX | MMX | MMX MMX | MMX | MMX
s | space | space space SPAGE | Apadd | Spate space | space | space |

Table 5.5. OF Instructions Specified by R Bits

Ir /0 000 /1 001 /2010 /3011 /4 100 /5101 /6 110 /7111
LocalT SLDT rm2 STR M2 LLDT Tm2 LTR Tm2 VERR 'm2 VERW rm2
GlobalT SGDT MO SIDT MO LGDT M6 LIDT M6 sMws rm2 LMSW rm2
Bits BT rmv,ib BTS rmv,ib BTR I'mv,ib BTC rmv,ib

4. Some of the codes refer to MMX instructions. These instructions are discussed in the Intel book, The
Complete Guide to MMX Technology.

We learn that instructions matching Table 5.5 contain 80486, Pentium, and MMX instructions as well as
80386 instructions. For example, the xapp and BswaPp instructions first appeared on the 80486 and the cPuID
and rDTSC first appeared on the Pentium.

5.5 32-Bit vs. 16-Bit Code

To this point we have discussed machine codes for commands involving 32-bit general registers only. We
are now ready to consider the coding of the 16-bit general registers.

The mov ECx, EAx command, as noted in section 5.1, can be encoded as 89 C1. The corresponding 16-bit
command is MOV cx,Ax. Surprisingly, the code for this command is also 89 CI! The 80386 was designed to
use the same encodings for the 16-bit registers as for the 32-bit registers. Clearly there is a problem with
this. When the processor fetches the bytes 89 Cl, which instruction should be executed, MOV ECX, EAX Or MOV
cx, ax? It so happens that the decision is based on a single bit in the processor. This bit determines whether
code is interpreted as 32-bit code, in which case 89 C1 means Mov ECx, EaX, or 16-bit code, in which case
89 C1 means MOV CX, AX.

When the bit is set it does not mean that the instruction Mov cx, ax is unavailable. To encode the fact that
the 32-bit coding presumption is wrong a one-byte prefix 66 is used. So in 32-bit code 66 89 C1 is the code
for mov cx, ax Similarly the Mmov Ecx, EAX instruction is available in 16-bit code. The code for it is 66 89 Cl
This prefix is called the operand size prefix. It means that the operand size is not the default size.

Typically the bit is set while running Linux for example, and cleared while running DOS. Except where
specifically stated otherwise, code given in this book assumes the processor's bit is set for the 32-bit default.
Hence, 89 C1 means Mov ECX,EaX and 66 89 C1 means Mov cX, ax. Now that we see how the code 89 C1
can have either one of two possible meanings, it is easy to explain the v in

Table 5.6. 32- vs. 16-Bit Coding Example

32-Bit Code 16-Bit Code
MOV ECX, EAX 89 C1 66 89 Cl1
MOV CX, AX 66 89 C1 89 C1

Table 5.7. Codes for 8-Bit Registers

Codes for 8-Bit Registers
AL 000 AH 100
CL 001 CH 101
DL 010 DH 110
BL 011 BH 111

the entry in the first chart for the code 89:

MOV
rmv, rv

The v in each operand marker stands for variable where variable refers to the fact that the size may be either
16 or 32 bits. Similarly the e in register designations such as eAX refers to the fact that in 32-bit coding
EAX is intended and in 16-bit coding AX is intended.

5.6 The 8-Bit Registers

Although the 32-bit and 16-bit register commands are forced to share opcodes, the eight-bit registers
generally have dedicated opcodes. For example, the opcode 8A designates an eight-bit Mov instruction. The
entry in Table 5.2 for 8A is

MOV
rb, rmb

rb stands for register byte and is coded for in the register bits of the ModRM byte. rmb stands for register
or memory byte and is coded for in the memory bits of the ModRM byte. 8A Cl1 is the code for Mov aL,cCL.
Table 5.7 lists the eight-bit register codes. The code for CL goes into the M bits and the code for AL goes
into the R bits.

Mod R M
7 6 5 4 3 2 1 0
1 1 0 0 0 0 1

Combining the two bytes yields 8A CI.
5.7 Linux .0 Files

Programs in C which include calls to functions such as printf () or scanf () require linking to the
compiled code for these functions. This code is stored in libraries such as 1ibc.so. Once this linking is
done, the program becomes much longer. In order to examine the machine code of a program, it is easier to
look at the code before this linking is done because there is so much less of it. This code is stored in object
modules with a .o file extension. The analogous files in DOS are the .OBJ files. To instruct the gnu C
compiler to produce a .o file, the -c¢ switch can be used. The command

linuxbox$ gcc -c mult.c

produces a mult.o file. This file contains the machine code of the program, in addition to tables which
allow the linker to do its job.

To examine an object code file, one may use either the ob program (object dump) which comes with this
book or the od program (octal dump) which is a standard Unix utility. To get od to display in hex, use the
switches -tx and -Ax.

linuxbox$ od -tx -Ax mult.o

ob has no switches:

linuxbox$ ob mult.o

Chapter 6. MEMORY

In chapter 4, section 4.2 we noted that the Mov command can be used to transfer data to and from memory
just as 1N and ouT can be used to transfer data to and from I/O devices. For the programmer, using Mov to
access memory is simple: just enclose an address in brackets. In neither DOS nor Linux, however, are the
addresses enclosed by brackets actual memory addresses. In DOS an address processing mechanism called
segmentation is used, and in Linux another one called paging is used. But these mechanisms can be
circumvented. In this chapter we make the simplifying assumption that this is done so that addresses
enclosed in brackets are actual hardware addresses. Programs written on this basis run under Edlinas.
Segmentation and paging will be dealt with later. Segmentation is discussed in chapter 12, and paging is
discussed in chapter 8.

6.1 4-Byte Data Width

Data transfer between a processor and its memory is easy when word size and register size agree. For
example, the 8080 processor fetches eight-bit words into its eight-bit registers. Eight-bit registers are, of
course, mainly a thing of the past. But eight-bit words we still have. Intel has implemented many measures
so that its new processors would run old software. One of these has been the maintainence of eight-bit
words, despite the fact that both processor registers and data transfers long ago outgrew the eight-bit size.
The 386 processor, for example, has 32-bit registers and 32-bit data transfers.

When register and word sizes don't match, simple transfer commands no longer make sense. For example,
without some further protocols in place the command

MOV [19H], EAX

does not make sense. The memory location referred to, like all Intel memory locations, is an eight-bit
location. But EAX on the other hand is a 32-bit register.

6.1.1 Storage Protocols
Two further protocols are used.

e When an n byte transfer is indicated by an address a, the memory bytes referred to are those at the
addresses a, a + 1, ..., a + n - 1. All architectures do this.

e When an n byte number is stored in memory, its bytes are stored in order of significance, least
significant bytes in the lowest addresses. Numerically increasing addresses correspond to increasing
byte significance. Not all architectures do this.

These two protocols make it possible to interpret the Mov [19H], EaAx command. As shown in Figure 6-1,
the bytes in EAX are stored in addresses 19H, 1AH, 1BH, and 1CH. The least significant byte in EAX is
stored in 19H, the next in 1AH, and so on. Program 6.1 demonstrates the use of this instruction. When

Program 6.1 is

Figure 6-1.Mov [19H], EAX

18
EAX: 1A2B3C4D —[
19 4D

1A 3C
1B 2B
1C 1A
1D

Program 6.1

; Tiny Edlinas program which stores an input number into memory.

’

IN EAX, [0]
MOV [19H], EAX
RET

run under Edlinas, it is loaded starting at address 0. Since memory locations up to the address 20H are all
displayed when this program is loaded, the execution of the MOV instruction is directly observable.

6.1.2 Little and Big Endian Architecture

Architectures which use the byte ordering given in the second of these protocols are called /ittle endian.
Architectures which do the opposite are called big endian.

All Intel processors are little endian. Examples of big endian processors are Motorola's 6800 and 68000
processors. MIPS and PowerPC processors can work in either mode.

In order to encourage software developers to migrate away from competing hardware, a common strategem
is to incorporate compatibility features. A compatibility feature added to the 486 processor is the Bswap
instruction. It reverses the byte ordering of any 32-bit general register. Its format is simply:

BSWAP reg

For example if the EAX register contained the number 12345678H, then following the execution of the
BSWAP EAX command, it would contain the number 78563412H.

6.1.3 Alignment

The discrepancy between the four-byte data transfer size and the one-byte word size which exists in 386 and
486 systems is not fully reflected in the hardware. In fact the one-byte word size is a kind of fiction
maintained for the benefit of the software. Although memory on these systems is forced to emulate a one-
byte word memory, words are actually four bytes wide. The two lowest bits of the 32-bit address bus are in
fact not there. The wires on the address bus are A31 through A2. A1 and A0 are missing. From a hardware

point of view, a 386 addresses 239 32-bit words. The 232 x 8 bit memory is a fiction. But because the fiction
is consistently maintained, software which believes this fiction does work. But it doesn't work as well as
software which takes the true state of affairs into account. For example the command

MOV EAX, [10H]

accesses four bytes of memory whose 32-bit addresses are

0000 0000 0000 0000 0000 0000 0001 0000

0000 0000 0000 0000 0000 0000 0001 OOOL
0000 0000 0000 0000 0000 00O0O 0001 0010
0000 0000 0000 0000 0000 00O0O 0001 0011

Note that these addresses differ only in the "non-existent" bottom two bits. These four bytes are actually just
one four-byte word. The command can be accomplished with a single memory transfer. On the other hand
the command

MOV EAX, [12H]

which also accesses four bytes of memory, cannot be carried out in the same way. The 32-bit addresses of
these four bytes are

0000 0000 0000 0000 0000 0000 0001 0010
0000 0000 0000 0000 0000 0000 0001 0011
0000 0000 0000 0000 0000 0000 0001 0100
0000 0000 0000 0000 0000 0000 0001 0101

To access these four bytes, two distinct memory transfers are required. In code which is accessing a large
number of consecutive memory locations, four bytes at a time, performance will be cut in half if the
addresses called are not those whose bottom two bits are zero, i.e. a multiple of four. Memory transfers
which straddle four-byte word boundaries are said to be out of alignment. Starting with the 486 processor, a
flag was added which detects memory transfers that are out of alignment.

6.2 Addresses in Brackets

The use of MOV to access memory just scratches the surface of available memory commands. All of the
entries in Table 5.2 containing operand keys that contain an m describe commands that access memory.
From the table, we can see that Mov, aADD, OR, ADC, SBB, AND, sUB, and xor all allow memory
operands in either the source or the destination operand position. Memory operands may be supplied using
several different formats.

6.2.1 The [imm] Format

All the memory operand examples presented so far have used the [imm] format with the Mov instruction.
[lustrating the [imm] format with the Abp command we have both

ADD reg, [imm]

and

ADD [imm], reg
where imm can be any four-byte number.

As we all know, memory may be used for storage of many kinds of data, including text, graphics, and
numbers. In the following paragraphs we look at how it is used in connection with numbers, in particular
with big numbers.

64-Bit Arithmetic

Memory space is much larger than processor space. When numbers become too large for the processor to
work with, the arithmetic can be done piecemeal, with pieces small enough for the processor to handle
loaded in from memory as they are needed. Some features of the processor are designed with this kind of
arithmetic in mind. The Apc instruction is a case in point. This instruction makes it possible to do piecemeal
addition of large numbers. Suppose that we have the numbers 1111222233334444H and
AAAABBBBCCCCDDDDH stored at locations 100H and 108H in memory, and that we want to add them.
Using the ApD instruction on the bottom four bytes of these numbers will set the carry flag. Using the apc
instruction on the next four bytes takes account of the carry. The apc instruction is very similar to the App

instruction. It means

let destination = destination + source + carry flag

whereas the ordinary ApD instruction means

let destination = destination + source

The addition can then be carried out in two stages, the first one using App and the next one using Apc.

ADC 1 ADD
1111 2222 | 104 3333 4444 | 100
AAAA BBBB | 10C CCCC DDDD | 108
BBBB DDDE 0000 2221

In order for the carrying to work, it is important that nothing disturb the carry flag between the low order
addition and the high order addition. The following code does this arithmetic using the eight bytes starting at
100H as the destination and the eight bytes starting at 108H as the source. When this program finishes, the

Program 6.2

; 8 byte Destination at 100H
; 8 byte Source at 108H
MOV EAX, [108H] ; Bottom 4 Source bytes
ADD [100H], EAX ; Add to bottom 4 Destination bytes
MOV EAX, [10CH] ; Top 4 Source bytes
ADC [104H], EAX ; Add to top 4 Destination bytes

eight-byte sum is located in the eight bytes starting at the address 100H. When the apc instruction finishes,

the overflow, carry, and sign flags will be correct for eight-byte arithmetic. The zero flag does not work so
well for eight bytes. When set, it need not indicate that the eight-byte sum is 0.

Powers of 3
Expanding on this idea, we can code a little 64-bit power of 3 calculator using the following algorithm:

Initialize y = 3

Then repeat:
X=Y
Y=y +X
y=Yax

Program 6.3 has no input or output. It can be observed by stepping through it in Edlinas. The [imm] format
is useful in referring to a few fixed locations in memory. It is not useful in processing a long succession of
bytes in memory.

Program 6.3

Edlinas program which finds 64-bit powers of 3.
Store the 8 bytes of x starting at memory address 100H.
Store the 4 least significant bytes of y in EAX.
Store the 4 most significant bytes of y in EBX.

Ne Ne Ne Ne Ne N

y = 3

MOV EAX, 3

MOV EBX, O
MOV EDX, 1
;X =y
ABC: MOV [100H], EAX
MOV [104H], EBX
Py =y +x

ADD EAX, [100H]
ADC EBX, [104H]
i Y =Yyt X
ADD EAX, [100H]
ADC EBX, [104H]
INC EDX ; Keep track of the exponent.

JMP ABC
6.2.2 The [reg] Format

Long successions of bytes occur in both arrays and in very large numbers. The [reg] format is much better
suited to deal with these situations than is the [imm] format. Using Mov to illustrate the [reg] format, we have
both

MOV reg, [reg]
and

MOV [reg],reg

In the first of these, the [reg] source operand refers to the location in memory whose address is in the
register whose name is in brackets. For example, the code

MOV EBX, 10H
MOV EAX, [EBX]

transfers four bytes into the EAX register from memory starting at address 10H.

As an example of the usefulness of the [reg] format, suppose we consider the problem of adding two 256-
byte numbers.

ADC ADC ADD
88 | 1IFC 22 | 104 44 | 100
77 | 2FC G AB 204 CD | 200
BE 21 21 | 100

In Program 6.2 the addresses were accessed directly using the [imm] format. Each four bytes of the addition
were done using two instructions, a Mov and an Apc. Using that same technique here to do add 256-byte
numbers would require multiplying the number of instructions needed by 64. Consequently we would need
128 lines of code. If we use the [reg] format, on the other hand, we may use a register for the source and
destination addresses and increment them in a loop. If we use EDI for the destination index and ESI for the
source index, then we begin by storing 100H in EDI and 200H in ESI. We must then increase these pointers
four bytes at a time as we traverse the two big numbers. This code is much shorter than the 128

Program 6.4

Code which adds two 256-byte numbers y and x:
y =y +tx

Assume the 256 bytes of y are stored starting at memory address 100H.
Assume the 256 bytes of x are stored starting at memory address 200H.

; Use EDX to store a decrement counter for the y y + x loop.

MOV EDI, 100H ; Initialize pointer into
MOV ESI, 200H ; Initialize pointer into x.

<

7Yy =y tx
MOV EDX, 40H ; Loop needs 64 iterations.
CLC ; Clear the carry flag.

XYZ: MOV EAX, [ESTI] ; 4 Source bytes into the Processor.
ADC [EDI],EAX ; Do the addition.
INC ESI ;
INC ESIT ;
INC ESI ; This is ugly.
INC ESI ;
INC EDI ; But using ADD here would
INC EDI ; clear the carry flag.
INC EDI ;
INC EDI ;
DEC EDX ; Decrement the loop counter.
JINZ XYZ ; See i1f the loop is finished.

lines which would have resulted from using the [imm] format.

At first sight it would appear that we could do better by using ApD instructions in place of multiple 1nC
instructions. But this would actually ruin everything. Because we are using a loop to proceed four bytes at a
time from the least significant to the most significant bytes, we encounter a problem with the carry flag. If in
between two executions of the Apc instruction we move four bytes down the number using an App
instruction, we have messed up the carry flag. In chapter 4 it is noted that the carry flag is unaffected by the
1nc and DEC instructions. The reason for this arcane little exception suddenly becomes clear. Multibyte
arithmetic needs a carry flag which can survive loop counter adjustments. Because they don't affect the carry
flag, the InC and DEC instructions can be used to carry out harmless loop counter adjustments. Adding 4 by
using four INC instructions is not beautiful, but it works.

This code is not bad from the standpoint of taking up memory space since memory is cheap. But it is bad
from the standpoint of adding execution time to a loop. If there is one place where execution time is costly it
is in the middle of a nested loop, and that is exactly where those extra INC instructions are.

Another memory format is useful in dealing with this problem.
6.2.3 The [reg+scale*reg+imm]| Format

The most general memory format is the [reg + scale * reg + imm] format, where scale is a scale factor which
must be either 1, 2, 4, or 8. The register which is multiplied by the scale factor is called the index register.
The other register is called the base register. Some fields may be omitted. This gives us the effect of a
variety of formats, including

[scalexreg + imm]
[reg + scalexreg]
[reg + reg + imm]
[reg + imm)]

[reg + reg]

in addition to the [reg] and [imm] formats already discussed. It is a little hard to believe that instructions
with this degree of complexity are hardcoded into the processors. But the cost in terms of instruction length
for all this complexity is actually just one more byte of code for instructions which utilize this general
format. The byte is called the SIB byte, both for scaled-index-base byte and sibling of the ModRM byte.

Taking up the problem of the repeated InC instruction in Program 6.3, note that a scale factor of 4 would

increase the address by 4 whenever the index register was incremented by 1. In the code shown in Program
6.5 the [scale*reg + imm] format is used to refer to both source and destination memory locations. In this
code we see that a single TnC instruction takes the place of eight InC instructions in Program 6.3.

Program 6.5

; Edlinas program which finds 256-byte powers of 3.
; Store the 256 bytes of x starting at memory address 100H.
; Store the 256 bytes of y starting at memory address 200H.
MOV EBX, 3 ; Initialize base.
MOV EDX, 1 ; Initialize exponent.

ry = 3

MOV EAX, 0 ; Do the adding in EAX.

MOV EDI, 40H ; Loop needs 64 iterations.
ZRO: DEC EDI

MOV [4*EDI + 200H],EAX

JNZ ZRO

MOV [4*EDI + 200H],EBX

b
Il

y. Main infinite loop starts here.

LUP: MOV EDI, 40H ; Loop needs 64 iterations.
MOV ESI, EBX ; Initialize main loop counter.
BEG: DEC EDIT

MOV EAX, [4*EDI + 200H]
MOV [4*EDI + 100H],EAX

JNZ BEG
r Y =Y + X
AGN: MOV ECX, 40H ; Loop needs 64 iterations.
XYZ: MOV EAX, [4*EDI + 200H]

ADC EAX, [4*EDI + 100H]
MOV [4*EDI + 200H], EAX
INC EDI

DEC ECX

JINZ XYZ

DEC ESIT
JNZ AGN

INC EDX
JMP LUP

One variation which is not permitted is the use of memory references in both operand positions. There are
no x86 processor instructions which use memory as both source and destination operands. The instruction

ADD [EAX], [EBX]

for example, does not exist. There are however instructions which involve both reading from and writing to
memory; INC [EAX],for example both reads from and writes to the memory location whose address is in
EAX. Architectures called load/store architectures do not allow mixing processor operations with memory
operations. The only commands in a load/store architecture which access memory are /oad and store.

6.2.4 16-Bit Addresses

In section 6.2.2 the [reg] format for memory addressing was presented where reg could be any of the eight
32-bit general registers. The 8086 and 80286 also use a [reg] format. Not all eight 16-bit registers are
permitted, however, only BP, BX, SI, and DI. There is also a [reg + reg + imm] form. imm must be a 16-bit
number. If two registers are used, the only allowed combinations are, BP + SI, BP + DI, BX + SI, and BX +
DI. Since these restrictions are easy to forget, programmers not accustomed to 16-bit addresses may find
themselves using disallowed forms of address. Most programmers will prefer to avoid 16-bit addressing
whenever possible.

These 16-bit forms of memory address can be used on an 80386. When they occur in 32-bit code, a special

prefix, 67H, has to be applied to the machine code to notify the processor that the memory address bits in
the ModRM byte are coded using the old 16-bit coding system. This prefix is called the address size prefix.
It is similar to the operand size prefix discussed in chapter 5, section 5.5.

6.2.5 CISC vs. RISC

An x86 computer is generally considered to be a complex instruction set computer (CISC). This is partly
because of complicated addressing, as in the [EDX + 4*ESI + ABC] memory operand. Machines such as the
SUN and MIPS workstations are based on the idea that by simplifying the instructions and having fewer of
them, they become easier and faster to execute. This can more than make up for the fact that it takes more of
these little instructions to write a program. Computing based on this philosophy is called RISC, reduced
instruction set computing. The RISC vs. CISC issue is not an either—or issue like little endian vs. big endian.
RISC is a set of features which may be adopted partially, in varying degrees. One reason that the 486 and
Pentium processors were able to compete with the early RISC PowerPC processors is that they adopted a
piecemeal RISC philosophy. Although CISC instructions are allowed on a Pentium, it works faster if
programmed using a RISC-like subset of the total instruction set.

Their names notwithstanding, the Pentium II and Pentium Pro have gone over to a totally RISC architecture.
The instruction set used internally is a pure RISC instruction set. Traditional x86 instructions are converted
internally to RISC instructions before they are executed. In a sense, the "end of the line" tag hung on the
Pentium by Apple marketers was correct. But ironically, 386 assembly language is now stronger than ever.

6.3 Operand Size Ambiguity

In most two-operand instructions, both operands must have the same size. So when a memory operand is
used in such a context, the number of bytes it refers to can be determined if the other operand is a register
operand. For example, in ADD [EBx], ax the memory operand [EBX] must refer to two bytes of memory
since AX is a two-byte register. However, when a memory operand is used with an immediate operand, the
result is ambiguous. For example, the following command is ambiguous:

MOV [EBX], 5

Similarly, when a memory operand is used with a unary operation such as NEG (which takes the two's
complement of a number), the operand size is indeterminate. An instruction such as

NEG [EBX]

might well refer to one, two, or four bytes of memory. Under these circumstances, an assembler has to make
a choice. NASM chooses to produce an error message. In 32-bit code Edlinas defaults to a four-byte
reference when the reference is ambiguous. In 16-bit code, the default is two-byte. To indicate the one-byte
case in Edlinas you may use the customary but clumsy notation

NEG BYTE PTR [EBX]
In NASM, the code is
NEG BYTE [EBX]

To indicate a four-byte reference in NASM, the code is

NEG DWORD [EBX]

A two-byte reference is indicated using worbp as a qualifier. These qualifiers clearly do the job. The implied
concession that a word is 16 bits is unfortunate. In light of notation such as BYyTE pTR, the AT&T practice
of adding a letter to the mnemonic doesn't seem so bad. In fact, the Intel assembler does use mnemonics of
this sort in a few cases such as L.opse and sTosB (load string byte and store string byte).

6.4 Labels

In programming jumps, labels are used as a convenience. Using a label with a jump instruction makes it
unnecessary to count the number of bytes upstream or downstream to the jump target. Counting these bytes
requires assembling the intervening code and has to be done over again any time the intervening code is
changed. So labels are a great convenience. But still they are only a convenience.

Labels may also be used in accessing memory storage locations. In Program 6.6 we see ABC used as the label
for a location where an input byte is stored. In the

Program 6.6

; Tiny Edlinas program which uses a label to reference a data storage location.

’

IN AL, [O0] ; E4 00
MOV [ABC], AL ; 88 05
; 09 00
; 00 00
RET ; C3
ABC: NOP ;90

machine code for the Mov [ABC], AL instruction, the label aBc is replaced by a number. Based on the
encoding of jump instructions discussed in chapter 5, we should expect to see aBc replaced by the number 1,
since the label ABC occurs one byte past the beginning of the next instruction. Based on the Mov instructions
in section 6.2, we should expect to see ABC replaced by the address of the instruction on which the label ABc
occurs, in this case 9, if we assume that it is loaded starting at 0, as it would be by Edlinas.

6.4.1 Address Encoding
There are two common methods for encoding the address of some targeted memory location.

e Relative Encoding. The numerical difference between the address of the targeted location and the
address of the following instruction is used in the machine code.

e Absolute Encoding. The target address itself is used in the machine code.

All the jump instructions discussed in chapter 5 use relative encoding. Absolute encoding is used for jump
instructions used in 8080 code and also in so-called far jumps in x86 machine code. The existence of some
absolute encoding is almost unavoidable. (The only alternative would be to design the processor to take over
the job of memory allocation.)

All memory accessing instructions in x86 machine code, Mmov, ADD, etc., use absolute encoding.
6.4.2 Program Loading

Dormant programs usually reside on the hard disk or some other secondary storage device. To execute, they
need to be in memory. To get a program to execute, the user passes its file name to the operating system (by
typing it on the command line for example), to execve() in the case of Linux. execve(), not the user or the
programmer, decides where in memory the program will be loaded. Since programmers have no control over
the location of their programs in memory, it makes using instructions that use absolute memory encoding
problematic when labels are used to refer to memory. In fact it makes assembling programs using memory
labels into plain unaided machine code impossible. Executable code resulting from programs using memory
labels must be accompanied by tables identifying all the points in the code where an absolute address
occurs. These tables are called relocation tables. All object code files, .o files in Linux, contain relocation
tables. When a program is loaded into memory, these tables are used to fix each absolute address in the
machine code so that it points to the address which is valid given where the program is actually loaded.

The Edlinas simulator loads all programs starting at the address zero. We can count the bytes in Program 6.6
from there to the line with aBc on it. If we do we, find that the NoP instruction occurs at address 9. That is
why the machine code given for the Mov [ABC], AL instruction in Program 6.6 shows the label aBc encoded

as 9. The instruction mov [9], AL could therefore be used in place of Mov [aBCc], AL. If this program
were to be relocated so that it started at the address 100H, then the code for the arc label in the Mov
instruction would need to be 109H instead of 9.

6.4.3 Variables

In high-level programming languages, variables are often implemented as labelled memory locations.
Although a compiler may use a register, a more typical implementation of a variable is as a labelled memory
location. This is true particularly for global variables.

6.4.4 Arrays

As an example of how these addressing modes might be used to handle array programming, consider the
following C code which counts how many zeros and ones there are in the part of an array, x[70][100], where
the rows of interest are from 20 through 29 and the columns are from 50 through 54. To code this in
assembler, we can use EBX for num_zeros, ECX for num_ones, and the label aBc for the beginning of the
array x. To reference the array location x[i][j] we need to use the fact that the address &x[i][j] is 1*100*4 +
j*4 bytes past &x[0][0] = ABC. The 100 in i*100*4 comes from the declaration int x[70][100] which tells
us that every row contains 100 four-byte locations. Although we might like to use EDI for 1 and ESI for j
and reference x[i][j] using [ABC + 400*EDI + 4*ESI], this much latitude does not exist in the coding space.
The multiplier 4 is allowed on one register, but neither a multiplier of 400 nor having two scaled registers is
allowed. Hence it makes sense to use EDX for 400*i. [ABC + EDX + 4*ESI]

Program 6.7
num zeros = 0;
num ones = 0;
for(i = 20; 1 < 30; 1 =1 + 1)
for(j = 50; j < 55; J =3 + 1)
{
if (x[1]1[3] == 0)
num zeros = num_zeros + 1;
if (x[11[3] == 1)
num_ones = num ones + 1;

}
6.5 Immediate Storage
The job of an assembler is to produce object code files. An assembly language program is the input to an
assembler. Except for comments, all the lines of all the assembly language files we have worked with so far
have consisted of instructions which are translated into processor instructions as was done in chapter 5.
Automatic translation by the assembler is a great convenience and is mostly what assembly language is all
about. Nonetheless it is sometimes desirable to forego translation and specify object code bytes directly.
Two notable occasions for this are

e Data bytes need to be inserted directly.

e Processor instructions need to be assembled by hand.
The following syntax is used to insert immediately given bytes directly into the machine code.
6.5.1 Byte Definition Assembler Directive
In NASM, the command

db imm

stores any one-byte number into the object code file. db stands for define byte. Instructions such as db which
do not translate into processor instructions are sometimes called pseudo-instructions. Since they are actually

instructions to the assembler, it is better to call them assembler directives. Assembler directives typically
lack the universality of processor instructions which usually follow the format laid down by the
manufacturer. Edlinas follows the Unix tradition that all assembler directives begin with a dot, and

uses .db.

Without the initial dot, the define byte syntax is very widespread. When used with labels it works in both
Microsoft and Turbo assemblers. In these assemblers

Program 6.8

MOV EBX, O ; num_ zeros

MOV ECX, O ; num_ones

MOV EDX, 8000 ; 400 * 20, Initially i = 20
; Outer loop begins here.
OTL: MOV ESI, 50 ; Let j = 50
; Inner loop begins here.

r

INL: MOV EAX, [ABC + 4*ESI + EDX]
; ABC = &x[0][0].
; EDX = &x[1][0] - &x[0]I[0]
;o4*3 = &x[1][J] - &x[i]10]
; ESI = 3
CMP EAX, O ; Check for zeros
JNE NOzZ ;
INC EBX ; Count zeros
NOZ: CMP EAX, 1 ; Check for ones
JNE NOO
INC ECX ; Count ones
NOO: INC ESI ;=7 + 1
CMP ESI, 55 ; Check that j < 55
JL INL ; Inner loop ends here.

ADD EDX, 400 ; Increase EDX by 100 * 4

CMP EDX, 12000 ; 8000 + 10 * 100 * 4

JL OTL ; Outer loop ends here.
ABC: NOP ; Begin array here.

the define byte directive has the flavor of a data type declaration. This "data type" is used to resolve
ambiguities of the kind noted in section 6.2. For example, if the label ABc is used in a program with the line

ABC DB 3 ; ABC is of type byte
then a command such as

NEG [ABC]
means the same thing as

NEG BYTE PTR [ABC]

In NASM (and in Edlinas) programs, there is no type significance attached to do. Common embellishments
of the simple syntax also work in both.

db imm, imm,
where a sequence of one-byte numbers follows the db, stores a seqence of bytes into the object code file.

In Edlinas, it is also possible to use an integer multiplier on the left. For example, the following code stores
zero into one hundred bytes of memory.

.db 100 * 0

In NASM the same effect can be achieved using the code

TIMES 100 db O
6.5.2 Hand Coding of Instructions

Because a new processor often uses an instruction set which is the same as an old instruction set except for
one or two new instructions, it is often worthwhile to use an old assembler to program a new processor. New
instructions can be utilized by hand coding them. Open source advocates may well note that if the assembler
were an open source program, it could simply be reprogrammed to handle the new instruction. But that is
another question.

Program 6.9

; Using immediate storage to encode the CPUID instruction.
MOV EAX, O
db OFH, OA2H ; Immediate storage

6.5.3 Initializing Data

In C it is easy to get the impression that there is no difference between a declaration with an initialization
such as

char x = 2;

and a declaration followed by an assignment such as

char x;
X = 2;

In fact, however, there is a difference. In the second case there is an implied processor instruction which
stores the immediate value 2. In the first case, however, no processor instruction is implied. The storage
indicated may be performed by storing the 2 at a program internal address by the assembler before the
program is ever loaded.

Program 6.10

; Tiny Edlinas program which uses a label to access stored data.
MOV AL, [ABC]
ouT [1], AL
RET

ABC: .db3

Chapter 7. THE STACK

The stack is a portion of memory which is shared with the operating system. It is used by programs for
communication with subprograms, for temporary storage, and when making system calls. It is called the
stack because it has a "last stored first retrieved" policy. It is in fact an example of the data structure that is
called a stack. Because it is used by the operating system as well as by the programmer, it must be used
responsibly. Misusing the stack is a very easy way to crash a program, or the whole system, if the operating
system is unprotected.

7.1 Push and Pop Operations

The following figure shows the stack and the ESP register. This register has the job of keeping track of the
stack. It does this by holding the address of the top of the stack. The SP in ESP stands for stack pointer.

Although the ESP is called a general register because it is accessible to the programmer like the registers
EAX, EBX, etc., writes to ESP should be done only with great care.

Suppose that ESP contained the address 19H as in Figure 7-1. Then storing the byte 76H on the stack would
fill the location 18H and the stack pointer would be changed, as shown in Figure 7-2. This kind of operation
is called a push. The one-byte push shown here is essentially the same as the following two operations:

Figure 7-1. Before Push

Stack Pointer

ESP: 19H 17
‘ 18
19 3A Stack Top

1A BB
1B A4
1C 04

Figure 7-2. After Push

Stack Pointer

17
ESP: 18H
L- 18 76 Stack Top

19 3A
1A BB
1B A4
1C 04

DEC ESP ; Move the pointer to the first vacancy.
MOV [ESP],76H; Store 76H at the address in ESP.

In fact, the x86 does not allow one-byte pushes. All pushes must be either two-byte or four-byte pushes. The
number of bytes pushed is determined by the size of the operand on the pusH instruction.

7.1.1 The pusa Command

The most common form of the PUSH instruction is

PUSH reg

Allowable registers include the 16- and 32-bit general registers, but not the eight-bit registers. Memory and
immediate operands can also be used with pusH, but the register operand form is the most useful.

Figure 7-3 and Figure 7-4 show the effect of a PusH EAX instruction.

Figure 7-3. Before puss Eax

PUSH EAX

EAX:| 1A2B3C4D H 17
18
19
1A
Stack Pointer 1B
ESP: 1CH ~ 1C 7D Stack Top

Figure 7-4. After pusn Eax

EAX:| 1A 2B 3C 4D H 1
——— 18| 4D | Stack Top
19 3C
1A| 2B
Stack Pointer 1B 1A
ESP: 18H IC| 7

is very similar to

SUB ESP, 4
MOV [ESP], EAX

Because the stack pointer points to the last occupied location rather than the first unoccupied location of the
stack, a pusH must be carried out by subtracting from the stack pointer first and then transferring the bytes to
the stack rather than the other way around. Having the stack pointer point to the first available location
would be a reasonable policy if all pushes and pops were the same size. But since pushes and pops may be
either two or four bytes, this is not a tenable policy.

7.1.2 The pop Command

The opposite operation is called a pop. Like the pusH instruction, pop takes register and memory operands,
which may be either two or four bytes. Unlike pusH, it does not take immediate operands. As with pushes,
the size of the operand determines the number of bytes to be popped. Since BX is a two-byte register, Pop
BX pops two bytes off the stack.

POP BX

is very similar to

MOV BX, [ESP]
ADD ESP, 2

One use for the stack is simply for storage when there are not enough registers available. Suppose there are
values in EAX and EBX which are important and need to be saved, but that also a computation has to be
done which uses the registers EAX and EBX. This is a situation which calls for using the stack. Before the
computation is done, the values in the registers EAX and EBX may be saved on the stack. After the

computation is finished, they may be restored again. The following code does this:

PUSH EAX
PUSH EBX

;.éomputation

POP EBX

POP EAX
The order of the pops is the exact reverse of the order of the pushes. This is because of the "last stored first
retrieved" character of a stack. The values in EAX and EBX at the end should be the same as at the
beginning. But this will only be true if the intervening computation uses the stack responsibly. This means

that each push should be matched with a pop. If pushes and pops are not balanced, then the values popped
into EBX and EAX at the end of computation will not be the same as their original values.

When writing a user program to be run in Unix, it is not necessary to initialize the stack by storing a value in
ESP. In fact, since the stack is already set up, storing an arbitrary value in ESP would disrupt the existing
stack and crash the program. When writing a program to run in Edlinas, however, it is necessary to initialize
ESP.

7.2 Subprograms

High-level programming languages use subprograms in order to reduce complex tasks to simpler
components. In C, subprograms are functions. A function may be called as though it were another C
instruction. If the function subpr () has been defined, then it may appear in a line of a main program, as in

Program 7.1.
Program 7.1

main ()
{

int x, vy, z;

subpr (); This subprogram is defined separately.

7.2.1 The cart and rReT Commands

Coding an assembler program which has a subprogram is done using the cALL and RET instructions. RET
stands for return. These commands work like jump to and jump back commands. The format of the carL
instruction is very similar to the format of the Jmp instruction.

Program 7.2

subpr ()
{

int a, b, c;

return c;

CALL label

As with the Jup instruction, the label is created by the programmer and refers to the line whose label field it
occupies.

When the subprogram is done, control needs to be transferred back to the main program; in particular the
next instruction executed in the main program needs to be the instruction following the carLL instruction. To
make this possible, the processor pushes the address of the next instruction onto the stack before it leaves the

main program. CALL does this. The RET instruction pops this address off the stack and jumps to it.

For example, Program 7.3 is a program that accepts a user input, uses a subprogram which adds 1 to the
EBX register to increment the number, and then outputs the result back to the user.

Program 7.3

MOV ESP, 2000H ; initialize the stack

Edlinas programs must initialize the stack
Unix programs must not.

Ne Ne Ne N

IN EAX, [0] Get a user input
MOV EBX, EAX EBX is where the subroutine works.
CALL subpr Leave for the subroutine.

MOV EAX, EBX
OUuT [1], EAX

Back now from the subroutine!
Output the incremented value

Ne Ne Ne Ne Ne N

RET Go back to Edlinas.
subpr:
INC EBX ; Subprogram does its job.
RET ; Go back to the main program.

For a more involved example, consider the following algorithm. This algorithm is at the heart of a well-
known, unsolved mathematics problem called the Collatz Problem.

If x is even divide it by 2
If x is odd multiply it by 3 and add 1 to it.
Repeat this process until x = 1.

Suppose we want a program which executes this algorithm and counts how many steps are required until the
value of x becomes 1.

Since it requires a loop to determine whether a number is even or odd, or to divide it by 2, if we are using
only add, subtract, and conditional jump commands, it makes sense to devise a subprogram to do this.
Specifically, suppose we assign the subprogram the task of examining the EAX register and storing half of
EAX in EBX if EAX is even, and zero in EBX otherwise. We may code this subprogram as follows:

Program 7.4

HAF: MOV ECX, EAX

MOV EBX, O

AGN: INC EBX ; Count the subtractions
SUB ECX, 2 ; Repeatedly subtract 2
JG AGN ;
JZ DUN ; It comes out even
MOV EBX, O ; It's not even.

DUN: RET

With this subprogram we may now write a main program which executes Program 7.4.
7.3 Parameter Passing

One of the most important functions of the stack is that it is used for parameter passing. For example,
suppose the character code converting function tolower () is called in a C program.

The tolower () function in the standard C library ctype.h converts the character codes to lower case. For
example, on a machine using ASCII, code it will return 97, the ASCII code for 'a', if given 65, the ASCII

code for 'A', as an input parameter. The input parameter is pushed onto the stack. So the assembler code for
the same function call looks like this:

Program 7.5

MOV EBX, 65

PUSH EBX
MOV EDX, 0
IN EAX, [DX]
ABC: CMP EAX, 1 ;
JE FIN ;If EAX = 1 then it's over.
INC EDX ;Use EDX as the counter.
CALL HAF ;This is the subroutine call!
CMP EBX, O ;EBX = 0 means EAX is odd
JE ODD ;
MOV EAX, EBX ;If not then EBX is half of EAX
JMP ABRC ;

ODD: MOV EBX, EAX ;Triple EAX and add 1
ADD EAX, EBX ;
ADD EAX, EBX ;
INC EAX
JMP ABC ;
FIN: MOV EAX, EDX ;EDX contains the final count.
MOV EDX, 1
OUT [DX], EAX
RET

Program 7.6

#include <ctype.h>

main ()
{
int x,y;
X = 65; /* x = "A'" */
y = tolower(x); /* y = 'a' */

CALL tolower
ADD ESP, 4

Although it might seem like a natural idea to use the stack for the return value, it is more common to use a
register. In gnu C for the x86, returned integer values are stored in the EAX register. Languages differ as to
whether the subprogram or the main program is responsible for popping the parameters off the stack. In
Fortran, Basic, and Pascal the subprogram pops the stack, but in C the calling program does. This is the
reason for the AbD ESP, 4 instruction in the calling programs just shown.

Languages also differ in the order in which parameters are pushed onto the stack. C pushes parameters
starting from the right. Suppose we have defined an integer power function ipow () :

int ipow (int base, int exponent);

The assembler code to call this function to calculate 23 looks like this:

MOV EBX, 3
PUSH EBX
MOV EBX, 2
PUSH EBX
CALL ipow
ADD ESP, 8

After this call, the result ipow (2, 3) = 8 will be stored in the EAX register.

7.3.1 The Global Assembler Directive

In the . o files produced by the gnu compiler, symbols such as printf or tolower which need external
linkage are coded differently in the symbol tables. Without this special coding the gnu linker will pass them
by and linkage will fail. In order to receive this special encoding, the assembly language source code must
specially indicate symbols which are to receive this treatment. There is an assembler directive recognized by
the gnu assembler and by Edlinas which will cause the assembler to encode a symbol in the symbol table as
available for linkage. It's syntax is

.globl symbol

In NASM the syntax is:

global symbol
7.3.2 Calling Assembler from C

The HAF subprogram would not work if called from C because it does not return values in the EAX register.
Also, it does not push the registers it uses. In the code below, ECX is pushed because it is used and the
calling program could be using it for something else. We also need to make the function name visible using
the global directive.

We have just written a function in assembler which we can call from a C program. The C program will store
the calling parameter on the stack. It will be buried under the return address pushed by the calling program
and the contents of ECX which were just pushed. These two items occupy eight bytes on the stack, so the
calling parameter is accessed at the address ESP + 8. The result is stored in EAX instead of EBX. To save
the object code as a .o file while in Edlinas, use the o key. To produce an object code file using NASM,
enter

Program 7.7

global half ; or .globl in Edlinas
half: PUSH ECX ; ECX is used, so push it.
MOV ECX, [ESP + 8]
; Stack top + 2 integers

MOV EAX, O

AGN: INC EAX ; Count the subtractions
SUB ECX, 2 ; Repeatedly subtract 2
JG AGN ;
JZ DUN ; It comes out even
MOV EAX, O ; It's not even.

DUN: POP ECX
RET

linuxbox$ nasm -f elf half.asm

The -t e1f switch specifies the format of the object code file which in current Linux is elf. This format is
discussed further in chapter 8.

Program 7.8 is a C program which calls the function ha1f () whose assembly code is shown in Program 7.7.

If Program 7.8 is saved in a file collatz.c, then to compile it and link it with ha1f (), use gcc on both
files

linuxbox$ gcc collatz.c half.o

7.4 Recursion

In recursion, much of the work of computation is done by the parameter-passing mechanism.

A recursive definition can very often be easily turned into a computationally effective, if not efficient,
program. This is typically illustrated using the Fibonacci numbers.

1 if £ <2
fib(k) =
fib(k — 1) + fib(k —2) otherwise.

Program 7.9 shows how this recursive definition can be turned into C code. In assembly language, we can
code this easily, provided we recall that used registers other than EAX must be pushed. Program 7.10 shows
how we can get by using only ECX and EAX. To test this program from C, one can use a small calling
program such as Program 7.11. To test a program like this using Edlinas, it is also necessary to initialize the
stack, as is shown in the first line of Program 7.3.

Program 7.8

main ()

{
int count, x,y;
count = 0;

printf ("Enter a number: ");
scanf ("%d", &x);

while(x != 1)
{
count = count + 1;
y = half(x); /* This is the subroutine call! */
if(y !'= 0)
X = y;
else
X = 3*x + 1;
printf ("\n x = %d.", x);

}

printf ("\n There were %d iterations.\n\n.",count);

Program 7.9

int fib(int k)
{
int d;

if(k < 2)
d = 1;
else
d = fib(k-1) + fib(k-2);

return d;

Program 7.10

global fib
fib: PUSH ECX ; Gives us access to ECX
MOV EAX, [ESP + 8]
; Access parameter

CMP EAX, 2 ; 1f k < 2
JAE ELS ;
MOV EAX, 1 ; Put the return value in EAX
JMP DUN
ELS: DEC EAX ; Get k-1

MOV ECX, EAX ; EAX will be overwritten!

PUSH EAX ; Pass k—1 as parameter

CALL fib ; Get back fib(k-1) in EAX
ADD ESP, 4 ; Get rid of parameter

DEC ECX ; Get k-2

PUSH ECX ; Pass k-2 as parameter

MOV ECX, EAX ; Put fib(k-1) into ECX

CALL fib ; Get back fib(k-2) in EAX
ADD ESP, 4 ; Get rid of parameter

ADD EAX, ECX ; Add the two partial results
POP ECX ; Restore the original value
RET

Program 7.11

main ()

{
int x, vy’
printf ("Enter a number: ")
scanf ("%d", &x);

y = fib(x);

printf ("$d\n", vy);

Chapter 8. LINUX USER PROGRAMS

At the beginning of chapter 6 it was noted that memory addresses used in Linux user programs are not true
memory addresses. The main reason for this is that Linux needs to prevent the user from having direct

access to memory. See Figure 8-1.

Figure 8-1. Protected Operating System such as Linux

_ Memory
User Operating and
Programs System Peripherals

Linux is a multitasking system. A multitasking system has many user jobs and an operating system, which
are all running at once. On a machine where any job can overwrite the memory belonging to another job, a
multitasking system is impossible. Multitasking requires memory protection. Linux uses paging to
implement a memory protection system.

Paging was originally designed as a system for economizing on memory. Linux uses it for this purpose as
well as for memory protection. Paging works by intercepting each memory access encountered in the user's
machine code. In other words, every memory reference in a user program is turned into a request for
memory access which is required to go across the desk of the paging system for approval. This means that
paging gets control over memory access. In order for this to happen, the processor has to have paging wired
into it.

Neither the 8086 nor the 80286 processors support paging. The first Intel processor with paging support is
the 80386.

8.1 Multitasking

Before multitasking operating systems existed, computer programs were executed in sequence, i.e., one after
the other. No program was able to begin executing until the program ahead of it was finished. Operating
systems which ran programs in series like this were called batch operating systems. A multitasking system
allows programs to take turns using processors. An operating system program called the scheduler acts as a
referee and forces user programs to yield to one another even when they are not finished. At any given
moment, there may be many user programs taking turns and waiting for processor time. Each of these
programs is called a task or a process. A distinction has to be made between a program and a process since
one program can be called several times by several users all at once. Each separate instance of a program is
a process. In Linux we can list the processes by using the

linuxbox$ ps aux
command. Or to conduct a more detailed examination, we can explore the /proc directory.

A multitasking system such as Linux is continually juggling its processor resources, passing them from
process to process. Each time a process gets bumped from a processor, it has to save its current state. Part of
the work of saving is done by a hardwired routine which is executed when the x86 does a task switch. It
saves all current registers to a region in memory called the task state segment. The task state segment holds
the frozen state of a task which is not currently running. Every task has its own task state segment. These
task state segments make it possible to switch from one task to another. Figure 8-2 shows the basic layout of
a task state segment, including the space for all the general registers, and a register called the CR3 register.
Some space that is unmarked in this figure is discussed in chapter 13.

Figure 8-2. Task State Segment

0
4
8

12
16
20
24
28
32
36
40
44
48

92
KA

CR3
EIP
EFLAGS
EAX
ECX
EDX
EBX
ESP

EDBXA
ESP
BB
ESI
EDI

92
56
60
64
68

8.2 Paging

As discussed in chapter 4, section 4.2, x86 1/0 addresses do not undergo processing. If the DX register
contains a number such as FC30H, then the execution of the IN AL, [Dx] command causes the 16 bits of DX
to be applied directly to the address bus.

FC30H=1111 1100 0011 0000

So on the address bus we get

AlS Al4 Al3 Al2 All Al0 A9 | AB | A7 | A6 | AS | A4 | A3 | A2 | Al | A0
1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0

The top 16 bits are just 0.

Memory addresses on the other hand are not handled in such a straightforward fashion. A Mov AL, [0FC30H]
will not result in these same bits being pumped out onto the address bus. Memory addresses undergo a two-
step process.

1. Segmentation
2. Paging

Only at the end of this process, and then only if everything goes well, is there a physical address which can
be pumped out onto the address bus. Since Linux does not use segmentation, discussion of it is deferred to

chapter 12.

8.2.1 Virtual Memory

All addresses lie in the 0 to 4 Gig range. Although it would make sense that different tasks be required to
use different parts of the 4 Gig space, Linux does not work this way. Linux may allocate the same addresses
to different tasks at the same time. These addresses are not real. They are called virtual addresses. Just as a
fraudulent accountant keeps two sets of books, one for the auditors and one for the true state of affairs,
Linux must keep a set of virtual addresses for each task, plus one set of real addresses for the actual physical
locations on disk and in RAM.

Figure 8-3. x86 Virtual Memory System

0
Task
#1 |
4 Gig
0 1 RAM
Task .
#2 | .
] po
0 .
Ta!?&s3k i]
4 Gig » Disk
> 8 8
0
Task |_

#n

4 Gig

The translation between the virtual addresses and the real ones is done using extensive sets of tables called
page tables. Each process has its own set of tables.

Figure 8-5 shows the situation which results. The reader will note that memory has been seriously
overbooked. There are typically many processes running. Each process uses potentially 4 Gig of virtual
address space. But the typical computer has much less RAM than would be needed to supply all processes
with 4 Gig! At first sight, paging seems to be a very bad idea. But in fact it economizes greatly on memory
usage and is one of the reasons computers are able to run big programs as fast as they do. Airlines overbook
in order to keep their planes occupied. The cost of free airline tickets now and then to bumped passengers is
more than paid for by keeping the seats full. Likewise, the occasional page fault is more than made up for by
keeping memory busy.

Figure 8-5. Linux Virtual Memory System

3 Gig
Ker-
nel

4 Gig

0 - RAM
Task 1

Paging
System

L

3 Gig

3 Gig { Disk

Task
#n

3 Gig

Paging works by copying temporarily idle portions of memory onto disk. As suggested by its name, it works
in units called pages.

4K Pages

On an x86 machine, a page is 4,096 bytes. In order to set up a paging system, four areas need to be divided
up into pages:

1. The available physical memory is broken up into pages. Since 4,096 = 212=4K = 1000H, every page
starts at an address ending in three hex zeros. Pages in physical memory are sometimes called page
frames.

2. Each task's 4 Gig virtual address spaces is also divided into pages. 4 Gig corresponds to 1 Meg of
pages.

4 Gig + 4K = (4 > 2%9) =+ (4 x 219) = 232 + 212 — 220 — 1 Meg.
Again, every page starts at an address ending in three hex zeros.

3. The portion of the hard disk used for paging is also divided into pages. This portion is often called the
swap space. Since most disks are formatted into 512-byte sectors, this means the number of sectors
allocated to the swap space must be a multiple of eight. 4,096 = 8 x 512.

4. The page tables used to translate virtual addresses are themselves set up in units of pages. These tables
are described in section 8.3.1.

Note that pages of virtual memory, physical memory, and disk all have the same size. This facilitates data
transfers in page size quantities.

8.2.2 Paging vs. Swapping

The term swap space is unfortunate since "swapping" traditionally refers to copying entire processes to and
from the disk. When demand for memory on a multitasking system exceeds the available RAM, a very
simple solution to this problem is to just copy some process out to the disk. That is what swapping does.
Swapping does not increase memory efficiency. It just prevents memory from overloading. It can be done
by the operating system on its own. It does not require any special hardware support. Swapping was
common in Unix systems before paging was invented. Linux does not use swapping and never has.

Although swapping solves the problem of memory unavailability, it does not do very well in terms of
making memory usage efficient. Copying whole processes into and out of memory tends to fragment
memory just as copying files onto and off of a disk tends to fragment a disk. Furthermore, by treating
processes as wholes, it misses out on the possibility that by keeping just the most important parts of each
process in memory, it may be possible to run all the processes without much ongoing disk access. Failing
this, it may at least be possible to greatly reduce the fraction of the processor's time which is wasted in
servicing memory faults.

Page Faults

Using paging, all the processes are run as though they were all in memory simultaneously. When a machine
instruction is encountered which refers to a memory location actually on disk, this is called a page fault.

When a page fault occurs, some page frame in RAM has to be chosen so that the needed page may be loaded
into it from the disk. If no page frame is free, then some page of memory has to be chosen for transfer to the
disk so as to free up a page frame. This memory page is copied to the disk and the page containing the
missed address is copied into RAM. There are many different algorithms in use which choose pages to be
expelled from memory. Such algorithms are referred to as paging algorithms. Many paging algorithms
choose pages for expulsion on the basis of usage. Unused pages get expelled.

8.2.3 Kernel Addresses

Although Linux may and often does allocate the same virtual addresses to different tasks, it uses a special
set of virtual addresses for kernel memory and these are never duplicated.

o Kernel addresses lie in the range from CO000000H to FFFFFFFFH, i.e., 3 to 4 Gig.
e User addresses in the range from 0 to BFFFFFFFH, i.e., 0 to 3 Gig.

Figure 8-4 illustrates this memory policy from the standpoint of a single process. Figure 8-5 shows it from
the standpoint of the entire system. User virtual addresses are allotted individually. Kernel addresses are
system-wide.

Figure 8-4. Single Process View of Memory

0

User
Space

3 Gig
Kernel
Space

4 Gige

T e —

Before version 2.1.39 of Linux, the separation of kernel and user memory was accomplished using the
segmentation process. Linux currently makes no use of segmentation. Now the separation is accomplished
simply as an allocation policy. This incidentally makes x86 Linux more like Alpha Linux. The Alpha
architecture has no segmentation. Segmentation is discussed in chapters 12 and 13.

8.2.4 Kernel Pages

The Linux paging algorithm never pages kernel memory out to disk. The Linux kernel is therefore always in
RAM.

This is one reason that compiling Linux specially for each machine is worthwhile. If the kernel is compiled
with code which isn't needed, such as device drivers for devices the machine doesn't have, RAM will be
permanently occupied by code which is never used.

It is also the reason that machines require approximately 4 Meg of RAM, depending on the Linux version, to
run Linux at all.

8.2.5 Kernel Modules

Although kernel memory is never touched by the paging system, it has been possible since Linux version 2.0
to add or delete chunks of kernel memory, provided they have been compiled separately as modules. The
commands

linuxbox$ insmod module
for "install module" and
linuxbox$ rmmod module

for "remove module" do change the amount of RAM occupied by the kernel. To inspect memory to find out
the amount of memory available, the Linux command

linuxbox$ free
is useful.

8.3 Address Translation

Linux user memory addresses are virtual addresses, not actual physical addresses. Linux uses paging to
translate virtual addresses to RAM addresses. x86 paging obtains its translations from page tables set up by
the operating system. Since the translation process is hardwired into the processor, x86 page tables must
have the two-tiered structure shown in Figure 8-6.

Figure 8-6. x86 Page Table Structure

Page Table Table

1024 Page Tables

1024 1024 1024
Pages Pages Pages

8.3.1 Two-Tiered x86 Page Tables

Each table in this structure has 1024 four-byte entries. The size of each table therefore is 4K. Note that each
table is also a page.

A page table table lists the locations of 1024 page tables. Each page table lists the locations of 1024 pages.
Each page contains 4096 bytes. The total memory referenced by a page table table is therefore 1024 x 1024

x 4096 =210 x 210 212 =932 — 4 Gigabytes. This is the size of one virtual address space.
8.3.2 Address Parsing

All virtual addresses are 32-bit quantities. These 32 bits are broken up as follows:

32 bits = 10 bits + 10 bits + 12 bits.

These bits are allocated as shown in Figure 8-7. The two ten-bit numbers are indices into tables with 1024 =
210 entries. A ten-bit number is a number from 0 to 1023. The 12-bit number is an index into a page. A page

has 212 bytes. A 12-bit number is a number from 0 to 4095. It picks out one byte from a page.

Figure 8-7. Virtual Address Translation

31 22 21 12 11 0

Index into Index into :
Page Table Table Page Table Index into Page

8.3.3 Translation Example

Suppose we have a virtual address of 1A2B3C4DH. This 32-bit address is broken into its three parts:

1 A 2 B 3 C 4 D
0001 1010 0010 1011 0011 1100 0100 1101 Virtual Address
0001 1010 0O Index into Page Table Table
10 1011 0011 Index into Page Table
1100 0100 1101 Index into Page

Translation begins at the page table table. The first ten bits pick out an entry from this table. In our example,
these bits are: 0001 1010 00 = 0110 1000 = 68H = 104. Indices start at zero. The first item fetched is the
105th four-byte entry in the page table table. If all goes well, this entry contains an address. In section 8.3.4
it is shown how to extract this address. The address is the address of a page table. The next ten bits, 10 1011
0011, equal 2B3H, or 691, which is the number of an entry in the page table. Again if all goes well, we may
extract an address from this entry. This address is the RAM address of the page on which the information
being sought is located. Suppose that this address happens to be 1234000H. The last 12 bits of the virtual
address, 1100 0100 1101 = OC4DH, are the offset within the page. The translated address is then
1234C4DH.

8.3.4 Page Table Entries

Suppose a memory address is encountered by the processor for the first time in a read command such as

MOV AL, [12345678H]

As just explained in section 8.3.3, a table entry for this address is obtained. This entry is four bytes in size.
Its least significant bit is called the present bit. In the diagram shown here, it is marked "P P" for page
present.

When the present bit is set, it means that the sought after page is located in RAM. In this case the calling
program is lucky and the page table entry just read provides the physical address of the page containing the
required byte. Since all page frames in physical memory are stored at addresses whose bottom 12 bits are
zero, the address can be given using its upper 20 bits. That is what the top 20 bits of the page table entry
provide. Once the address of the page is determined, the memory read is completed as shown in section
8.3.3.

8.3.5 Memory Protection
When the present bit is not set, there are two possibilities:

1. It may mean that the page containing the sought after byte is located on disk. In this case, a Page Fault
results.

2. It may also mean that the address is not valid at all! In this case, a Segmentation Fault results.

The first possibility is no surprise. The idea of paging is to put some memory pages out onto the disk. When
a program tries to access them, this is of course a problem. Problems like this are dealt with in chapter 9,
section 9.4.

The second possibility is somewhat foreign to the idea of paging as a memory economizing feature. But it
brings out exactly what we mean when we say that Linux uses paging to "protect" memory. Because the
page tables are under the control of the operating system, it gives the operating system an opportunity to
intercept every single memory request. This is how Linux keeps potentially overwhelming demands for
memory under control. Only addresses on pages which it has allocated to processes will have the present bit
in the page tables set. Any reference to an unallocated page results in the dreaded "Segmentation Fault" error
message.

8.3.6 The CR3 Register

Translation begins at the page table table. Each task has its own page table table. The physical address of the
page table table is stored in a register called CR3. CR stands for control register. The control registers were
added to the x86 processors starting with the 386. For more discussion of these registers see chapter 13,
section 13.1.

CR3 is reloaded automatically every time the x86 processor changes from one task to another. This is what
makes it possible for each task to have its own set of virtual addresses. The kernel memory in the last one-
fourth of the address space (see section 8.2.3) is there because Linux puts it there. This address space is
shared because the page tables which translate these addresses are shared. The last one-quarter of every page
table table on the system is identical.

8.3.7 Kernel Memory Access

The fact that kernel addresses are stored in all the page tables on the system might lead us to believe that
kernel memory can be used by all processes on the system. In a way this is true. In chapter 9, section 9.7 we
will see how user code may invoke system calls to get access to kernel memory. However, user code by
itself does not have this kind of access. It is blocked by the U_S user-supervisor bit of the table entries for
kernel memory. (See Figure 8-8.)

Figure 8-8. Page (Table) Table Entry

31 12 11

Address of Page

b s = B P

1
Wi
R

7 W=l (%]

This bit, if it is 1, does not block access. If it is 0, it is checked against a two-bit privilege, value stored in a
special register called the CPL register. This register and the privilege levels stored in it are discussed in
chapter 9, section 9.6. Access is blocked if the value in the CPL register is 3. When user programs are
running, the CPL register holds 3. This is the basic protection that kernel memory has against access by user
programs.

8.3.8 Paging Page Tables

Entries in the page table table look just like entries in the page table. The present bit in each means the same
thing. If it is cleared it means that the sought after item is not present. Just as a page of some process's
memory can be paged out to disk, so can a page table. Just as 4K of address space in a page can be marked
as unallocated, so can the 4 Meg of address space under a page table be marked as unallocated.

A missing page table causes a page fault or a segmentation fault, just like a missing page of user memory.
8.4 Program Segments

Consider Program 8.1. When this program is run, the line labelled aBc wipes itself out. This program is an
example of self~-modifying code Once upon a time in the bad old days, self-modifying code was sometimes
used to save a few bytes of memory space. Today self-modifying code is not considered good programming.
Tom Shanley put it more bluntly when he wrote that programmers who create selfmodifying code should be
"cast into the pits." Ordinarily, the only reason that a running program is modified is that something has
gone wrong. Running programs should not get modified.

Program 8.1

; Program which self-destructs.

’

IN AL, [0]
ABC: MOV [ABC], AL
RET

8.4.1 Non-Writeable Memory

Unix requires that running programs be protected from accidental modification by being stored in memory
which is "not writeable." Linux uses bit 1 of the page table entry to implement this requirement. This is the
bit marked "W _R" for Write Read in the diagram. If this bit is cleared, the indexed page is not writeable.
When the processor encounters a write command such as

MOV [87654321H],AL

this bit is checked. First the page table entry for the address 87654321H is fetched. Assuming the present bit
in the entry for this page is set, then because this instruction is a write command, bit 1, the write or read bit,
is checked. If this bit is not set, the processor will not execute the instruction and Linux issues a
"Segmentation Fault" error message. Faults are described in greater detail in chapter 9, section 9.4.

Unix protects code by marking it as nonwriteable.
8.4.2 Writeable Memory

Data space used for computation needs to be in memory which is writeable. Consider Program 8.2. The
label xvz just marks stored data. The code is perfectly

Program 8.2

; Tiny NASM program which crashes trying to increment a byte of stored data.

global main

main: MOV AL, [XYZ]
INC AL
MOV [XYZ], AL
RET

XYZ: db 3

reasonable. But because the entire program is stored in nonwriteable memory, a segmentation fault occurs
when the processor attempts to execute the MOv [xyz], AL instruction. This is a problem.

e On the one hand Linux protects the code in Program 8.2 by storing it on pages which are not
writeable.

e On the other hand the label xvyz in Program 8.2 marks writeable space. It therefore cannot be stored on
the same page as the executable lines of the program.

Because write protection for code is implemented using page table entries, then at least two different pages

are needed for Program 8.2, one with write protection and one without it. No page can be shared by write-
protected code and writeable data space.

8.4.3 Text and Data Segments

Programs have to be broken up. The different pieces of an executable file are called segments.

The machine code could be broken up when it was loaded, but this would place unreasonable demands on
the loading program. In order that the segments do not have to be created at load time, the executable file is
divided into segments. Eventually we will describe five different kinds of segments. So far we have made a

case for two:

o Text segments. Executable code needs a segment which is stored in pages whose Write Read bit is
cleared. It is called the text segment.

e Data segments. Some programs need space in the executable file where data can be written. It is
stored in pages whose Write Read bit is set. It is called the data segment.

8.4.4 Text and Data Sections

Just as an executable file has segments, an object code file has sections. One of the linker's jobs is to put
together a text segment from the text sections of all the object code files being linked, a data segment from
all the data sections, etc. Linkers have a lot of work to do.

Who creates the sections in the object code files? Object code files are created by assemblers.

8.4.5 Section Definition Directives

Assemblers do not separate code into text and data sections acting on their own. At least, most assemblers

are not that smart. The programmer needs to help out by using directives that specify which code goes into
which section. The following NASM directive can be used to initiate sections.

section .text

specifies a text section. Similarly,

section .data

initiates a data section.

With these directives we can direct NASM to produce a . o file with both text and data sections. Adding
these directives to Program 8.2 gives us Program 8.3, which will compile and run without crashing.

Program 8.3

; Tiny program which increments a byte of stored data.
global main
section .text

main: MOV AL, [XYZ]
INC AL
MOV [XYZ], AL
RET
section .data
XYZ: db 3
8.4.6 Segments in C Code

Program 8.4 can be used to determine the addresses of pages allocated to itself.
8.4.7 Calling C from Assembler

Calling functions involves using the stack. When functions are called using assembler, it is possible to see
exactly how the stack is used in a function call. Once you know how to use the stack to call a function, you
can call C library functions to get actual input and output for assembler programs which run under Linux.

In order to call printf () and scanf () using assembler, it is necessary to push strings onto the stack. This is
because the first argument of each of these functions is always a string. The db assembler directive
introduced in chapter 6, section 6.5.1 can be used to store strings as well as numbers. For example,

.db "Hello world!\n\x0"

can be used to store a string. If the location is labelled, then the label may be used to push the address of the
stored string. In Edlinas the allowable strings are exactly like those allowed in the C language except that
null termination must be explicitly encoded if it is desired. The C language hex escape sequence \x may be
used to include a null or any other character into the string.

Program 8.4

char a = 'A';

main ()

{ char *n;
int i, t;

n = &ay
printf ("Enter a pointer displacement in hex:");
scanf ("%$x", &i);
printf ("Pointer value in hex = %x\n", (n + 1));
printf ("Read, write, or skip? (Enter 0, 1, or 2):");
scanf (%d", &t);
if (t == 0)

printf ("Contents there= %x", *(n + 1));
else 1if (t == 1)

*(n + 1) = 'Y';
printf ("\n");

}

In NASM, non-ASCII characters are coded outside the string using commas.

db "Hello world!"™,0AH,O

In order to call scanf () from assembler it is necessary to have a label in a data segment. The scanf ()
function takes user input and writes it into memory. This memory cannot be in the text segment. It must be
in a data segment. Because printf and scanf occur as references to unknown locations, NASM requires
the use of an extern directive. NASM will produce an error message if a label is referred to which does not
occur in the label field of a line in the program being assembled. Program 8.5 shows how to call printf ()
and scanf () from a NASM program. A word of warning is in order regarding register usage. Although we
might expect C library functions such as printf () and scanf () to save registers on the stack before using
them, they don't necessarily. Values stored in registers before a call to printf () need not be there after this
call. To preserve values from destruction by a library function call, the programmer must assume the
responsibility of saving them on the stack. The lines labeled aBc, BCD, and cDE store strings. xvz is located
in the data segment. Consequently, the MOV EaAx, [xYZz] instruction can execute without causing a memory
violation.

8.5 Other Data Segments

Linux user memory is data space that is internal to the program itself. There are three kinds of data space
internal to a program.

Program 8.5

; This program calculates y = 2 * x + 1
section .text
global main
extern printf
extern scanf
main: PUSH ABC
CALL printf
ADD ESP, 4
PUSH XYz
PUSH BCD
CALL scanf
ADD ESP, 8
MOV EAX, [XYZ]
ADD EAX, EAX
INC EAX
PUSH EAX
PUSH CDE
CALL printf
ADD ESP, 8
RET
ABC: db "Enter a number: ",0AH, O
BCD: db "%d \x0" ,0RaH,O0
CDE: db "You get %d.\x0" ,0AH,O0
section .data
XYZ: db 4 * 0

1. Initialized data space. It is space that is internal to the executable file, even when the file is lying idle
out on the disk.

2. Uninitialized data space. It is space that is added to the program when the program is loaded.
3. Dynamically Allocated Memory. It is space that is added to the program when it is executing.
8.5.1 Initialized Data Space

In chapter 6, section 6.5.3 the use of the db directive was discussed in connection with the initialization of
data. The fact that this data needs to be stored permanently requires that it be a part of the executable file.

If the space which is occupied by this data is ever written to by the program, then it must be in a data
segment. The

section .data
directive is the right tool for this job.

Sometimes stored data is never overwritten. For example, control strings such as "Hello world!" are
essentially never written on. This kind of data may just as well be stored in write-protected pages. In the gnu
assembler there is a special section label for sections of this kind, .rodata.

8.5.2 Uninitialized Data Space

Space which is needed by the running program, but which does not contain data initially, may be added to
the program when it is loaded. An array declared by

int x[1000007];

may well occupy 400,000 bytes of space. Putting such an array into an executable file would be a waste of
disk space. To set the space aside at load time, the .bss section label is used.

8.5.3 Dynamically Allocated Memory

Programs get memory at run time using the system call malloc () . System calls are discussed in chapter 9,
section 9.5.

8.6 I/O Protection

In section 8.3 we have discussed the use of paging as a way of protecting memory from unregulated user
access. We have also noted that I/O addressing is unprocessed. It doesn't use paging, segmentation, or any
other kind of tampering with the addresses in the brackets. But there is support for I/O protection in the x86
architecture and Linux does use it.

8.7 Executable Files in ELF Format

In chapter 6, section 6.4 we noted that because programs contain absolute addresses which are not
determined until loading time, executable files contain relocation tables which list these locations in the file.
These tables need to have some specified format.

In section 8.4 we noted that since programs have segments which are saved on separate pages, depending on
whether the segments are writeable or not, the location of these segments within the file must be known to
the operating system. If Linux did not have this information, it would not be able to determine which parts
of the file to store in writeable pages of memory and which in read-only.

For all these reasons, executable files must have some definite format. The format used by Linux, starting
with version 2.0, is called ELF (Executable and Linking Format).

Two other Unix executable file formats are COFF (Common Object File Format) and a.out. Although all
Unix systems use a.out as the name of the executable file produced by the C compiler, it is also the name
of one particular format for executable files and object code files. At one time all versions of Unix used the
a.out format. Now most versions use ELF. The book Understanding and Using COFF presents a thorough
description of both COFF and a.out.

Figure 8-9 shows the layout of an executable file in ELF format.

Figure 8-9. ELF Format

ELF Header

Segment 1

Segment 2

Segment 3

Segment 4

Program Header

Table

———————————

Section Header Table

Section 1

Section n

8.7.

1 The ELF Header

The ELF header identifies the file as an ELF file and specifies what kind of ELF file it is. It also specifies

the

8.7.

size and location of the program header table and the section header table.

e The first entry is an identifier string containing ELF.

o The second entry is a number which is 1 if the file is an object file, 2 if the file is an executable file, 3
if the file is a shared object file, and 4 if it is a core file. Shared object files are discussed in chapter

11. Core files are produced whenever a program crashes. They are created for debugging purposes.

e The third entry number specifies the machine architecture. The number 3 stands for the x86
architecture.

e There are 11 more entries in the ELF header file, including entries for the size and location of the
program header table and the section header table.

2 The Program Header Table

The program header table has one entry for each segment. Each entry in the program header table contains
eight items of information:

l.

7.

8.

into memory.

File Offset. This offset gives the location of the segment within the file. Like all offsets, it is the
number of bytes from the beginning.

. Virtual Address. This is the address where the first byte of the segment is to be loaded.
. Physical Address. For x86 Linux systems this entry is a misnomer. It is ignored.

File Size. This is the number of bytes in the segment before it is loaded.

Memory Size. This is the number of bytes in the segment after it is loaded.
Permissions. This code contains the read-write-execute permissions.

Alignment. The segment must begin on a multiple of this entry.

As an example, Table 8.1 lists the Program Header table for chmod. Like most Unix commands, the chmod
command is actually an executable file. On most systems it is located in /bin. Table 8.1 was produced by
running the ob program on this file.

8.7.3 ELF Segments

In Linux 2.0 an executable file typically has five segments. Segment 0 is always the Program Header table.

Not

e that in Table 8.1 the value of the Type field for Segment 0 is 6 for program header.

Segments have read-write-execute permissions associated with them, just as files in Unix do. The seventh
item in each entry of the Program Header table is the permission code for that entry. It is easily understood
when written as a binary number. For example, a permission code of 6 means permission to read and write

but

not to execute.

Table 8.1. Program Header Table for chmod

Type. The type is 1 if the segment is to be loaded when the file is executed. Other types are not loaded

0034:00d4 Program Header Table

Num |[Seg Type |File Offst |Virtual Address Physical Address File Size |Mem Size |Perm |Alignment
00: 0006 0034 8048034 8048034 00a0 00a0 0005 10004
01: 10003 00d4 80480d4 80480d4 0013 0013 0004 10001
02: 0001 0000 8048000 8048000 1d29 1d29 0005 |1000
03: 0001 1d30 804ad30 804ad30 0llc Olfc 0006 1000
04: 0002 1dc4 804adc4 804adc4 0088 0088 0006 0004

Type 1 = loadable, 2 = dynamic info, 3 = interpreter4 = note, 6 = program header

Note that two of the segments are loadable. These are the code and data segments.

Although the linker combines sections into segments, there are sections which are not part of any segment.
The Section Header table lists and describes these sections. These parts of an executable file also occur in an
object file and are discussed in section 8.8.

Consider the following C program. Program 8.6 prints out pointers. Pointers are just addresses. Because C is
a relatively low-level language, we would expect these pointers to be the same as those occurring in the
machine code.

8.8 Object Files in ELF Format

Most programs are not written completely from scratch. They rely on programs which have already been
written and are used over and over again, such as printf () . Files which need other code in order to run are
called object code files. 1t is the job of the /inker to combine object code from different files into an
executable file. The code for printf (), for example, is located in /1ib/1libc.so. Typically the
programmer creates one or two of these object code files using gcc or an assembler, and the rest are
retrieved by the linker from standard libraries stored on the system. This process is not obvious from the
command line since the linker is called by gcc.

It is important to realize that the creation of an object code file is the main purpose of an assembler. In
section refsdefdir assembler commands for shaping object files will be discussed. But first, object code files
themselves need to be described. Just as the format of an executable file is prescribed by ELF, so is the
format of an object code file. Figure 8-10 shows the structure of an ELF object code file. The ELF Header
in an object file is the same as the ELF header in an

Figure 8-10. ELF Object File Format

FELF Header

Section Header Table

Section 1

Section 2

Section n

Program 8.6

int a = 0x55555555, b = 0x66666666;
int ¢ 0x77777777, d 0x88888888;

main ()

{

/* Store numbers which will be very easy to pick out
from the machine code of the compiled program. */

= 0x11111111;
0x22222222;
0x33333333;
= 0x44444444;

0.0 0w
Il

printf ("Variables: Addresses:\n")

(
printf (" a %$x\n", &a);
printf (" b %$x\n",) ;
printf (" ¢ %$x\n", &c);
printf (" d %$x\n",)
/* %$x means to use "hexadecimal" output. */

printf ("\n");

executable file.

Table 8.2. Section Header Table for Program 8.6

0lbc:0374 Section Header Table

Name Type |Flgs [Virtual Address Offset Size Link |Info |Algn Mod Entry Size
00: 0000 0000 J0000 J0O0O000000 0000 0000 0000 J0OO00 JO000 0000
01:]001b 0001 0006 00000000 0034 0091 [0000 J00O0O0 0004 0000
02: 0021 0009 J0000 J00O000000 0490 00a0 [0009 J0001 0004 0008
03:]002b 0001 0003 00000000 00c8 0010 0000 J00O00 0004 0000
04: 10031 0008 J0003 J00000000 00d8 0000 0000 J0O00 0004 0000
05: 10036 0007 J0000 J0O0O000000 00d8 0014 10000 J0000 0001 0000
06: 1003c 0001 0002 [00000000 00ec 0070]0000 0000 |0001 0000
07: 0044 0001 0000 00000000 015c 0012 {0000 J00O00 0001 0000
08: 0011 0003 J0000 J0O0O000000 016e 004d 0000 J00O00 0001 0000
09: 0001 0002 J0000 J00O000000 0374 00f0 [000a J0009 0004 0010
Oa: 0009 0003 J0000 J0O0O000000 0464 002b {0000 J0000 0001 0000

Name: index into the Section Header String Table (.shstrab)

Type: 1 = Program Bits, 2 = Symbol Table, 3 = String Table 4 = Relocation Table, 5 = Hash Table, 6 = Dynamic Info 7 = Note,
8 = No Bits, 9 = Relocation Table

8.8.1 Section Header Table

The Section Header table lists all the sections in the object file. The table shown in Table 8.2 was produced
by running ob on the .o file for Program 8.6. The Flags item contains attribute bits, which are somewhat
like the permission bits in the program header table of the exectuable file. Bit 2 is 1 if a section is
executable. In Table 8.2 the only section with bit 2 set is section 1, which is in fact the text section. Bit 0 is 1
for writeable sections. Only sections 3 and 4 are writeable. Section 3 turns out to be the data section.

8.8.2 Sections

When the linker creates a text segment, it combines the text sections from the object code files. When it
creates a data segment, it combines data sections. The linking process involves collating.

When the gnu linker links . o files, it needs to designate an address where excecution is to commence. The
programmer can designate this by using the label main and making sure it is visible to the linker by using
the global assembler directive.

Further Reading

Understanding ELF Object Files and Debugging Tools, MaryLouNohr, Prentice Hall: 1994.

Chapter 9. INTERRUPTS

The fetch-execute cycle is a program-driven model of computation. But computers are not totally program
driven. To some extent they are hardware driven. CPUs are equipped with input signal pins which allow the
fetch-execute cycle to be interrupted. The original purpose of these pins was to increase processor efficiency
by reducing the amount of time spent in communication with I/O devices.

In chapter 8 we saw how a device to increase memory efficiency was adopted as a device for controlling
memory access. Interrupts have undergone a similar transition. This chapter begins by describing how
interrupts economize on processor time. Then, starting with section 9.6, we will see how interrupts are used
to control processor access.

9.1 Polling

Without interrupt pins, I/O communication would have to rely on processor instructions such as the v and
OUT commands.

9.1.1 Data Ports

Suppose that a processor is sending characters from a buffer located at aBc to a printer located at port 378H,
and that to do this it issues one-byte ouT commands from a loop, as shown in Program 9.1. Then assuming
one instruction per machine cycle, each execution of the loop would take five machine cycles. At a clock
rate of 100 MHz, all 100,000 characters would be sent to the printer in .005 seconds. This is enough time for
the printer to print one or two of them. The printer would be swamped, and most of the output to the printer
would be lost.

Printers are slow in comparison to processors. So are most other I/O devices.
9.1.2 Status Ports
To prevent data loss, a printer must have a status port as well as a data port. The processor will then be

required to inquire of the status port whether or not the printer is ready to receive another character. The
processor will only output another character when the printer is ready.

Program 9.1
MOV EDX, 378H ; Printer Data Port
MOV ECX, O ; Use ECX as the loop counter.
XYZ: MOV AL, [ABC + ECX]
; ABC is the beginning of the memory area
; that characters are being printed from.
OUT [DX], AL ; Send a character to the printer.
INC ECX
CMP ECX, 100000; Print this many characters.
JL XYZ

Suppose that the printer with the data port at port 378H also has a status port at port 379H and responds to
an inquiry to this port with a 1 when it is ready and with a 0 when it's not. In this case the output loop might
look like this: A loop

Program 9.2
MOV EDX, 379H ; Printer status port
MOV ECX, O
XYZ: IN AL, [DX] ; Ask the printer if it's ready
CMP AL, 1 ; 1 means it's ready
JNE XYZ ; If not try again
MOV AL, [ABC + ECX]
DEC EDX ; Data port is 378H
OUT [DX], AL ; Send one byte!
INC ECX
INC EDX ; Put back the status port
CMP ECX, 100000
JL XYZ

like this solves the problem of lost data by reducing processor throughput down to the speed of the printer.
Most of the processor's time is spent executing the three instructions following the xvz label.

Successively querying one I/O device after another about its status is called polling. Polling makes a modest
improvement on this situation by putting an inquiry to all pending I/O devices into one status inquiry loop.
But it is still clearly a waste of processor time.

9.2 External Interrupts

In order to allow programmers to avoid relying on polling, processors have at least one input pin which
allows I/O devices to signal the processor when they need the processor to do something. Such a pin is
called an interrupt pin. An interrupt pin makes it possible for an I/O device to initiate communication with
the CPU. A CPU without an interrupt pin has been compared to a telephone without a bell.

Suppose that a printer is connected to an interrupt pin on the CPU, as shown in Figure 9-1. With the printer
hooked up to the CPU in this way, the CPU would be able to ignore the printer until it received a signal. It
could then process a printer character and return to its main job. There would be relatively little wasted time.
This setup would work fine if the printer were the only I/O device which ever needed attention. But of
course there are many such devices.

Figure 9-1. A Computer with Only One Interrupt

Address Bus

I/0
CPU Memory (Printer) .
Data Bus
Interrupt Line

To allow for several I/O devices, one might expect there to be several interrupt pins on the processor. The
x86 architecture does not do things this way. It has only one general-purpose interrupt pin. It delegates the
arbitration of interrupt signals to an external circuit called the interrupt controller circuit, as shown in Figure
9-2. This figure also shows an IRQ bus from the I/O system to the interrupt controller circuit. An IRQ bus
consists of wires from various I/O devices. Each device that needs interrupt service is given one of the wires
on this bus, assuming that there are enough of them to go around, that is. The IRQ bus wires are numbered
IRQO, IRQ1, etc. IRQ stands for interrupt request line. The numbers 0, 1, etc., encountered in this context
are called IRQ numbers.

Figure 9-2. A Computer with an Interrupt Controller

Address Bus

.| x86 M I IRQ Bus | Interrupt
CPU AREHIory /0 Controller
Data Bus
Interrupt Line

The interrupt controller allows several 1/O devices to have a signal path to the CPU even though the x86 has
only one general-purpose interrupt pin.

9.2.1 x86 Interrupt Handling

When an x86 processor receives an interrupt signal, it first completes the instruction it is currently working
on. Then, provided a special flag has not been cleared, it handles the interrupt in three steps.

Step 1.

It reads the number of the interrupt responsible for the interrupt signal from the interrupt controller.

Step 2.

It fetches the address of the correct interrupt service routine from the interrupt table in memory.
Step 3.

It transfers control to the interrupt service routine.

Once the interrupt has been handled, it resumes processing where it left off. Interrupt service routines are
somewhat like ordinary subroutines. One important difference is that they are called on signal from the
hardware.

The Interrupt Acknowledge Bus Cycle

Since the x86 receives its general interrupts all via one pin, it cannot tell from a single "knock on the door"
which I/0 device is signaling for attention. As shown in Figure 9-2, the interrupt controller circuit is
connected to the data bus just like memory and I/0O. To get the required identification from the interrupt
controller, the processor performs a read, which is analogous to a memory or an I/O read. It is called the
interrupt acknowledge bus cycle. Just as the processor uses the M/IO# pin to indicate whether it is
commanding a memory or an I/O read, it uses the D/C# pin to distinguish an I/O controller read from the
memory and I/O read cycles. D is for data and C is for code. The complete list of the bus cycles defined by
the D/C#, M/1IO#, and W/R# pins is given in Table 9.1.

When the processor receives an interrupt, it initiates an interrupt acknowledge bus cycle. Only the interrupt
controller may respond to an interrupt acknowledge bus cycle. It responds by depositing a one-byte number
on the bottom eight bits of the data bus. This number is called the interrupt number. It is not the same as an
IRQ number. The processor reads the interrupt number off the data bus.

Table 9.1. 486 Bus Cycle Definition Pins

D/C# M/10# W/R#

Interrupt Acknowledge 0 0 0
Halt /Special Cycle 0 0 1
Code Read 0 1 0
reserved 0 1 1
I/O Read 1 0 0
1/0O Write 1 0 1
Memory Read 1 1 0
Memory Write 1 1 1
ISR Address Fetching

The processor then takes this number and uses it as an index into a table called the Interrupt Descriptor
Table. This table contains the addresses of the Interrupt Service Routines. See Figure 9-3. Since the interrupt
number is an eight-bit number, the valid interrupt numbers range from 0 to 255.

Figure 9-3. Interrupt Descriptor Table, b = IDT register

Address

b Gate # O
ate

b+ 8
Gate # 1

b+ 16
Gate # 2

b+ 24

b+ 16
b+ 24
b+ 32
b + 40

Gate # 2
Gate # 3
Gate # 4
Gate # 5

b + 2040

Gate # 255

It is the responsibility of the operating system to create this table. It is also responsible for loading into
memory the interrupt service routines whose addresses are listed in this table. These two jobs are done as a
part of the system boot. If they have not been done, the system will be unable to respond to interrupts. When
Edlinas displays a "Processor halted" message, it is usually because it is trying to respond to an interrupt and
no interrupt table has been built.

The Interrupt Descriptor Table

The x86 has a dedicated register which stores the address of the interrupt descriptor table, or IDT. It is called
the IDT register. There are special commands for accessing this register. The command

LIDT mem

loads the register. The command

SIDT mem

stores the contents of this register. The LT1DT command is used in setting up the operating system at boot
time. Once an interrupt descriptor table has been created, the L1DT command can point the processor to it.

In responding to an interrupt, the x86 uses the fact that each table entry occupies eight bytes of space.
Consequently, if b is the address stored in the IDT register, then in response to the interrupt numbered #», the
x86 fetches the eight bytes starting at the address b + 8 x n. These eight-byte entries are called gates.

ISR Execution

Once the address of the interrupt service routine is obtained, it is treated almost like a CALL instruction treats
an address. Before jumping to a target address a cALL instruction pushes the next address after its own
address onto the stack. This means that the called routine may return to the instruction following the caLL by
reading its address off the stack. Since an interrupt service routine also needs to execute a return the address
of the instruction which would otherwise have been executed, had the interrupt not arrived, is pushed onto
the stack before the ISR is executed. But in the case of an interrupt, the flags register is pushed also. The
interrupt service routine does whatever business is demanded by the interrupt. An interrupt service routine

P P B R s I e Ca s D B I L P L L T PPN RS ISR DRSS IS & e . D I

SHould €id Wil dil LRKEL, HISUUCUOIl WILICIHL 1S HHKC d KT HISUUCUOIL CXCCPL UldL 1L POPS UIC 11dg> ICZISLCL.

The flags register is a 32-bit register named EFLAGS, which contains all the flags. It is an extension of the
16-bit FLAGS register. Table 9.2 shows the flags in the EFLAGS register on a 486.

The reason for the x86's special flag behavior when responding to interrupts has to do with the problem of
interrupt arbitration.

9.2.2 Interrupting an Interrupt
What happens when an interrupt occurs while an ISR is already executing? Can one device interrupt
another's ISR? Imagine two devices, each refusing to be preempted by the other's ISR. The processor would

get bounced back and forth from one ISR to the other until the accumulation of pending return addresses on
the stack overflowed and caused the system to crash.

Table 9.2. EFLAGS Register

Bits Label Full Name

18 AC Alignment Check

17 VM Virtual 8086 Mode
16 RF Restart Flag

14 NT Nested Task

13-12 IOPL 1/O Privilege Level
11 OF Overflow Flag

10 DF Direction Flag

9 IF Interrupt Enable Flag
8 TF Trap Flag

7 SF Sign Flag

6 ZF Zero Flag

4 AF ASCII Overflow Flag
2 PF Parity Flag

0 CF Carry Flag

The Interrupt Enable Flag

The design of the 8086 allows for a very simple way to avoid this situation. The idea would be to enforce a
strict "one-at-a-time" interrupt policy. It would work by automatically blocking interrupt signals while an
ISR is running, and then unblocking them when it is finished. One of the flags on the x86 processor is called
the interrupt enable flag. When this flag is cleared, all signals on the general-purpose interrupt pin are
ignored. When an 8086 enters an ISR, this flag is automatically cleared. That is why the processor pushes
the flags register onto the stack just before entering an ISR. It allows the interrupt enable flag to be restored
to its original state when the ISR is done. When the interrupt enable flag is set, interrupts are handled
normally.

The one-at-a-time interrupt policy would make life easy for the interrupt controller. The controller could
process an incoming interrupt by just passing it along to the processor until it was acknowledged. As soon as
the interrupt acknowledge was received, the controller could wash its hands of that interrupt because the
processor could be counted upon to work on it nonstop until it was done.

Although the one-at-a-time policy is very easy to implement on an x86 processor, standard PCs do not use
it. The problem with it is that interrupts that need a quick response can be kept waiting. If a serial port is
getting ready to start trashing data because its buffer is full, then it should not be made to wait while a
floppy drive looks for a good sector. A processor with a one-at-a-time interrupt policy can be like a
household with a single, occupied bathroom. Unlike the situation with bathrooms, however, interrupting an
ISR 1is not necessarily rude. It sometimes makes good sense to interrupt an ISR.

wT 4 ww

Nestea Interrupts

Most computers prioritize interrupts and then allow higher priority interrupts to interrupt those of lower
priority. This kind of policy is called a nested interrupt policy. Implementing a nested interrupt policy on an
x86 requires that both the interrupt controller and the programmer be given more responsibility. On the x86
the programmer has control over the interrupt enable flag. The

STI

command sets the interrupt enable flag. The

CLI

command clears it. By including an sT1 command at the beginning of an ISR, the programmer can override
the default one-at-a-time policy and make an ISR interruptible. Interrupts cannot be nested if they execute
with the interrupt enable flag cleared.

There is also more work for the interrupt controller. If the x86 executes ISRs with the interrupt enable flag
set, then the interrupt controller has to assume responsibility for enforcing the priority system. Since the
processor has its guard down, the interrupt controller must not let every incoming interrupt pass through.
Otherwise, as noted above, the ISRs could play ping-pong with the processor. In particular, the controller is
responsible for not interrupting an interrupt unless the ISR being interrupted has a lower priority than the
one it is allowing through. If the ISR executing has equal or higher priority, then the pending interrupt must
wait until the ISR is finished. But in order for the controller to hold off the pending interrupt until then, it
needs to know when the ISR gets done. It needs a signal. Without a signal it has no way of knowing. If it
doesn't know whether a high priority ISR is finished executing, then it cannot decide whether it is okay to
interrupt the CPU with a low priority interrupt or not. Since the interrupt controller has its own read cycle,
one might expect a write cycle for this purpose.

The EOI Command

Since the x86 does not have an I/O controller write cycle, it falls to the lot of the programmer to include an
"All Done" message to the interrupt controller at the end of each ISR. This message is called an EOI, or end
of interrupt command.

So that the interrupt controller can receive communications from the processor, it has an I/O address. The
programmer can then use an ouT command to issue the EOI. The I/O address is also used when the interrupt
controller gets programmed. As noted above, it needs to be programmed so that it knows what interrupt
numbers to report.

As a device with an I/O address, the interrupt controller looks like just any other I/O device. But it is special
in that it is the only I/O device that can signal the processor directly. All the others must go through the
interrupt controller.

9.2.3 The NMI and RESET Interrupts

Besides the general-purpose interrupt pin on the x86, there are two other interrupt pins. They are the NMI
and RESET pins.

A signal on the NMI, or nonmaskable interrupt pin, is not blocked by clearing the interrupt enable flag. It
does not trigger an interrupt acknowledge bus cycle. It is serviced by interrupt service routine number 2. It is
used to signal parity errors in memory or power supply problems.

The RESET pin is intended for use in situations where there may be no interrupt descriptor table in memory.
For example, when the computer is being turned on. Consequently, there is no point in storing an address for
it in the interrupt table. Instead the address is built into the processor. That address is FFFFFFFOH (or
FFFFOH on the 8086). It is easily remembered as —16 in two's complement. The read-only memory at this

EataYalsal ~N 10om

address must contain a jump struction whose target 1s the PUS 1, or Power Un Selt 1est, program. 1his
program is located on the ROM chip called the BIOS. Read-only BIOS chips are sometimes made by the
computer manufacturer, but are more often bought from a third party such as American Megatrends or
Phoenix. The POST can be thought of as the ISR for the RESET interrupt. The final act of the POST is to
initiate the boot sequence. The RESET pin is connected to the power supply and often to a button on the
front of the computer.

9.3 ISA Architecture

The ISA architecture is essentially the architecture of the IBM AT computer. The AT is an 80286-based
computer introduced in 1984. The name ISA, or Industry Standard Architecture, arose in reaction to the
introduction by IBM of a new architecture called MicroChannel in their PS/2 computers. MicroChannel was
intended to replace the very popular architecture of the AT. Many third parties manufactured cards which
could be inserted into the expansion slots of an AT, or an AT clone. The reaction of these third parties to
IBM's new architecture, which would have made all their AT cards obsolete, was to band together and
rename the AT architecture the Industry Standard Architecture. As a result, the lifespan of the AT
architecture was given a considerable extension. Many important architectural features were standardized in
the ISA, including

¢ the interrupt controller circuit

e many IRQ assignments

e many I/O port assignments

o the signals and connections made available to expansion cards

¢ the physical connectors used on expansion cards
Many of these features have been retained in all subsequent x86 computers.
9.3.1 The 8259 Interrupt Controller
The ISA interrupt controller circuit is based on the Intel 8259 PIC, or programmable interrupt controller.
The 8259 is the interrupt controller circuit used in the original IBM PC. 8259s may be used either singly as
in the PC or combined into a two-tiered structure with one master and anywhere from one to eight slaves, as
shown in Figure 9-4. In the original PC there was a single 8259. A one master-one slave configuration

became fixed as a part of the ISA architecture. The ISA interrupt controller circuit is shown in Figure 9-5. In
this configuration there are 15 IRQ lines which feed into the two 8259 circuits.

Figure 9-4. General 8259 Configuration

Slave
8259

#1

Slave
88259

Master # 2

— ———

8259

Master 72
8259

Slave
8259

#8

Figure 9-5. ISA Interrupt Controller Circuit

IRQO
) Master* IRQ3 :{ggiﬂ
8259 |« IRQ4 IRO11
) IROG 8259 l——IRQ12
_ IRG7 IRQ13
IRQ14
IRQ15

If the interrupt numbers reported by the 8259 were built in, then the different controllers in this
configuration, shown in Figure 9-4, would all report the same set of numbers. This would clearly not be
satisfactory. The reason for having a controller circuit is so that different wires on the IRQ bus can generate
different interrupt numbers. Consequently, different 8259s need to report different interrupt numbers. The
only reasonably easy way to do this was to make the 8259 programmable. An 8259 can be programmed to
report any eight consecutive numbers starting at any multiple of 8 less than 256. Programming of the 8259 is
done at boot time using ouT commands. The EOI command in 8259 language is 20H. In the ISA architecture

the master 8259 is assigned the data port 20H (Could this be geek humor at work?) as well as 21H. The
slave is assigned the ports 0AOH and OATH.

An EOI command in response to an interrupt from the slave controller is sent to both AOH and 20H.

9.3.2 IRQs

Most of these IRQ lines have specified purposes in the ISA architecture. All of them have fixed interrupt

numbers. While one interrupt is being serviced or while the interrupt flag is cleared, unserviced interrupts
may pile up. The interrupt controller circuit prioritizes these interrupts in the order IRQO, IRQ1, IRQS,...,
IRQI15, IRQ3, IRQ4, ..., IRQ7. IRQO has the highest priority. IRQ7 has the lowest. The fact that there are

Anlxr a fauxr TRN linac axrailahla hac laad ta TRMN ~ranflicte TR charina ac wall ac cxritrhac Aan rarde whicrh

Ulll_y a 1vvy 1L\\< 111IIvO avaliaviv 1iad 1vau w LL\Y VULLLLIIVLD, 11\\{ 011(141115, AD VVULIL AD DVVILLIIVD Vil valud vviiivil

allow an IRQ line to be changed.

Linux maintains a count of the interrupt requests which come in on the IRQ lines. To see this count, you
may use the command

linuxbox$ cat /proc/interrupts
The output of this command should be compared with Table 9.3.

9.4 Internal and Software Interrupts

Interrupts which do not arise as the result of an external signal on an interrupt pin also exist.
9.4.1 Exceptions

Suppose that the fetch-execute cycle encounters the machine code FOFH. This machine code is not defined.
Suppose a MoV instruction attempts to access a memory address to which the operating system has not given
permission. Suppose that the bT1v command produces a quotient which is too big for the destination register.
Suppose that the stack overflows. These are situations where the designers of the x86 preferred to delegate
to the operating system the decision as to what action should be taken. In fact, they forced the operating
system to take over at these points by assigning interrupt numbers to these exceptions. These interrupt
numbers are built into the x86 processors. Exceptions do not use interrupt acknowledge bus cycles. But they
must be handled by numbered ISRs, just as external interrupts are.

Table 9.3. ISA Interrupt Routings

IRQ Allocation Interrupt Number
IRQO System Timer 08H
IRQ1 Keyboard 09H
IRQ3 Serial Port #2 0BH
IRQ4 Serial Port #1 0CH
IRQ5 Parallel Port #2 0DH
IRQ6 Floppy Controller OEH
IRQ7 Parallel Port #1 OFH
IRQ8 Real Time Clock 70H
IRQ9 available 71H
IRQ10 available 72H
IRQ 11 available 73H
IRQ 12 Mouse 74H
IRQ13 87 ERROR line 75H
IRQ 14 Hard Drive Controller 76H
IRQ15 available 77H

Table 9.4 lists the exceptions which are built into the x86 processors. Note that some of these interrupt
numbers are the same as the interrupt numbers reported by an ISA interrupt controller. When interrupts are
shared like this, the ISR is stuck with the responsibility for distinguishing which situation has caused the
interrupt.

9.4.2 Software Interrupts

In order to make the interrupt service routines accessible to programmers, the INT instruction was added to
the instruction set. The syntax is simply

INT imm

where the immediate value is any one-byte number. This instruction can be used to execute any interrupt
service routine. It is similar to a CALL instruction.

Table 9.4. Built-in Hardware Exceptions

Allocation Interrupt Number
Division Overflow 00H
Single Step 01H
NMI 02H
Breakpoint 03H
Interrupt on Overflow 04H
BoUND out of range 05H
Invalid Machine Code 06H
87 Not Available 07H
Double Fault 08H
87 Segment Overrun 09H
Invalid Task State Segment 0AH
Segment Not Present 0BH
Stack Overflow 0CH
General Protection Error 0DH
Page Fault OEH
reserved OFH
87 Error 10H

Table 9.5. An Interrupt is Like a Subroutine

Ordinary Subroutine Interrupt Service Routine
Invoke CALL INT
Terminate RET IRET

9.4.3 Faults and Traps

When the service routine for an external interrupt or a software interrupt finishes, control is transferred to
the next instruction following the interrupt just as it would be following the completion of a subroutine call.
This is usually not the case with hardware exceptions. When the service routines for most exceptions are
completed, the instruction giving rise to them is retried. Hardware exceptions for which this is true are called
faults. A good example of a fault is a page fault. A page fault occurs when a failure to access memory has
occurred because it has been paged out to the disk. The interrupt service routine pages it back in again, and
then the original instruction is retried.

A few hardware exceptions are like ordinary interrupts, and pass control to the next instruction when they
finish. These are called ¢raps. An example of a trap is division overflow on an 8086.

9.5 System Calls

One of the basic functions of an operating system is to provide access to hardware devices, as illustrated in
Figure 8-1. In Unix all access to hardware devices is provided by way of what are called system calls. Users
ordinarily get access by using either standard Unix commands, such as cat, or 1s, or by using C library
functions, such as printf (), or scanf () . But both Unix commands and C library functions rely on system
calls to gain hardware access. See Figure 9-6. read () and write () are examples of system calls. The write
() system call takes three parameters: a file to be written to, a memory buffer to be written from, and the
number of bytes to be written. It appears to be an ordinary C function and can be used as though it were.
Program 9.3 illustrates a "Hello world" program using the write () system call.

Figure 9-6. System Calls are Just Software Interrupts

C Library

Functions

Hardware

Operatin
P & Interrupts

System

System
Commands

Program 9.3

main ()

{

char s[] = "Hello world!\n";

write(l,s,13);
}

But despite appearances, the write () system call is not an ordinary C function. Like all system calls in
Linux, it uses INT 80H to transfer control to the kernel. Each system call in Linux has a number. A list of
these calls and their numbers can be found in /usr/src/linux/arch/i-386/unistd.h. In Linux 2.0,
write () 1s system call number 4. To carry out this system call, the number 4 must be stored in the EAX
register before INT 80H is called.

In DOS, many system calls are made using INT 21H. The number stored in the AH register determines
which system call is being made. A list of most of these calls can be found in standard books on DOS. The
book Undocumented DOS by Andrew Schulman, et. al., attempts to list all of them. The existence of
undocumented DOS system calls gave rise to considerable bitterness on the part of developers who could
have put such functions to good use had they but known of them. Needless to say, programmers at Microsoft
did not encounter this obstacle.

To use a system call from assembler, it is necessary to know the parameter passing conventions. These
conventions are established by macros also located in unistd.h. According to the conventions used in
Linux 2.2, the parameters are stored in left to right order in the registers EBX, ECX, EDX, EDI, and ESI
respectively, using as many of these registers as are needed to store the parameters.

The system call, write (1, s, 13), for example, can be completed if 13 is stored in EBX, the string
pointer is stored in ECX, and 1 is stored in EDX. Program 9.4 illustrates this. In debugging system calls, the
strace utility is invaluable. For example, after getting an a.out from gcc from for Program 9.4 we could use

linuxbox$ strace a.out

to check on things in the event of difficulty.
Program 9.4

; This program makes a system call.
global main
main:
MOV EAX, 4 ; Write is system call # 4.
MOV EBX, 1 ; 1 is number for standard output.
MOV ECX, ABC ; ABC is the string pointer.
MOV EDX, 13 ; Writing 13 bytes.
INT 80H ; System call interrupt.
RET
ABC: db "Hello world!",0AH,O

The resources offered by Linux to the programmer are essentially defined by the capabilities of the system
calls. One reason for the success of Linux early on was that it was designed to adhere to the POSIX standard
for the programmer's system interface. Linux was one of the first operating systems to achieve POSIX
compliance. Windows NT is also POSIX-compliant.

9.6 Privilege Levels

When a system call takes over the processor, it does so because a program needs the kernel to do something
which it is unable to do for itself, like read a file or write to the monitor. The program is incapable of these
things because the processor itself is blocked from doing them while user code is executing. The difference
between kernel code and user code is a difference in privilege level. Since the 286, a protection system
based on a system of four different privilege levels has been in place. The four levels are

e 0 System level privilege, used by the Linux kernel.

e | Unused in Linux.

e 2 Unused in Linux.

e 3 User level privilege, used by Linux user programs.

The privilege level of the currently executing code is called the current privilege level. 1t is stored in a two-
bit register called the CPL register.

9.6.1 The CPL Register

The CPL register is one of the most important registers on the machine. Level 0 has the most privilege.
Changing the CPL value to 0 is like disengaging the safety catch on the processor. It takes place every time
a system call is executed. It is a more drastic step than becoming superuser. Prom the standpoint of CPL-
based privilege, the superuser is just another user. But when the CPL is 0, the processor can do things that
no user can do. For example, it can modify the page tables or change the interrupt descriptor table.

Of course, given that root is the owner of the disk image of the kernel, the file vmlinuz in the root
directory, root can do whatever it wants indirectly by changing this file. root can also modify kernel code
which is stored in modules. But these changes will only take effect the next time the system is booted or a
kernel module is loaded.

9.6.2 Privileged Instructions

The L.IDT instruction changes the address stored in the IDT register. This is the address that the processor
goes to when it receives an interrupt. This instruction has the effect of changing from one interrupt table to
another one. If used by a user, it could be used to take control of all interrupts by sending the processor to a
private table for the handling of all interupts. It is a good example of what is called a privileged instruction.
The processor will not execute a privileged instruction unless the CPL = 0. If this instruction is included in
code which is executing while the CPL > 0, for example, in user code where the CPL = 3, it causes an
exception called a general protection error. See Table 9.4.

The Mov mnemonic names an instruction that can be used to access the control registers. The command
MOV reg, reg

where one reg is a control register and the other is a 32-bit general register, can be used to load a value into
CR3, for example. CR3 holds the address of the page table table where address translation begins. Loading a

new value into CR3 has the effect of changing from one set of page tables to another. If this could be done
hv a neer the ncer canld take contral af nhvcical memarv vnz need with cantral reoicterc ic annther onnd

g W VUL LAY BUVA VU LML LGHAY VUL UL VA A) DAVML LIAVARIUA J o LAV YV WUV YT AU VUL VA AVEIULVAL LU MV MY SuUUs

example of a privileged instruction.
9.6.3 Stack Problems

Since the ISR code that the interrupt is jumping to may well use the stack, it is important that the stack not
be subject to write access by the user. Even though user code will not function again until the ISR exits,
there can still be trouble. For example, suppose that the system call read () is being executed. read ()
transfers data from a file to user memory. One of the parameters to this call is the address of some memory
that the user has permission to write on. In executing the call, the system will store file data at that address.
If the stack being used by the system is the user's stack, then the user has permission to write on it. The user
may then supply the stack address as parameter to read () and the system will then mess up the stack it is
using at the very time it is using it. This would cause a crash.

User code writes where it shouldn't, usually by mistake and not out of malice. But it happens a lot. That's
why the Segmentation Fault error message is so gallingly familiar. Code for system calls like read () needs
to use its own stack. There is a different stack for each value of the CPL. Changing stacks is taken care of by
the hardware! Each stack has its own stack pointer. These four stack pointers are stored in a memory area
called the Task State Segment.

The layout of a gate is built into the x86 processor. Figure 9-7 shows the most important fields in a gate.
These fields contain two items that pertain to this

Figure 9-7. Gate Layout

63 48 47 4443 40 39 16 15 0

ISR Address Tvpe ISR Address
Upper 2 Bytes ype Lower 2 Bytes

discussion. They are
o A four-bit type value which is stored in bits 40—43.
o The address of the ISR. This 32-bit address is located in bits 48—63 and bits 0—15 of the table entry.

Interrupt gates are used for hardware interrupts. A trap gate is used for the INT 801 system call interrupt.

9.7 Control Transfer

Based on the two items of information gleaned from the gate, the actions discussed in sections 9.7.1 through
9.7.4 are taken.

9.7.1 Clear the Interrupt Enable Flag?
When the x86 loads a descriptor table entry in response to an interrupt, the four-bit type value is checked to
see if the interrupt enable flag should be cleared. If the type value is 14, the interrupt enable flag is cleared

just as it is on the 8086. Twelve of the 16 possible four-bit values are defined.

Table 9.6. Interrupt Gates vs. Trap Gates

Type Value|Gate Type Clear IE Flag
14}Interrupt Gate Yes
15|Trap Gate No

9.7.2 Store 0 into the CPL

L'he next step 1 the processing ot an interrupt 1s that U 1s loaded mnto the CPL. Contidence 1n the satety ot
this step must be based on confidence in the code that is being jumped to.

The original value of the CPL is restored when the IRET instruction executes.

The mechanism behind the CPL store and restore is discussed in chapter 13.

9.7.3 Change Stacks

The ESP used by the kernel is waiting in the task state segment. The ESP corresponding to CPL =0 is
loaded from there into ESP when 0 is loaded into the CPL. The current ESP is not stored in the task state
segment. It is pushed onto the new stack.

The fact that the task state segment is not changed when 0 is stored into the CPL is sometimes what is meant
by saying that the kernel is executing "within" a task or "in behalf of" a task. In other words, there is no task
switch involved. The same task is still running.

9.7.4 Jump to the ISR

To do the jump, the return address of the next instruction is pushed onto the new stack. The new EIP is then
loaded with the 32-bit address from the gate.

When these four steps have been completed, control has been transferred to kernel code, which runs at CPL
= 0. The resources of the processor, which are accessible from this level of privilege, include all the data

structures vital to the functioning of the operating system as well as the hardware and the memory.

When the ISR is concluded, then with one exception, control is returned to the user code. Both the old stack
and the CPL are restored. The exception is in the case of the timer interrupt.

9.8 Scheduling

In Table 9.3 we see that the maskable interrupt with the highest priority is the timer interrupt. The ISR for
this interrupt keeps track of time used by all processes. In particular, it sets a flag called need resched
when a process is out of time. When Linux does a return from any interrupt, the timer interrupt included, it
checks this flag, and calls the schedule () if need resched is set. The schedule () system call is the
scheduler. 1t is the central program in the operating system. It determines which process gets to run next.
When necessary, it initiates a task switch.

So the ultimate computing resource, processor time, also falls under the control of the CPL-based protection
system.

Further Reading
ISA System Architecture, TomShanley and DonAnderson, Addison-Wesley: 1995.

Interrupt-Driven PC System Design, JosephMcGivern, Annabooks: 1998.

Chapter 10. BIT MANIPULATIONS

10.1 Bitwise Logic Operations

10.2 The AND, OR, NOT, and XOR Commands

10.3 Bit Setting and Testing

10.4 Shift Instructions

10.1 Bitwise Logic Operations

In chapter 3, section 3.3, circuits and truth tables for the Boolean operations AND, OR, NOT, and XOR
were discussed. The truth table for AND is

P q (p AND q)
1 1 1
1 0 0
0 1 0
0 0 0

and is implemented using the Boolean circuit

)
_J

If eight of these Boolean circuits are used in parallel, then two eight-bit numbers,

1111 0101
1100 0011

when fed into the eight AND gates, result in one eight-bit output:

1100 0001

The operation is carried out as shown in Figure 10-1. In hex notation, the bytes FSH and C3H used as inputs
to a one-byte AND operation have produced the output C1H. This operation can be applied to any number
of bits. The Boolean operations OR, XOR, and NOT can also be applied in bitwise parallel fashion.

Figure 10-1. Bitwise AND Operation
1 1 1 1 0 1 0 1
1 ‘1 !ﬂ Ii] 0 |{] il 1
1 1 0 0 0 0 0 1
10.2 The AND, OR, NOT, and XOR Commands

High-level programming languages include support for Boolean operations such as AND, OR, and NOT.
They rely on assembler and machine-level implementation of these operations.

The anD instruction applies the AND operation to two operands in much the same way that the App
instruction adds two operands. The following forms are all valid for the AND command:

AND reg, imm
AND reg, reg

As with the AbD commands, a memory operand can take the place of one register operand. Also like the App
command, the two operands must have the same size. For example, suppose that the AL register contains
OF5H and BL contains 0C3H. Then the command

AND AL, BL
would store the result 0C1H into AL and leave BL unchanged.

Except for the fact that they apply different operations, the or and xor commands are the same as the AND
command. The NoT instruction takes only one operand, register or memory.

Edlinas can be used to check the results of applying these commands. For example,

MOV EAX, OF5H
MOV EBX, OC3H
AND AL, BL

should result in the storage of 0C1H in AL.

All these logic commands clear the overflow and carry flags. They set the sign flag if the most significant bit
of the result is 1, and clear it otherwise. They set the zero flag if the result is 0 and clear it otherwise. The
zero flag is often used to determine conditional jumps following logic commands.

For example, we can use the AND command to determine whether a number stored in a register is even or
odd. A number represented in binary is even when its least significant bit is zero. If we have a one-bye
register, then the AND instruction can be applied to it, using the binary number 0000 0001 as the source
operand.

Then all the bits of the result will be 0, except possibly the least significant bit. This bit will be 0 if the
number being tested is even.

MOV BL, AL ;Prepare to test AL for evenness
AND BL, 1 ;The zero flag is set if BL = 0
JZ EVN ;Jump if AL is even.

The TEST instruction is like the cMp instruction in that it sets flags without storing the result. cvp is an
unstored sUB instruction. TEST is an unstored AND instruction. Using TEST, the three instructions used to test
the evenness of AL can be shortened to just two.

TEST AL, 1
JZ EVN ; Jump if AL is even.

10.3 Bit Setting and Testing

One virtue of logic operations is that they give the programmer control over individual bits of memory or
I/O registers.

10.3.1 Turning the Speaker On and Off

The system board speaker is another relatively fixed feature of the standard PC. Its audio signal comes from
a 1.19318 MHz square wave. To get control over the speaker's pitch, this signal is divided by the number
stored in the two-byte register located at I/O address 42H. This register must be written to using two
successive one-byte writes, most significant byte first. Whether the speaker is turned on or not is controlled
by the bottom two bits of a very important one-byte register located at I/O address 61H. Some of the bits of
this register indicate parity errors in memory. Reports of these errors cause the system to halt! Consequently,
we don't want to flip one of them idly or accidentally. The AND and or instructions are perfectly suited for
changing some bits and leaving the others alone. For example, to turn the speaker on, the following three
commands are needed:

IN AL, [61H]
OR AL, 3
OUT [61H], AL

To turn them off,

IN AL, [61H]
AND AL, OFCH
OUT [61H], AL

will do.

It should be noted that in Linux, access to I/O ports by users is, by default at least, prohibited. I/O
permissions can be given to a process, however, by the system calls ioperm () and iopl (), which are
specially adapted to the x86 architecture.

10.3.2 Edge vs. Level Triggered IRQ Bits

The 8259 programmable interrupt controller discussed in chapter 9, section 9.2 has a register which
determines whether the interrupts it receives will be processed as edge-triggered or level-triggered. There is
one bit for each of the eight IRQ lines that it handles. The difference between the two triggering modes is
important. If an I/O device uses level-triggered signaling and the 8259 treats its IRQ as edge-triggered, then
interrupt signals from the I/O device could be ignored. By using bit manipulation commands, it is possible to
single out one bit on this register and change it.

For example, suppose that we are installing a card which sends out edge-triggered interrupt requests on
IRQ4. (IRQ4 is the request line conventionally associated with COM1.) On an EISA machine the register
which controls this triggering is located at I/O port 4DOH. It is called an ELCR (Edge/Level Control
Register). Each 0 bit makes the corresponding IRQ line edge-triggered; each 1 bit causes level triggering.
The simplest way to make IRQ4 edge triggered would be to write a 0 to this port.

MOV AL, 0
MOV EDX, 4DOH; ELCR's address is 4DOH.
OUT [DX], AL ; Store a zero in the ELCR.

But this would be a bad idea. It would make all eight bits in the ELCR 0. Any of the IRQs which happened
to use level triggering would get fouled up. To set them all correctly, we must know what all the triggerings
are for all eight inputs, or we can just leave them as they are except for the fourth bit. To make bit 4 zero, we
can OR the contents of the ELCR with the binary number 1110 1111 = EFH. To do that we need to read
from the ELCR, do the masking, and then write back to it.

Program 10.1

MOV EDX, 4DOH
IN AL, [DX]

AND AL, OEFH
OUT [DX], AL

ELCR's address is 4DOH.

Read the ELCR register.

Mask out bit 4.

Write altered byte back out to the ELCR.

Ne Ne Ne N

10.3.3 Disallowing Non—maskable Interrupts

On ISA machines, non—maskable interrupts can be stopped before they get to the processor. They run
through a gate which is controlled by bit 7 of an I/O register located at port 70H. If this bit is 0, NMIs are
allowed. Memory problems can cause a nonmaskable interrupt to occur. Suppose that we want to
circumvent this safeguard by shutting off NMIs. To make bit 7 equal to 1 we can OR the contents of the I/O
register with 1000 0000 = 80H.

Program 10.2

IN AL, [70H] ; Read the byte.

OR AL, 80H ; Mask out bit 4.
OUT [70H], AL ; Write altered byte back out.

10.4 Shift Instructions

Registers which can shift bits right or left are called shift registers. Suppose that a 16-bit shift register
contains the binary number

0110 1011 0011 1111

Shifting this number to the right by one bit yields

0011 0101 1001 1111

and sets the carry flag, since the rightmost bit was 1. Shift registers are part of the standard repertoire of
microprocessors. In the x86, the bit which is "lost" is generally stored in the carry flag. Hence following the
shift just shown, the carry flag would be set. Where the "new" bit comes from depends on which shift
command is used. When the new bit is 0, the shift is referred to as a logical shift. Notice that shifting the
number 6

0110

to the right by one bit in this manner

0011

yields 3. A rightward shift may thus be used to accomplish division by two. The logical shift, however, fails
to do this correctly on signed numbers. An eight-bit two's complement value such as -4

1111 1100

when shifted to the right by one using a logical shift

0111 1110

yields 126, not -2. If what we really want is to divide by two, then the new leftmost bit should be copied
from the old one. In this case we would get

1111 1110

instead, which actually is —2. This kind of a shift is referred to as an arithmetic shift, or sometimes also as a
sign-extended shift. Since an arithmetic shift produces an erroneous division when a large unsigned value is
used, the latter term is a probably better one. The problem does not occur with leftward shifts. The
commands for rightward logical and arithmetic shifts are

SHR reg, imm
SHR reg, CL
SAR reg, imm
SAR reg, CL

where the immediate value must be a one-byte number. Leftward shifts use the mnemonics ssL and saL.
These two mnemonics actually refer to the same opcodes. They have the same valid forms as sHRr and saRr.
In all these cases, a memory operand may replace the register operand.

When the "lost" bit is recycled as the "new" bit, the shift is referred to as a rotate. ROL and ROR are
mnemonics for rotate left and rotate right. Just as in the logical and arithmetic shifts, the carry flag takes on
the value of the rotated bit. But it does not participate in the rotation. To include the carry bit into the cycle,
use the RCrR and RCL commands. RCL and RCR refer to rotate through carry left and rotate through carry right.
Table 10.1 illustrates the effect of each of these rotate instructions, assuming that before the rotate

instruction is executed AL is 0011 1101 and CF = 1.

Table 10.1. Rotate Instructions on AL = 0011 1101, CF =1

Before Shift After
AL Register CF Command AL Register CF
0011 1101 1 ROR AL,1 1001 1110 1
0011 1101 1 ROL AL,1 0111 1010 0
0011 1101 1 RCR AL.1 1001 1110 1
0011 1101 1 RCL AL.1 0111 1011 0

Shift registers are used by the processor to perform multiplication. The 8080 processor does not have a
multiplication command. But it does have shift commands. A program like the following can be used to do
multiplication using shift commands:

Program 10.3

IN EAX, [0]

MOV ECX, EAX ; multiplier
IN EAX, [0]

MOV EBX, EAX ; multiplicand

XOR EAX ; Initialize the total
AGN: CMP ECX, O ; Is multiplier 0 yet?
JE DUN
TEST ECX, 1 ; Is bottom bit of multiplier 1
JZ SKP ; If so add the multiplicand
ADD EAX, EBX ; Add shifted multiplicand to the total
JC BAD ; A carry here is an overflow
SKP: SHL EBX, 1 ; Multiplicand goes left
JC BAD ; Better not overflow here either
SHR ECX, 1 ; Shift the multiplier to the right
JMP AGN
DUN: OUT [1], EAX ;
BAD: RET ; No output if multiplication overflows

Chapter 11. DEVICE DRIVERS

In chapter 6, the use of memory commands was discussed assuming that the programmer has unrestricted
access to memory. In chapter 8, the use of memory commands in user programs where Linux restricts
memory access is discussed. In chapter 4, section 4.2, the use of I/O commands is discussed, again assuming
that the programmer has unrestricted I/O access. Although there are system commands whose purpose is to
grant I/O access to a user, the default situation in Linux disallows the use of 1N and ouT instructions in user
programs. User access to peripherals takes place only by way of sytem calls. System calls translate user
service requests into IN and ouT instructions. Because system calls execute at privilege level zero, these I/O
instructions can be executed.

A device driver consists of all the programs needed to translate system calls to a particular device into I/O
instructions to that device, plus a program to handle interrupt service requests issued by the device. All the
programs in the device driver are incorporated into the Linux kernel. Over half the code in Linux is device
driver code.

There is a lot of code involved because there is a lot of variety in the hardware devices being accessed. It is a
notable achievement of Unix that this great multiplicity of hardware is brought under the control of a small

repertoire of simple commands. An important stage in the development of this repertoire was the concept of
a device-independent file.

11.1 Device-Independent Files

Toa nnderctand what device indenendence meang it i< neefuil to concider haow we mioht naivelv heoin tn

AU GAMVA UG YT AWML MV T AV Y AUV VAL VALY VY ALAVMALU Y AV AU WUV ALL VU WUALUANAYA ALV VT YT W ALALEIAL IAVAA Y WA UV maan v

program access to an ordinary 1.4 Meg floppy drive, without the aid of this useful concept.
11.1.1 Floppy Drive Controller

A floppy drive includes a motor and a sensing arm and is controlled by a processor called a floppy drive
controller. See Figure 11-1. Many floppy drive controllers are compatible with the 8272 controller. In the
ISA architecture, the 8272-compatible controller is assigned I/O ports 3FOH through 3F7H. Access to the
floppy is by way of these ports.

Figure 11-1. The Floppy Drive as an 1/0 Device

Address Bus Floppy Cable
Floppy
ity Drive
Controller
Data Bus
IRQ #6

A 1.4 Meg floppy is carved up into small portions by the floppy drive. Each side of the floppy has 80
concentric circles, like the rings of a target. These rings are called fracks. Each side is also divided by radii
into 18 pieces which are shaped like pizza slices. Each track moves through all 18 of these pizza slices. Each
portion of one track on one pizza slice is called a sector. Each sector contains 512 bytes of data. The total
capacity of the disk is:

2 sides x 80 tracks/side x 18 sectors/track x 512 bytes/sector
= 1440 K bytes.

To get read or write access to the disk, a command must be issued to the 8272. The command port is at the
ISA address 3F4H. 46H is a READ command in the 8272 language. It must be followed by eight bytes
which specify, among other things, which track, which sector, and which side of the disk will be read. All
read commands read at least one full sector. To read sector number five on cylinder number six on side
number one, for example, the following ouT instructions would need to be issued:

Although this code accesses 512 bytes, a little arithmetic shows that from a processor's point of view, it is
not accessed all at once. Spinning at 300 rpm, or five revolutions per second, a floppy drive drive can collect

5 revolutions/second x 18 sectors/revolution x 512 bytes/sector
= 46,080 bytes/second

This means bytes are collected every 1/46080 seconds, or 21.7 microseconds. On a 100MHz machine, this is
a wait of 2,170 machine cycles, clearly too much time to keep the processor idling. This is a good example
of a situation where an interrupt can save time. Each time the 8272 has accumulated one byte of information
from

Program 11.1

MOV AL, 46H ; Data Read command
ATTT [RF4A4H1 AT.

U L—wi 211] y 2zau

MOV AL, 4 ;Side 1, Drive A:
OUT [3F4H], AL

MOV AL, 6 ;The Cylinder number

OUT [3F4H], AL

MOV AL, 1 ;Side 1, (again)

OUT [3F4H], AL

MOV AL, 5 ; The Sector number

OUT [3F4H], AL

MOV AL, 2 ;Sector size code for 512 bytes
OUT [3F4H], AL

MOV AL, 17 ;Last Sector number

OUT [3F4H], AL

MOV AL, O ;Gap size

OUT [3F4H], AL

MOV AL, OFFH ;Unused special Sector size code

OUT [3F4H], AL

the floppy drive, it signals the system to take the information. It may use IRQ#6 to do this. In section 11.1.3
we will find that another way of handling the input has been developed which is even less wasteful of
processor time.

11.1.2 Bad Old Files

The fact that information is handled using absolute addresses, one sector at a time, stands out in our
programming of the floppy drive. Space on the disk is used in chunks of 512 bytes. It would be very natural
then if all 1.4 Meg floppy disk files had lengths which were multiples of 512 bytes and were referenced
using the absolute addresses of the sectors which they occupied. It would also be natural to store the
information about which sectors were occupied into the "file," along with the rest of the information. This
kind of information constituted what was called a file control block. In Unix this kind of information is held
by the system in special system memory areas called inodes and is not integrated with the data in the file.
When this kind of information is included as a part of the data, elementary operations such as copying a file
from one device to another become problematic. File copying programs become device-specific just as
programs to convert wordprocessor documents are software package-specific. Copying a file can easily
change its length, for example. Residual problems of exactly this nature exist in connection with text files in
C, where line boundaries may be marked either by system information—the device holding the file may
have an intrinsic line structure—or by end of line characters, \n, which are internal to the data file. Copying
text files in C is not guaranteed to preserve length. One reason that the C preprocessor concatenates strings
is so that intrinsic end of line boundaries can be overcome. The Standard C Library by Jim Plauger, its title
notwithstanding, contains some fascinating historical asides on these issues.

The point here is that these "bad old files" are shaped by the devices on which they are stored. A device-
independent file, on the other hand bears, no imprint of the device on which it is stored. A device-
independent file can be copied from one device to another without undergoing change. Device-independent
files originated in the Multics operating system, the immediate predecessor of Unix.

11.1.3 * Direct Memory Access

The reader interested in getting on to device drivers may skip ahead to section 11.2. The reader curious
about what keeps the floppy drive, or other peripherals for that matter, from interrupting the processor after
every fetched byte should read the next two paragraphs.

In addition to the IRQ line, the 8272 also has an output line called DMARQ, for DMA request. DMA stands
for direct memory access. Instead of using the IRQ line, the 8272 may be programmed to use the DMARQ
line instead. The DMARQ line runs from the 8272 to a processor called a DMA controller which is equipped
to issue, bus control signals and thus initiate Memory Write bus cycles. It can therefore relieve the CPU of
the task of transferring bytes one at a time from the floppy drive into memory. In order that the use of the
bus cycle machinery by the DMA controller not interfere with the CPU, which is constantly using the buses
to fetch instructions, there is a HOLD line running from the DMA controller to the CPU and a HOLDA
(hold acknowledge) line running from the CPU to the DMA controller. To use the buses, the DMA
controller must ask for permission using the HOLD line and receive it on the HOLDA line. Incidentally, the

nnnnrnmnne manxr smntmant tha DT T 44 wxrithlhAlA srAvimmiani A Txr 11aiar thAa 1 AAT saveafic

prugianiicl ay 1nuuLt U Ul U W willlulu POLLILDSIVIL VY UdLLE UIT LUl PICLIA.

Setting up a DMA transfer requires more work on the part of the programmer than setting up a 512-byte
read. Commands must be issued to both the DMA controller and the floppy controller, but it results in
saving a great deal of CPU time.

Since any device which transfers blocks of data to and from memory can take advantage of DMA service to
avoid placing unnecessary demands on the processor, a DMA handling circuit, very similar to the interrupt
handling circuit shown in Figure 9-5, with a Master and a Slave DMA controller exists in the ISA
architecture. There is a DMARQ line for each device which gets DMA service. These DMA lines are called
DMA channels.

Figure 11-2. Floppy Controller Using DMA instead of an Interrupt

Address Bus Floppy Cable
l
Floppy
DMA | DMARQ | Floppy st
Controller Controller|—
Data Bus

11.2 Devices as Files

A device-independent file is a list of bytes with a name, and that's all it is. As such, it is an abstraction. It
soon proved to be a very useful abstraction. Immediately in the wake of the device-independent file concept
followed another innovation of the Multics operating system. This was the idea that it should be possible for
a programmer to treat I/O devices (printers, terminals, etc.) as device-independent files. This idea is the
basis of the Unix device driver. Inputting data from a device can then be done just as you would "read" from
a file. Outputing data to a device can be done just as you would "write" to a file. Turning file operations into
generic device operations makes using devices easy for the applications programmer and also clarifies the
role of the device driver. Its role is to provide the kernel with device specific versions of read (), write(),
open (), etc., that can be accessed when it is processing those generic system calls which come from user
programs.

For example, in section 11.3 where a Morse code speaker device is defined, the function cq write () is
defined. This function is called by the kernel when the system call write () is used to access the Morse
Code speaker. This might happen, for example, when a user sends a string of text to the speaker.

linuxbox$ echo "Hello world" > /dev/cqg

Because most devices are idiosyncratic in at least some respect or other, there must be room left over for
features that do not fit into the generic read and write type system calls. The system call ioct1 () is
designed to take care of these leftovers. Each idiosyncratic feature is assigned a unique number called a
magic number. An idiosyncratic feature of the speaker, for example, is its pitch. When ioct1 () calls the
speaker function cq_ioctl() using the correct magic number, the pitch-setting function is called.

The connotations of the term magic number are unfortunate, putting as they do an aura of mystery around a
mere detail and value on privileged information where a value on openness would be more socially
responsible. Stupid number would be better. But, be that as it may, magic numbers are at least not hard to
find. They are, by convention, given in #define statements where their usage is explained. POSIX
conventions require that magic numbers be not only unique for a device, but systemwide unique.

In the following sections, two examples of device drivers are presented. The purpose of these examples is to
show what is involved in writing a device driver which incorporates some assembly code. The first driver is
a toy. Its reason for existence is to serve as an example of a device driver. The second driver was written in
response to a request from a friend who needed to input data from an external device as part of a research
project involving the measurement of lizard metabolic rates. The goal of the research is a better
understanding the mechanism by which environmental variations bring about lizard speciation (and also
extinctions). So, although it is not a big program, it is not just a toy. The main feature the second driver has
that the first one does not have is that it installs its own interrupt handler. The Morse Code driver merely
adds some chores to those of an already installed handler.

11.3 Morse Code Speaker Driver

The basic structure which is used to connect device specific functions, such as cq write (), with their
generic counterparts, such as write () is the file operations structure.

11.3.1 The file _operations Structure

The definition of this structure is in /usr/src/linux/include/linux/fs.h. A simplified version of it is
given here.

struct file operations

{
long long * llseek();

int * read();

int * write();

int * readdir();
int * poll();

int * ioctl();

int * mmap();

int * open{();

int * flush();

int * release();
int * fsync();

int * fasync();

int * check media change();
int * revalidate();
int * lock();

}i

All the components of this structure are pointers to functions. The function names are given exactly, but
their parameter declarations are omitted and the return types are given using a familiar but nonportable x86
version, e.g. int instead of the more portable ssize t. The use of types such as ssize t, however
valuable for the sake of getting the same code to compile and run on different architectures, has a serious
downside when it comes to reading the code. For example to chase down the definition of ssize t, we
need to find

typedef kernel ssize t ssize t;

in /usr/src/linux/include/linux/types.h and then

typedef int kernel ssize t;

in /usr/src/linux/include/asm-1386/posix types.h. Learning an operating system should not turn
into an exercise in using the grep command.

The creation of an instance of struct file-operations for a particular device is the key to writing a
device driver. The biggest part of writing the driver is defining the functions in this structure. These
functions handle the system calls which result in calls from the system to the device. Handling calls from the
device to the system requires setting up an interrupt handler, or as in the case of the Morse Code speaker

driver, piggy-backing off of an existing interrupt handler. Not all of the functions named in the st ruct
fila Anaratiane dtmetiire are needed in everv device TTnneeded comnanente mav aimnlv he defined ac

Lo UMLL UL ULID UUMUVIB Y WAV UVVUYG LI VY VA) WV YAV WAV VUYL VUL VIAVALWD LM) DAL) UV UV G U

NULL. For the Morse Code driver, the following declaration sets up the needed file operations structure.

static struct file operations cg fops =
{
cq lseek,
NULL, /* cq_read */
cqg write,
NULL, /* cqg_readdir */
NULL, /* cg-poll */
cqg ioctl,
NULL, /* cq mmap */
cg_open,
NULL, /* cqg-flush */
cq release

}i

The coding for these component functions is given in section 11.3.10. The omitted components following
cq_release may be safely left to gcc which fills them in with the value NnULL.

Program 11.2

void delay(int 1)

{
/* VERY roughly: delay by i hundredths of a second. */

i =1 * 1000000; /* Multiply by a million. */

while(i > 0) 1 = i - 1; /* Could be just one instruction. */
/* Many instructions take just one clock cycle. */
/* On a 100 MHz machine one million clock cycles take .01 sec. */

}
11.3.2 Timing Using Delay Loops

Before getting into the details of the individual functions, however, it would be worth while to take an
overview of how the whole thing works. In an unprotected single user system such as in DOS, for example,
we could turn the speaker on and off at will using 1§ and ouT instructions. The timing of the ons and offs
could be managed using delay loops as shown in Program 11.2. The time spent in these delay loops would
not be a big problem since, as a single user system, the machine would probably not be doing anything else
anyway.

We could also use this technique in a Linux device driver. There is nothing to stop us. Program 11.3 shows
the result. However, in a Linux device driver this code would be terrible. Linux does not interrupt kernel
code. Since device drivers are part of the kernel, this code would never get timed out. It would monopolize
the system.

Instead of strangling the computer, the driver needs to let go of the CPU and reschedule itself for execution
at a later time. The driver can do this by taking advantage of existing Linux system resources, in this case
the system timer. The system timer is a clock which interrupts the processor every .01 second. It uses IRQ
#0. In Linux, all interrupts are counted and the counts are displayed in the /proc/interrupts directory.
The counter for the timer interrupt is called jiffies and its value is displayed along with the other interrupt
counts. When the ISR for this interrupt executes, it checks a queue of jobs which have a scheduled execution
time. This queue is called the timer queue.

11.3.3 The Timer Queue

Using the timer queue is not difficult. Each timer queue entry is like a handy little order form. It has
structure shown in Figure 11-3. When submitting an order, you fill in the last three items and leave the first
two blank.

Fioure 11-3. Definition of the Timer Ouene

struct timer_list

{

struct timer_list * next;
struct timer_list * prev;
unsigned long expires;
unsigned long data;

void * function();

Program 11.3

while (<Code not done>)

{
if (<Dot starts>)

{

speaker on();
dtime = 20;
}

else i1f(<Dash starts>)
{
speaker on();
dtime = 40;
}
else 1if (<Dot or Dash stops>)

{
speaker off ();
dtime = 30;
}
delay(dtime) ;
/* dtime is how long to run the delay loop. */

e next and prev are typical doubly-linked list pointers. On a submitted job, they should be set to NULL.
They are reset later by Linux when the entry is linked into the timer queue.
e expires is the time in jiffies when the job is supposed to begin executing.

e The function component is the job to be done. As its name implies, it is just a pointer to a function.
When the time specified in expires arrives, the function pointed at by function gets called.

e The data component is the argument passed to the function pointed at by function.

To submit one of these order forms to Linux, you call the add timer() function on a pointer to it. That's all
there is to using the timer queue.

Program 11.4

void cg timer handler (unsigned long x)

{

unsigned long dtime;
/* dtime is how long to wait on the timer queue.

i1f (<Code not done>)
{
if (<Dot starts>)
{
speaker on();
dtime = 20;
}
else i1f(<Dash starts>)
{
speaker on();
dtime = 40;
}
else if (<Dot or Dash stops>)

{
speaker off ();

dtime = 30;

}
(cg timer -> expires) = jiffies + dtime;
(cqg_timer -> function) = cqg timer-handler;

/* Here cq timer handler is adding its

own name to the timer queue entry form. */

add_timer (&cqg_ timer);

/* Now submit the queue entry. */

}

If we use the timer queue to fix Program 11.3, Program 11.4 results. It is essentially the same as Program
11.3, except that it exits promptly after it turns the speaker on or off instead of hogging the CPU. It relies on
the timer interrupt to get itself called again later. The data component of the struct timer 1list structure
is not used. Once this code is called, it uses the timer to call itself back again. It is a little like recursion,
except that it does not call itself directly, but indirectly, by sending its name to the timer queue. Since any

function can add this entry to the timer queue, there is no problem getting it started. In fact, this is done by
cqg write().

11.3.4 Device Memory

The next problem we face in writing this driver is memory access. The memory labels (variable names and
function names) used in Program 11.4 are referenced when the ISR for interrupt #0 is executed. This
interrupt may occur during the running of any process. The page tables in effect at that time are those
belonging to whatever process happens to be running at that time. It need not be the process that is sending
text to the speaker.

Note that in the uncoded portions of Program 11.4, such as <Dot starts> or <Code not done>, there must be
references to the text being sent to the speaker. This text is located in memory belonging to the process
which originally called the device driver. However, getting access to this memory is a problem. The problem
is not access rights; it is finding a usable address. The only address we have for this text is defined relative
to a set of page tables that are pointed at by a CR3 value that is not loaded into CR3. Kernel privileges do
not solve this problem. Doing a task switch back to the calling process would restore the CR3 value needed
to access the page tables, but if all we need to do is to turn the speaker on or off, then this would be a
ridiculous waste of time.

A good solution to this problem is to set aside some kernel memory for the device and have cq write ()
copy from the user's memory into the device's memory. Unlike cq timer handler(), cq write() is
called in response to a user's system call and executes while the user's page tables are still in effect. At that
time, locating the text is not a problem. But like cq timer handler (), it executes with kernel privilege so
it has the rights needed to access kernel memory.

Since kernel addresses are shared systemwide, they are valid no matter what process is running. For
example, we can look up the address of jiffies or add timer any time we want by doing a grep such as

linuxbox$ grep jiffies /System.map

Essentially, all devices need some memory of their own in order to function. The structure whose definition
is shown in Figure 11-4 sets aside device memory needed for the speaker driver. The components of this
structure are

Figure 11-4. Device Memory for Speaker

BLruct cg struct

{
int flags;
unsigned int timerdiv; /# Timer divisor determines pitch =/
uhaigned int wholenote; /% Duration in centiseconds */
char * mcode; /* Pointer into current Morse Code string.*/
char buffer [CQ_BUFFER_SIZE];
unsigned int buffer offset; /* Current character =/
unsigned int buffer end; /* End of buffer. =/
struct wait_queue *cq wait q;

lcq.area;

e flags: The bits of the flags carry information about the state of the device.

#define CQ EXIST 0x0001
#define CQ BUSY 0x0002
#define CQ OFF 0x0004

The co Ex1sT bit merely indicates that the device driver is installed. The co BUsy bit is used to keep
more than one process from using the device at the same time. This bit is checked when open () is
called on the device. Blocking other processes from using /dev/cq does not block them from using
the speaker. A ctrl-G (a beep) sent to the terminal will still get through. A true speaker device driver
would not let this happen. All kernel code accessing the speaker would be rerouted through the
speaker driver. But since emergency code needs direct access to the speaker, this would not be
desirable. The co oFF bit indicates that the device driver has the speaker turned off at the moment.
This bit is checked every time cqg timer handler () is called. These definitions are always inserted
into a header file associated with the device. In this case, the file name cq.h is more or less inevitable.

e timerdiv: The timerdiv component holds the value of the timer divisor which determines the pitch
of the speaker. Putting this number into device memory allows the pitch to be reset every time the
Morse speaker is used, thus protecting it from being changed by a ctrl-G from some other process, and
still be modifiable using ioctl () .

e wholenote: Similarly, the wholenote component holds a unit time value that is used as the basis for
calculating all the other time values in the program. Altering this value changes the overall rate at
which the Morse Code comes out of the speaker. It is given in terms of the duration of one musical
"whole note."

e buffer[CQ BUFFER SIZE]: The buffer, butfer [cQ BUFFER SIzE], holds the text from the calling
process. This is the text which is in the process of being sent to the speaker. The fact that text is stored
here in kernel memory is what makes it unnecessary to do a task switch every time the speaker is
ready for another letter.

e mcode: The pointer, mcode, keeps track of where in the string of dots and dashes for the current
character we are.

e buffer offset: The buffer offset component picks out which character in the buffer the speaker
is currently working on.

-~) M ~ - -~ LIRS, [EE SRR Yo A SRRSO SRR o/ S DRI B PSP T | EE RIS SR

® purrer end: 11C ODUIIer end lldlikd Ul ClU Ul UIC CULICil DULICL 10dU. 1l 1S udSudlly jJuStL Ul SalllC dd
CQ BUFFER SIZE. Butin case the buffer is given only a partial load, buffer end allows the driver to
quit on time without running all the way to the end of the buffer.

e cq wait qg: The last component, cq wait g, is there because although the text buffer, buffer
[CQ BUFFER SIZE], is a good idea, it does not completely solve the problem of accessing the user's
text. When all the text in the buffer has been sent to the speaker and there is more to go, then we're
back where we were before when we had no buffer, trying to get ahold of user's text when the user's
process is not running (and hence the user's address space is not functional).

The buffer in device memory does not eliminate the need to do task switches. It can only reduce the number
of the them. It can do this by making the buffer larger. The bigger the buffer, the less often a task switch is
needed. But a bigger buffer increases the size of kernel memory. We have here a typical time vs. space trade
off.

The user-called process, which fills the buffer, and the timer-handler, which empties the buffer, are an
example of what is called a producer-consumer pair.

11.3.5 Wait Queues

Wait queues were designed to allow processes to suspend operation is such a way that they can be easily
reactivated when needed. For example, a producer can suspend operation when it has produced a surplus
and be reactivated by a consumer when the supply is exhausted.

A process may suspend its own operation by calling sleep on () . It can be reactivated using wake on() .

In the case of our speaker driver, the producer cq write () fills cq area.buffer, the speaker's text buffer,
and could call sleep on() as soon as it was done. When the timer handler cq timer handler () has used
up a buffer load by sending it off to the speaker, it could call the function wake up () to get cq write() to
fill the buffer back up again.

From the name wake up () we might get the idea that an immediate task switch would be initiated. In fact
what happens is that the process running cq write () gets put back on a queue called the run queue, which
consists of all processes which

Program 11.5

cqg write(<File>, u, n)
{
/* This program puts itself to sleep
after it fills device memory. */
int k, total = 0;

while (total < n)
{
k = CQ BUFFER SIZE;
copy from user(cq area.buffer, k, u);
add timer(&cq timer);/* Start timer handler */
total = total + k;
sleep on(&(cqg area.wait q));
}
}
cqg_timer handle (unsigned int x)
{
/* This program wakes up the user
process when device memory is empty. */

<Turn speaker on or off>

if (<Character done>))

{
cq area.buffer offset = cq area.buffer offset + 1;
if (cg area.buffer offset == cg.area.buffer end)

cqg area.buffer offset = 0;
wake up(&(cq area.wait q));
return; /* No future scheduling done here! */

}

add timer (&cqg timer);/* Continue calling timer handler */

are currently taking turns using the processor. Each time another process on the run queue takes its turn on
the processor, there has to be a task switch, of course.

Both sleep on() and wake up () must be called on an argument whose type is (struct wait queue **),
a pointer to to a pointer to a wait queue structure. Although this sounds horrible, it is really no problem to set
up one of these things. The definition of a struct wait queue is

In /usr/src/linux/include/linux/wait.h.

But, actually, to use a wait queue, we don't need to know anything about its internals. As long as we call
wake up () on the same pointer that we give to sleep on (), we're all set. The wait g component of our
struct cq_struct gives us a (single) pointer to a wait queue structure. Since cq_write () uses sleep on
() and cqg timer handler () uses wake up (), then the wait queue double pointer must be located in a
place where both functions can address it. This is another example where device memory comes in handy.
That is why the wait queue pointer is located there. A pointer to this pointer then gives us the argument that
we need: s (cq area.wait q) .

Program 11.5 shows how the sleep on() and wake up () calls work together. In Program 11.5, cq write
() calls sleep on() as soon as it has filled the device buffer in kernel memory. cq timer handle () wakes
up the sleeping cq write () process when it has emptied the device buffer.

Now that we can program the necessary task switches, we are in a position to write a workable driver.
Unfortunately, the driver as outlined so far would have a serious failing. It would not respond to what are
called signals.

11.3.6 Signals

Processes in Unix have a handful of different mechanisms available to communicate with each other. One of
these is the sending of signals. When a process is killed with a ctrl-C or a ki11 command, the process has
received a signal. To explain what a signal is, we need to expand a little on the notion of a task. We have
described the task state segment as a region of memory where registers get saved when a task switch occurs.
The task state segment is maintained by the hardware. But it is only a part of the contextual information that
is maintained by Linux for each process. There is a structure called a struct task struct defined

in /usr/src/linux/include/linux/sched.h which keeps all the information Linux needs on a process.
This information is available to the device driver when it is executing in behalf of a process because there is
a global variable in kernel memory called current whose value is always the task structure for the current
process. In the driver for /dev/cq, for example, it makes sense to access this variable from cq write () but
not from cq timer handle () . One of the components of struct task struct is tss, the hardware's
task state segment. The pid component is the Process ID number which shows up when ps is run. It is
needed when killing jobs from the command line. Another component of struct task structis signal.
This component is currently typed as an array of integers. Each bit on each integer in the array can carry a
signal. With two 32-bit integers in the array, Linux is configured for a maximum of 64 signals. Whatever the
subtle distinctions are between all of these different signals, receiving a signal means just one thing to a
device driver: it's time to quit.

Drivers that Can't Be Killed

The signal pending() call checks the signal component of the process for non-zero bits. It is the
responsibility of the writer of the device driver to make sure this is done and to go ahead and quit if such bits
are found. Failure to do so results in a device driver that can't be killed. This is an easy mistake to make and
a serious one. Multitasking in Linux is sometimes called coonerative multitaskine. User tasks which execute

with kernel privilege, such as cq write (), are expected to yield to the processor voluntarily. If they don't,
the scheduler won't force them to do so. In order to fulfill this responsibility, the driver must include code
such as

if (signal pending (current))
return value;

at points in the code which will be encountered frequently enough so that waiting for the device driver to
arrive at these points as it executes will not cause undue delay.

One more detail needs fixing in order to make sure the driver responds to signals.
11.3.7 States of a Process

A very important component of struct task struct is state. Its most important values are assigned
In /usr/src/linux/include/linux/sched.h:

#define TASK RUNNING O

#define TASK INTERRUPTIBLE 1
#define TASK UNINTERRUPTIBLE 2
#define TASK ZOMBIE 4

#define TASK STOPPED 8

Tasks which are on the run-queue, i.e. those which are now taking turns using the processor, have
TASK_RUNNING as the value of their state component. When a task puts itself onto a wait queue, state may
take either TASK INTERRUPTIBLE Or TASK UNINTERRUPTIBLE as values. And it makes a big difference.
Although we might reasonably suppose that the difference has to do with interrupts, it doesn't. It has to do
with signals.

If state has the value TASK UNINTERRUPTIBLE, then its signal component will not be altered by a Ctrl-C
or a kill. Unfortunately, this is the value assigned to state by the sleep on() function. Fortunately, there
is a closely related function called sleep on interruptible () which assigns the value

TASK INTERRUPTIBLE to state. Hence in Program 11.5, the calls to sleep on() and wake up () need to
be replaced by their interruptible counterparts. Otherwise we would have the same problem that we would
get if we omitted the signal pending() check. The definitions of two sleep on functions are defined

in /usr/src/linux/kernel/sched.c as well as the main part of wake up () . The two wake up macros are
defined in /usr/src/linux/include/linux/sched.h.

In the digitizer driver in section 11.4, wake up interruptible () macro definition must be consulted to
find out the actual function call since the gcc preprocessor isn't used by NASM.

The main features of the Morse Code speaker driver are now in place, so we can do the fun part next.
11.3.8 Timing the Morse Code

The timing of dots and dashes is an art, not a science. A Morse Code driver has good timing if it sounds
right to a Morse Code practitioner. Time values in this driver are based on the following rules:

e All time values are based on the duration of the wholenote component of cq_area, which is given in
hundredths of a second, or jiffies.

e A dash is one-fourth of a wholenote.
e A dot is one-sixteenth of a wholenote.

e Quiet intervals between dots and dashes of a lettter are one-eighth of a wholenote.

o Quiet intervals between letters are three-cighths of a wholenote.
¢ A character not included in the Morse Code get a silent interval of one-quarter of a wholenote.
11.3.9 Assembly Language Speaker Code

To turn the speaker on and off, the two little assembler routines shown in Program 11.6 are used. Although
the bulk of the device driver is written in C, this is often the case. Many times, small routines are coded in
assembly language and the rest is coded in a higher-level language.

If the file containing Program 11.6 is called speak.asm, it can then by assembled using NASM:

linuxbox$ nasm -f elf speak.asm

The -£ e1f switch determines the format of the resulting object code file called speak.o. It should be
stored in /usr/src/linux/drivers/char.

Program 11.6

global speaker-on

global speaker off

extern cqg area
SYSP equ 61H ; System port for controlling speaker feed
DIVREG equ 42H ; Port for timer divisor
speaker off:

IN AL, [SYSP]

AND AL, OFCH

OUT [SYSP], AL

MOV EAX, [cg_area]

OR EAX, 4
MOV [cq area],EAX
RET

speaker on:
MOV EAX, [cq area + 4]
; timerdiv is offset by 4
OUT [DIVREG], AL
SHR EAX, 8
OUT [DIVREG], AL
IN AL, [SYSP]
OR AL, 3
OUT [SYSP], AL
MOV EAX, [cg_area]
AND EAX, OFFFFFFFBH
MOV [cqg area], EAX
RET

11.3.10 C Language Driver Code

Program 11.7

#include <linux/errno.h> /* Need this for ENODEV, etc. */
#include <linux/kernel.h> /* Need this for printk() */

#include <linux/major.h> /* Need this for CQ MAJOR */

#include <linux/sched.h> /* Need this for sleeping and waking */
#include <asm/uaccess.h> /* Need this for copy from user() */

#include <linux/cqg.h> /* Note the cq file. */
void cg timer handler (unsigned long);
static void cg set pitch(unsigned long);

static void cg set tempo (unsigned long);

void speaker on(void);

I T RN

vOla speaker OILL (volid) ;s

char * morse code[40] ={"",

" nw "

/* The empty string, followed by the 26 letter codes,
followed by the 10 numeral codes, followed by the comma,
period, and question mark. */

struct cq struct cqg.area = {0, 0, O, {0}, O, O, "", NULL};
struct timer list cg timer = {NULL, NULL, 0, 0, &cg timer handler};

inline char * mcodestring(int asciicode)
{
char * mc;
/* This is the mapping from the ASCII code
into the mcode array of strings. */

if (asciicode > 122) /* Past 'z' */
mc = morse_ code[CQ DEFAULT];

else if (asciicode > 96) /* Upper case */
mc = morse code[asciicode - 96];

else if (asciicode > 90) /* Uncoded punctuation */
mc = morse_ code[CQ DEFAULT];

else if (asciicode > 64) /* Lower case */
mc = morse code[asciicode - 64];

else 1f (asciicode == 63) /* Question Mark */
mc= morse.code[39]; /* 36 + 3 */

else if (asciicode > 57) /* Uncoded punctuation */
mc = morse code[CQ DEFAULT];

else 1if (asciicode > 47) /* Numerals */

mc = morse codel[asciicode - 21]; /* 27 + (asciicode - 48) */
else 1if (asciicode == 46) /* Period */

mc = morse code[38]; /* 36 + 2 */
else 1if (asciicode == 44) /* Comma */

mc = morse code[37]; /* 36 + 1 */

else
mc = morse code[CQ DEFAULT];
return mc;

}

static int cg reset(void)
{
speaker off ();
cqg_set pitch(CQ DEF PITCH); /* Pitch in Hz */
cq_set tempo (CQ.DEF-TEMPO); /* Quarter note equals this */

return 0;

}

void cg timer handler (unsigned long x)

{
/* This is the function which is called because
its name is submitted to the timer queue. */

int status;
unsigned int time value;

time value = jiffies + 1; /* Mollify gcc */

status = cqg area.flags ;
if ((*(cg_area.mcode) == 0) && (status & CQ OFF)
&& (cqg.area.buffer offset + 1 == cg_area.buffer end))

/* This buffer load is done */

/*

*/

}

wake up interruptible(&(cq area.cq wait q));

return;
}
if ((*(cg_area.mcode) == 0) && (status & CQ OFF))
/* This character is done. Reset mcode. */
{
cq area.buffer offset = cq area.buffer-offset + 1;
x = cq area.buffer[cqg area. buffer offset];

cq_area.mcode = mcodestring(x);

if ((*(cg_area.mcode) == 0) && (status & CQ OFF))
/* Preceding if-block put in the empty string.
/* Empty string gets a quarter note. */

{
time value = cg area.wholenote >> 2;

}
else if (status & CQ OFF)

*/

/* Speaker is off. Begin another dot or dash */

if (*(cq area.mcode) == ')

time value = cg_area.wholenote >> 2;
else if (*(cg area.mcode) == "'.")

time value = cg area.wholenote >> 4;
(cqg area.mcode) = (cq_area.mcode) + 1;

speaker on();
}
else if (* (cq _area.mcode) == 0)

/* Speaker is on. End of character. */
{

time value =

(cg area.wholenote >> 3) + (cg area.wholenote >> 2);

/* inter-letter rest */
speaker off ();
}

else /* Speaker is on. In the midst of a character. */

{
time value = (cqg _area.wholenote >> 3);
/* Short intra-letter rest */
speaker off();
}

cqg.timer.expires = jiffies + time value;

cq_timer.expires = jiffies;
In case you have seen this elsewhere,
it does Not Work!

add timer (&cqg timer);
return;

static ssize t cqg write(struct file * file, const char

{

size t count, loff t *ppos)

/* This function fills the buffer and then goes to
unsigned long copy size;

unsigned int time value;

ssize t total bytes written = 0;

time value = 1;

total bytes written = 0;
do
{
if (signal pending(current))
return total bytes written;
copy size = (count <= CQ BUFFER SIZE ? count
cq_area.buffer offset = 0;
cq_area.buffer end = copy size;

copy from user (cq area.buffer, buf, copy size);

* buf,

sleep. */

CQ BUFFER SIZE);

cq_a;ea.mgode = mEodestring(cq_area.buffgr[O]);

time value = cg area.wholenote>> 4;
cqg _timer.expires = jiffies + time value;
add_timer (&cg timer);
speaker off ();
interruptible sleep on(&(cg area.cq wait q));
total bytes written = total bytes written + copy size;
count = count - copy size;
buf = buf + copy size;

} while (count > 0);

del timer (&cqg timer);

return total bytes written;

static long long cqg lseek(struct file * file,
long long offset, int origin)
{
return -ESPIPE;
}

static int cqg open(struct inode * inode, struct file * file)

{

unsigned int minor = MINOR (inode->i rdev);

if (minor > 0) /* Stereo No */
return -ENXIO;
if ((cq_area.flags & CQ EXIST) == 0)

return -ENXIO;
if (cg area.flags & CQ BUSY)
return -EBUSY;

cq area.flags = (cq_area.flags | CQ BUSY);
return 0;

}

static int cqg release(struct inode * inode, struct file * file)

{
cq area.flags = (cq area.flags &~ CQ BUSY);
return 0;

}

static void cg_set pitch(unsigned long cps)
{
cg_area.timerdiv = 1193180 / cps;

/* Frequency of the 0OSC signal on the AT bus */
}

static void cg set tempo (unsigned long beats per Minute)

{

/* Quarter note = 1 beat, timer works in centiseconds */

cg_area.wholenote = 24000 / beats per minute;

}

static int cqg ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
unsigned int minor = MINOR (inode->i rdev);
int retval = 0;

if (minor > 0)
return -ENODEV;

if (((cqg area.flags) & CQ EXIST) == 0)
return -ENODEV;
switch (cmd)

{

case CQABORT:
if (arg)
cq area.flags
else
cq area.flags = (cq _area.flags & ~ CQ ABORT);
break;
case CQSETPITCH:
if (arg)
cq_set pitch(arg);
else
retval = -EINVAL;
break;
case CQSETTEMPO:
if (arg)
cq _set tempo (arg);
else
retval = -EINVAL;
break;
case CQRESET:
cq reset();
break;
case CQGETFLAGS:
retval = verify area (VERIFY WRITE,
(void *) arg, sizeof(int));

(cqg_area.flags | CQ ABORT) ;

if (retval)
return retval;
else
{
int status = cg_area.flags;
copy to user((int *) arg, &status, sizeof(int));
}
break;
default:
retval = -EINVAL;
}

return retval;

int cg_init(void)

/* Initialization code like this can be called
if a call to it is placed in mem.c */

if (register chrdev(CQ MAJOR, "cq" ,&cq fops))

{
printk (KERN _INFO "cg: unable to get major %d\n", CQ MAJCR);
return -EIO;

}

cq area.flags = (CQ OFF | CQ EXIST);

cq_reset();

return 0;

It is customary to include definitions of parameters used in the C program in an include file. An include file
for the Morse Code driver follows.

#define CQ EXIST 0x0001
#define CQ BUSY 0x0002
#define CQ OFF 0x0004
#define CQ_ ABORT 0x0008

/* IOCTL numbers */

#define CQABORT 0x0714

#define CQSETTEMPO 0x0716 /* Store whole note int cg area. */
#define CQSETPITCH 0x0719 /* Store a timer divisor into cq area. */
#define CQRESET 0x071c /* reset speaker */

#define CQGETFLAGS O0x07le /* get status flags */

#define CQ BUFFER SIZE

#define CQ DEF CHAR 0 /* Default character */
#define CQ DEF PITCH 440 /* Default pitch */
#define CQ DEF TEMPO 160 /* Default tempo */

/~k

function prototypes

*/

extern int cg init(void);

The functions defined in struct cq struct take care of the response by the driver to requests that the
kernel makes in executing a system call which is asking for service from the driver. The cq timer handler
() function takes care of the driver's response to a timer interrupt. These are the main things that need to be
done. But when the device driver works, commands such as

linuxbox$ cat file > /dev/cqg

will start the speaker beeping. In order for this to happen, there has to be an entry named cq in the /dev
directory, which has a connection with the programs such as cq write () .

11.3.11 Loose Ends

To finish the device driver, it is only necessary to
e Add a major number for the device to the /usr/include/linux/major.h file.
e Create an entry for the device in the /dev directory using the mknod command.
e Write a cq init () function and include a call to it in the mem. c file.

e Modify the Makefile for the directory containing the driver, in this
case /usr/src/linux/drivers/char, and recompile the kernel.

The /dev directory contains a list of a great many files, most of which are not actually files. The 1s -1
command distinguishes different types of files in the very first character of each line. Files which really are
files are listed beginning with a -, directories are listed with a d, hard links with an 1, etc. Devices are
listed with either a b or a ¢, depending on whether they are block devices or character devices. Block
devices transfer data in blocks, i.e., big uniformly-sized chunks. To do this, they interact with the kernel's
buffer cache. Block devices can be mounted, i.e., incorporated into Unix's tree-structured file heirarchy. A
hard drive is a good example of a block device. Character devices don't use blocks and they don't get
mounted. Our little speaker driver is a character device. Each device listing, whether for a block or a
character device, also lists a major number and a minor number. The major number is used as an index into
chrdevs, a kernel array of character device drivers.

struct device struct chrdevs[MAX CHRDEV]

Each device driver is just a

struct device struct

{
const char * name;
const struct file operations * fops;

}i

The device is entered into the array by the function register chrdev () which is defined
in /usr/src/linux/fs/devices.c. The most important lines of this definition are as follows.

Program 11.8

int register chrdev (unsigned int major,
const char * name.

struct file operations *fops)

chrdevs[major] .name = name;
chrdevs[major].fops fops;
return 0;

When this function is called, the major number is connected to the file operations structure set up by the
device driver. The call is made by the device driver in the cq_init () function. The only other task
performed by cq_init () is the initialization of some of the values in cq_area. In order to get the call
performed during boot time, a call to it may be placed in the mem. c program near the end near the call to
1p init () . The command

linuxbox$ mknod /dev/cqg c 102 0

creates an entry in file system for the cq device, giving it a major number of 102 and a minor number of 0.
This entry in the /dev directory is then used to translate references to /dev/cq into calls to the functions
listed in the file operations structure.

11.4 Serial Port Digitizer Driver

The Scalex device is a hand-held measuring device for reading distances off of a flat surface. It inputs data
at a rate of 600 baud through the serial port. Since it has no handshaking hardware it does not respond to
software which treats it as a modem or a terminal. It also handles data in a special format which packs two
four-bit characters into each byte sent or received. For both of these reasons it is useful to write a special
driver for it.

One important element of a typical device driver, which was not needed in the Morse Code device driver,
was the installation of an interrupt handler. The Morse Code driver simply took advantage of the services of
the existing interrupt handler for the timer interrupt.

11.4.1 Setting Up a New Interrupt Handler

Most device drivers need an ISR to handle interrupts which come from the device. The Linux function
request irqg() takes care of the installation of a new handler. Its definition is located
in /usr/src/linux/arch/i386/kernel/irqg.c.

int request irg(unsigned int irq,

Table 11.1. ASCII Code Chart

OjCtrl-@ 32 <SPC> 64 @ 96 '
1 Ctrl-A 33 ! 65 A 97 a
2 Ctrl-B 34 " 66 B 98 b
3 Ctrl-C 35 # 67 C 99 c
4 Ctrl-D 36 $ 68 D 100 d
5 Ctrl-E 37 % 69 E 101 e
6 Ctrl-F 38 & 70 F 102 f
7 Ctrl-G 39 ' 71 G 103 g
8 Ctrl-H 40 (72 H 104 h
9 Ctrl-1 41) 73 I 105 1
10 Ctrl-J 42 * 74 J 106 J
11 Ctrl-K 43 + 75 K 107 k
12 Ctrl-L 44 , 76 L 108 1
13 Ctrl-M 45 - 71 M 109 m
14 Ctrl-N 46 . 78 N 100 n
15 Ctrl-O 47 \ 79 O 111 0
1A 'trl-P 4R n {0 P 1172 P

17 Ctrl-Q 49 1 81 Q 113 q
18 Ctrl-R 50 2 82 R 114 r
19 Ctrl-S 51 3 83 S 115 s
20 Ctrl-T 52 4 84 T 116 t
21 Ctrl-U 53 5 85 U 117 u
22 Ctrl-V 54 6 86 % 118 %
23 Ctrl-W 55 7 87 W 119 W
24 Ctrl-X 56 8 88 X 120 X
25 Ctrl-Y 57 9 89 Y 121 y
26 Ctrl-Z 58 : 90 Z 122 Z
27 Ctrl- 59 : 91 [123 {
28 Ctrl-\ 60 < 92 \ 124 |
29 Ctrl-] 61 = 93] 125)
30 Ctrl- » 62 > 94 A 126 ~
31 Ctrl-- 63 ? 95 - 127

void (*handler) (int, void *, struct pt regs *),
unsigned long irgflags,

const char * devname,

void *dev_id);

11.4.2 Scalex Interrupt Handler

One vital link between the interrupt handler, which is written in assembler, and the rest of the program is the
definition of the scalex device memory area. Since the assembly code does not have access to the labels used
in the C compiler, it is important to count off the offset bytes from the beginning of the structure. These are
used to access the device memory. Hence scalex area + 4 1sused instead of scalex area.readin.

Since all the components of this structure are four bytes in size, there are no tricks in the counting.

Program 11.9

struct cqg struct

{
unsigned long flags; /* 0 */
unsigned int readin; /* 4 */
unsigned int readout; /* 8 */
unsigned int writein; /* 12 */
unsigned int writeout; /* 16 */
char *read buffer; /* 20 */
char *write buffer; /* 24 */
struct wait queue *rdwait q; /* 28 */
struct wait queue *wrwait qg; /* 32 */

}s

global scalex interrupt
RBS equ 256; This must be a power of 2.
COM1 equ 3F8H; COM1 Base I/0O Address and Data Port
extern scalex area
extern printk
extern wake up
scalex interrupt:
; Push all the registers that get used, except EAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH ESI
PUSH EDI
MOV EDX, COM1 + 5; Line Status Register
IN AL, DX ;
TEST AL, 1 ; See if Data Has Arrived
JZ NEAR WRD ; No? Then Need to Write Data?

; If it is true then the circular buffer has overflowed. Note RBS =
MOV EDX, COM1l ; Data Port has zero offset.
IN AL, DX ; This is the data byte right here!
MOV CL, AL ; Keep whole byte in AL
AND ECX, 15 ; Clear ECX and look at halves in CL
MOV DL, [OKC + ECX]; Translate incoming half byte
MOV EBX, [scalex area + 28]; Get address of Read Buffer
MOV ESI, [scalex area + 4]; readin component of structure
MOV [EBX + ESI], DL; Store translated byte in Read Buffer
INC ESI ;Increment readin
AND ESI, RBS - 1 ;mod 27 of course
MOV [scalex area;+ 4], ESI
CMP DL, 10 ; Was that a terminal signal?
JZ NEAR RQW ; If so wake up the reading process.
MOV CL, AL ; Now do the other half byte
SHR CL, 4
MOV DL, [OKC + ECX]; Translate incoming half byte
MOV [EBX + ESI], DL; Store translated byte in Read Buffer
INC ESI ; Increment readin
AND ESI, RBS - 1 ; mod 27 of course
MOV [scalex area + 4], ESI;
CMP DL, 10 ; Was that a terminal signal?
JZ NEAR RQW ; If so wake up the reading process.
; Process Outgoing Data
WRD:
MOV EDX, COM1 + 2; Interrupt Identification Register
IN AL, DX
TEST AL, 2 ; Check the Data Has Been Sent Bit
JZ NEAR LEV ; No? Then quit.
; See 1f the end of the write buffer has been reached.
MOV EDI, [scalex-area + 16]; writeout component of structure
CMP EDI, [scalex area + 12]; writein component of structure
JZ WQW ; If done then wake up writing process.
POL:
MOV EDX, COM1 + 5; Line Status Register
IN AL, DX ;
TEST AL, 64 ; Data Has Been Sent Bit
JZ POL ; Should be just a short wait
MOV EBX, [scalex area + 24]; Get address of Write Buffer
MOV AL, [EBX + E;SI]
MOV EDX, COM1 ; Data Port
OUT DX, AL ; Here is the outgoing byte!
INC EST
MOV [scalex area + 16], ESI; writeout
JMP LEV

Process Incoming Data

MOV
ADD
SUB
AND

ESI, [scalex area + 4] ; readin component of structure
ESI, RBS + 2; Read Buffer Size + 2
ESI, [scalex area + 8]; readout component of structure

ESI, RBS - 2 ; Read Buffer Size - 2

JZ NEAR RBF ; Read Buffer Full

These line
readin + 1

WQW:; Write
Since wake up() looks like a function we should expect
to push the arguments as shown on the next two lines.
PUSH dword 1;TASK INTERRUPTIBLE
PUSH dword scalex area + 32; Wake up

’

’

s test the condition:
= readout OR readin + 2 = readout (mod 27

Queue Wake-up

This is the double pointer!

aa

2n.

; However __ wake_up|() actually wants 1TS arguments passed
; 1n registers EDX and EAX!

MOV EDX, 1;TASK INTERRUPTIBLE

MOV EAX, scalex area + 32; Write wait queue

CALL wake up

JMP LEV

ROQW:; Read Queue Wake-up

; Test flags component for the Read Pending Bit
TEST dword [scalex area], 8
JZ NEAR LEV ; No? False alarm, just quit.
MOV EDX, 1;TASK INTERRUPTIBLE
MOV EAX, scalex area + 28; Read wait queue
CALL _ wake up
JMP LEV

RBF: ; Read Buffer Full
PUSH dword OVR ; Overflow
CALL printk
ADD ESP, 4
JMP LEV

; Error message:

OVR: db "Read buffer overflow!",0AH, O
; Half-byte to Byte Translation table:
OKC: db "0123456789AB-",0AH,".F"

LEV:
POP EDI
POP ESIT
POP EBX
POP EDX
POP ECX
RET

11.4.3 Scalex System Call Handlers

Here are the functions which are pointed at in the file operations structure.
Program 11.10

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <limix/malloc.h>
finclude <linux/delay.h>
#include <linux/scalex.h>
#include <asm/io.h>

#include <asm/irqg.h>

#include <asm/uaccess.h>

struct scalex struct scalex-area =
{0, 0, 0, 0, 0, NULL, NULL, NULL, NULL};
static int scalex reset(void)

{

int retval = 0;
scalex area.flags = SCALEX EXIST;
scalex area.readin = 0

scalex area.readout =
scalex area.writein = 0;
scalex area.writeout = 0;
return retval;

|
O O~
o N

static inline char cut (char x)
i

char vy;

if (x =='.") y = 14;

else if (x == '=-") y = 12;

else if (x >= 'A' && x <= '"F') y = (x - 'A') + 10;
else 1if (x >= 'a' && x <= "f'") y (x — 'a') + 10;
else if (x >= '0' && x <= '9") y =x - '0';

else if (x == 0) y = 13;

else if (x == 10) vy 13;

else if (x == 13) vy 13;

else y = -1;

return y;
}
static inline char char fill(char x)

{

/* Convert four-bit code into a C character */
char vy;

if (x == 15

else 1if (x

else 1f (x

else 1f (x

else 1if (x == 1
(x ==
(x
O .

y

|~
Il

Il
I
e e

0;

/* Termination flag!! */

A}

— IBI;

= 'A'; /* Not used. */
< 10) vy =x + '0';

; /* Keep the compiler happy. */

KKNKKKNK ™
Il

else if
else if
else y =

return y;

static inline int ok ascii char(char x)
{
/* Just a validity check on the to see if x
is one of the characters codeable in the four-bit scalex code */

return((x >= 'A' && x <= '"F') ||
(x >= 'a' && x <= "f') ||
(x >= '0" && x <= '9") ||
(x == '".") || (x=="=")]l(x=="\n") || (x==0));
}
static inline void write byte(char x)
{
while (! (inb_p (SCALEX COM BASE + 5) & SCALEX LSR DATA OUT EMPTY))
udelay (100); /* Check Line Status Regsiter until its okay */

outb p(x, SCALEX COM BASE) ;

static ssize t scalex write(struct file * file, const char * buf,
size t count, loff t *ppos)
{
ssize_ t retv;
unsigned long copy size;
int j, k, lsr_reg;
char c, d;
struct scalex struct *scalex = &scalex area;

/* Scalex takes short command strings.
Characters following termination will be discarded.
Termination will be added to all strings.

*/
k = 0;
while (buf [k] != 0 && k < SCALEX WRITE SIZE &&

k < count) k =k + 1;

if (k == SCALEX WRITE SIZE)
return -EINVAL;
if (k == 0) return count;

/* Since count <= SCALEX WRITE BUFSIZE */
copy size = k;

for(k = 0; k < copy-size; k = k + 1)
{
c = buf[k];
if (! (ok_ascii char(c)))
return -EFAULT;
}

if (copy from user (scalex->write buffer, buf, copy size))
{
return -EFAULT;

}

k = copy size;
/* Pack each two bytes from the user's buffer into one byte
of the scalex buffer. */

for(k = 0, J = 0; k <= copy_size; k =k + 2, =3 + 1)

if (k == copy size)
{
scalex->write buffer[j] = Oxfd;
}
else if (k + 1 == copy-size)

{
c = cut (buf [k]);

scalex->write buffer[j] = (0xd0 | c¢);
}
else
{
c = cut(buflk]);
d = cut (buf[k+1]) << 4;
scalex->write buffer[j] = (dlc);
}
scalex->writein = j; /* Number of bytes into scalex buffer */

while (! (inb p (SCALEX COM BASE + 5) & SCALEX LSR DATA OUT EMPTY));
scalex->writeout = 1; /* Next byte to be transmitted */
lsr reg = inb p (SCALEX COM BASE + 5);
if(lsr reg & 1)
{
/* Read this damn byte. It shouldn't be here but it is. */
c = inb p(SCALEX COM BASE) ;
d = char fill(c & Oxf);

if ((scalex -> readout == /* Circular buffer is full. */
((scalex -> readin + 1) % SCALEX_READ_BUFFER_SIZE))||
(scalex -> readout ==
((scalex -> readin + 2) % SCALEX READ BUFFER SIZE)))
{
scalex -> flags =
(scalex -> flags | SCALEX ERR | SCALEXiRFULL);
printk ("The read buffer overflowed!\n");
return -EFAULT;
}
if (d == 0) /* Other half byte should be just filler. */

/* Don't store this. It might get the read stuck. */
}

else

{

scalex -> read buffer[scalex -> readin] = d;
scalex -> readin =
((scalex -> readin + 1) % SCALEX READ BUFFER SIZE);

d = char fill (c >> 4);

if (d == 0)

{

/* Don't store this either. */

}

else

{
scalex -> read buffer [scalex -> readin] = d;
scalex -> readin =
((scalex -> readin + 1) % SCALEX_READ_BUFFER.SIZE);

}

}
outb p(scalex->write buffer[0], SCALEX COM BASE);

interruptible sleep on(&scalex->wrwait q);
if (signal pending(current))
return -EINTR;
retv = count;
return retv;

}

static long long scalex lseek(struct file * file,
long long offset, int origin)
{
return -ESPIPE;

static ssize t scalex read(struct file * file, char * buf,
size t length, loff t *ppos)
{

struct scalex struct * scalex = &scalex area;
ssize_ t count ;
int k = 0;
/*
Read from ascii read buffer.
Make the interrupt handler do the translating.
see if char is waiting in buffer
if so read it.
if not set READ PENDING bit and go to sleep
/
scalex->flags = (scalex->flags | SCALEX RPEND);
count = length;
do
{
if (scalex—->readin == scalex->readout)
interruptible sleep on(&scalex->rdwait q);
if (scalex->readin != scalex->readout)
{
buf [k] = scalex->read buffer [scalex->readout];
scalex->readout
= (scalex->readout + 1) % SCALEX READ BUFFER SIZE;
k =%k + 1;
if (buf [k -1] == SCALEX READ STRING TERMINAL)
return k;
/*
Whether the TERMINAL string is counted as one of the bytes read
or not has a drastic effect. Scanf hangs on EOLs if it is

but on ordinary strings if it is not.
It is probably better to count it.
/

}

count = count - 1;
while (count > 0);
count = k;

/* Interrupt handler should check READ PENDING bit
and issue a wake up if its set. */

scalex->flags = (scalex->flags & SCALEX RPEND) ;
return count;

}

static int scalex open(struct inode * inode, struct file * file)
{
char c;
if ((scalex area.flags & SCALEX EXIST) == 0)
return -ENXIO;
if (scalex area. flags & SCALEX BUSY)
return -EBUSY;

scalex area.read buffer =
(char *) kmalloc (SCALEX READ BUFFER SIZE, GFP KERNEL);

scalex area.write buffer =

(char *) kmalloc(SCALEX_WRITE_BUFFER_SIZE, GFP_KERNEL);
if (!scalex area. read buffer ||!scalex area.write buffer)
{

scalex area.flags = (scalex area.flags & SCALEX BUSY);

return -ENOMEM;

/*
Initialize the Scalex Area
/
scalex area.readin = 0;
scalex area.readout = 0;
scalex area.writein = 0;
scalex area.writeout = 0;
/*
Initialize the COM port
/
¢ = inb p(SCALEX COM BASE + 3); /* Line Control Register. */
c =c | 0x80; /* Bit 7 allows Baud Rate Setting */
outb p(c, SCALEX COM BASE + 3);
outb p (0, SCALEX COM BASE + 1); /* Baud Rate Divisor,Upper Byte */
outb p(0xc0O, SCALEX COM BASE); /* 600 Baud, BRD, Lower Byte */
outb p(3, SCALEX COM BASE + 3);
/* Put back bit 7 and make parity 8,N,1 */
c = inb p(SCALEX COM BASE + 4); /* Modem Control Register */
outb p(3, SCALEX COM BASE +1); /* Interrupt Enable Register */
/* Transmit and Receive Ready Only */
c = (c | 8);

outb p(c, SCALEX COM BASE + 4); /* Enable interrupts */

return 0;

}

static int scalex release(struct inode * inode, struct file * file)
{

unsigned int minor = MINOR (inode->i rdev);

char c;

if (minor > 0)

return -ENODEV;
kfree s(scalex area.read buffer, SCALEX READ BUFFER SIZE);
kfree s(scalex area.write buffer, SCALEX WRITE BUFFER SIZE);
scalex area.read buffer = NULL;
scalex area.write buffer = NULL;

scalex area.flags = (scalex area.flags & SCALEX BUSY);
¢ = inb p(SCALEX COM BASE + 4); /* Disable interrupts */
c = (c & O0x£f7);

outb p(c, SCALEX COM BASE + 4);
return 0;

static int scalex ioctl(struct inode *inode, struct file *file,

{

}

unsigned int cmd, unsigned long arqg)

unsigned int minor = MINOR (inode->i rdev);
int status;
int retval = 0;

if (minor > 0)
return -ENODEV;

if ((scalex_area.flags & SCALEX EXIST) == 0)
return -ENODEV;
switch (cmd) {

case SCALEXRESET:
scalex reset();

break;
case SCALEXGETFLAGS:
status = scalex area.flags ;

if (copy to user((int *) arg, &status, sizeof(int)))
return -EFAULT;
break;
default:
retval = -EINVAL;
}

return retval;

static struct file operations scalex fops ={

int

scalex lseek,

scalex read,

scalex.write,

NULL, /* scalex readdir */
NULL, /* scalex poll */
scalex ioctl,

NULL, /* scalex mmap */
scalex open,

NULL, /* flush */

scalex release

scalex init (void)

if (register chrdev (SCALEX MAJOR, "scalex", &scalex fops))

{
printk("scalex: unable to get major %d\n", SCALEX MAJOR) ;
return -EIO;

if (request irg(4, scalex interrupt, 0, "scalex", NULL))

printk ("scalex: unable to get irg %d\n", 4);
return -EIO;

}

scalex area.flags = SCALEX EXIST;

return 0;

Program 11.11

#define SCALEX EXIST 0x0001
#define SCALEX BUSY 0x0004
#define SCALEX RPEND 0x0008
#define SCALEX RFULL 0x0010

#define SCALEX RERR 0x0020

LA~ £ n OARNTTINZ AANM TR OT N..H"T™O0

ffaeLllile oLALLA LUNM DADL UuxXoro

#define SCALEX IIR DATA IN FULL 4
#define SCALEX IIR DATA OUT EMPTY 2
#define SCALEX LSR DATA IN FULL 1
#define SCALEX LSR DATA OUT EMPTY 64
#define SCALEX WRITE SIZE 20
#define SCALEX WRITE BUFFER SIZE 256
#define SCALEX READ BUFFER SIZE 1024

#define SCALEX READ STRING TERMINAL 10
/* IOCTL numbers */

#define SCALEXRESET 0x072c /* reset scalex */
#define SCALEXGETFLAGS 0x072e /* get status flags */

#define SCALEX WRITE BUFFER SIZE 256
#define SCALEX READ BUFFER SIZE 1024

/*
function prototypes
/*

extern int scalex init(void);
Further Reading
Writing Unix Device Drivers, GeorgePajari, Addison Wesley: 1992.

Linux Device Drivers, AlessandroRubini, O'Reilly: 1998.

Chapter 12. DOS PROGRAMS

Linux was written for the 386. The 386 retains many of the features of the 8086. Since DOS was written for
the 8086, there is much to be learned about the 386 from the study of DOS programs.

The environment in which a DOS program operates is very different from the environment of a Unix user
program. It is remarkable that one and the same processor can sustain both of these environments. Three
main differences between the DOS environment and the Unix user program environment are

1. Memory referencing. In Unix, memory access is controlled using a virtual memory system. In Linux,
virtual memory is based on paging. The applications programmer has no direct access to physical
memory. In DOS, there is no paging. Knowing the physical address of a memory location enables the
programmer to write directly to that location. It requires manipulation of the segmentation process, as
is explained in chapter 12, section 12.1. In Unix, the applications programmer may ignore the
segmentation process since, for users, there is just one big segment and it is always the same.

2. Privilege level. In Unix, only system programs have system-level privilege. User programs do not.
Strictly speaking, DOS has no privilege levels. But actually, when DOS is running, all programs
execute at effectively system-level privilege. Linux user programs do not carry system-level privilege.
One consequence of this is that they do not have direct I/O access. That is, they are not allowed to use
either the 1N or the ouT instructions. Privilege levels are discussed in chapter 9, section 9.6.

3. Coding default. x86 Linux programs execute with a 32-bit coding default. DOS programs execute
with a 16-bit coding default. Coding defaults are discussed in chapter 5, section 5.5.

When x86 processors, starting with the 80286, create a DOS environment, they are said to be operating in
real mode. When not in real mode, they are said to be in protected mode. In Linux, user programs and most
kernel programs run in protected mode. Linux only uses real mode for booting and this is necessary since
the only way an x86 processor can boot is in real mode.

Privilege levels and coding defaults have already been discussed, but segmentation has been totally ignored

tn thic nnint Hawavar NNQ nraaramco rannirae it Wa haaoin anr dicrniccinn af caamantatinn vrith real mada

v uio lJUlllL. LIVVVVLVVYVLL, LI D lJLUslulllD 1\.«\.1[1111\./ PU T A U\Jslll VUl uiovuool1vil V1L o\.«sxlx\.«utuuuu yviul 1val 111vuv

segmentation. Segmentation in protected mode is discussed in chapter 13, section 13.2.

12.1 Real Mode Segmentation

The terms segment and segmentation are used in many overlapping and conflicting ways. Consequently, it
would be well to make a preliminary attempt at clarifying terminology. In DOS, code and data segments of a
program may be stored in code and data segments of memory, but aren't necessarily. In Linux, they never
are. Text and data segments of a program are stored on separate pages of memory, not separate segments of
memory. In x86 Linux, the error message "Segmentation Fault" does not refer to a segmentation fault; it

refers a page protection fault. Worst of all is the term logical segment which accurately specifies nothing at
all.

To avoid wantonly muddying things further, this book will doggedly adhere to the following distinctions
between program segments, memory segments, and segmentation.

Segments and Segmentation

e Program segment. Since chapter 8, we have applied the term segment to a chunk of an executable file.
This is standard usage. Programs typically have text and data segments.

e Segmentation process. In this book, the term segmentation is applied only to an address processing
mechanism which has the effect of dividing memory into chunks.

e Memory segment. It is customary to apply the term segment to the chunks of memory produced by the
segmentation process. In this book, memory segments will always be referred to in connection with a
special kind of register called segment register.

On an x86 processor, segmentation is controlled by segment registers.
12.1.1 Segment Registers

On the 8086, four of the general registers can be used for addresses: BX, BP, SI, and DI. That is, they can be
used in brackets to refer to memory. For example, the commands

MOV BX, 1234H
MOV AL, [BX]

would copy the contents of one memory location into the AL register. But BX, BP, SI, and DI are 16-bit
registers and the 8086 has a 20-bit address bus. So an address register can only address 64K of the available
1 Meg of memory! To get around this problem, the designers of the 8086 created special 16-bit registers
called segment registers which, on the 8086, specify the first address, or base address, of a 64K chunk of
memory. On the 8086, a 64K chunk of memory specified by a segment register is called a memory segment.
An 8086 memory segment may begin on any five-digit hex address which ends in a zero. The first four
digits of this address are stored in the associated segment register. The 8086 segment registers are CS, DS,
ES, and SS. The memory segment specified by the CS register, for example, is called the CS segment (code
segment). On an x86 processor, code is always fetched from the CS segment. Likewise the stack is always
located in the SS segment (stack segment). The 80386 and subsequent x86 processors have two additional
segment registers: FS and GS.

Segment registers may be accessed using the command

MOV reg, reg

where one register is any 16-bit general register, and the other may be any segment register. An exception is
that CS may not be used as the destination register. Since instructions are fetched from the CS segment,
storing a new value in CS would have the drastic effect of changing the segment that code is being fetched
from. A jump to a different segment is called a far jump. Carrying out a far jump requires a special

command. Intrasegment jumps are called near jumps.

There is no load immediate command for segment registers. The following command, for example, is

illegal.

MOV

DS,

1234H

Suppose that DS, ES, and SS have values stored in them via the following commands:

MOV
MOV
MOV
MOV
MOV
MOV

AX,
DS,
AX,
ES,
AX,
ss,

2000H
AX
5000H
AX
0C800H
AX

So then DS holds 2000H, ES holds 5000H, and SS holds C800H. Figure 12-2 shows the three segments
which are enabled by these three register loads. The entire memory consists of the addresses from 0 through
FFFFFH. The DS segment consists of the addresses from 20000H through 2FFFFH. The ES segment ranges
from 50000H through SFFFFH. The SS segment goes from C8000H through D7FFFH.

Figure 12-2. 8086 Memory with Three Distinguished Segments

1 Meg
00000H

10000H

20000H

DS: | 2000H i 64K
30000H

40000H

50000H

ES: | 5000H ’ 64K
60000H

70000H

80000H

90000H

AO000H

BO0OOH

CO000H

SS: | C800H DO000H 64K

E0000H

F0000H

100000H
12.1.2 Segment:Offset Notation

Suppose now that we would like to refer to the memory whose address is 23456H in an assembler
command. This address lies in the DS segment. (This is because 2000H was just stored in the DS register.) It
is 3456H bytes from the base address. This difference, the address minus the base address, is called the
offset. The segment:offset pair is often used in the assembly language as follows:

MOV BL, DS:[3456H]

In NASM the syntax is

MOV BL, [DS:3456H]

This command loads the contents of memory location 23456H into BL. 23456H = 20000H + 3456H. Note
that the base address itself is a five-digit hex number, even though DS only holds four digits, in this case
2000H.

The address 23456H is a physical address, not a virtual address. The bits which the processor pumps out
onto the address bus may be read off the binary number

0010 0011 0100 0101 0110
The same memory read could be accomplished using a 16-bit address register as follows:

MOV BX, 3456H
MOV BL, [DS:BX]

BX, BP, SI, and DI may be used for addressing in this way, but SP, AX, CX, and DX may not.
12.1.3 Default Segments

Segment designations may be omitted. There is always a default segment. Referring to Table 12.1, we see
that the default segment for an immediate address is the DS segment. Hence the command

MOV BL, [3456H]
also accomplishes the same load as the Mov BL, [Ds:Bx] instruction. So do the commands

MOV BX, 3456H
MOV BL, [BX]

Table 12.1. Default Segments

32-bit address 16-bit address
[imm] DS [imm] DS

maAwvi mna rawvi Mo

[CAA] D LAA] Hiegal!
[EBX] DS [BX] DS
[ECX] DS [CX] illegal!
[EDX] DS [DX] illegal!
[ESI] DS [SI] DS
[EDI] DSt [DI] DS
[ESP] SS [SP] SS
[EBP] SS [BP] SS

UTES with string instructions

The default segment for both immediate addresses and for addresses stored in the BX register is the DS
segment.

Default segments exist in 32-bit code as well. In fact, that is what makes it possible to do programming
without reference to segments, as is done in chapter 8. The Linux programs there all make use of a default
segment. It is actually a 4 Gig segment. Setting up big segments like this is discussed in chapter 13. In x86

Linux, the CS, DS, ES, and SS segments all refer to the same 4 Gig segment. So the programmer has no
options, and the default segment is always okay.

12.2 Edlinas Environment Variables

Many assemblers have directives which allow variables to be defined and then used in subsequent
expressions. In NASM, the syntax for such a directive is

var equ value

In Edlinas, it is

var .= value

In Edlinas, there are built-in variables whose values control the behavior of the assembler and the simulator.
One of these is USE, which determines whether the assembler uses 16-bit or 32-bit coding. The default is

32. DOS programs require 16.

NASM uses a directive called B1Ts. For example, to specify 16-bit code in NASM, the line

BITS 16

does the trick. Another environment variable is poTo. It determines the format of . o files saved by Edlinas.
The default is ELF. Dos needs the com format.

NASM governs the format of the output file using a command line switch. To get a com format in NASM,
the -f bin switch works. It is also the default so that no switch at all will do the same thing. A file with this

format has essentially no extra code at all. It is just a plain binary file.

Edlinas environment variables may also be defined in an EDL.INI file or from the > prompt.

12.3 Fixed Memory Areas

Real mode allows the programmer to use physical memory addresses. Memory addresses specified in real
mode are used on the address bus, just like I/O addresses. This gives the programmer unimpeded access to
memory. In this section, as an exercise in the use of real mode addresses, we consider two areas of memory
which are defined by fixed physical addresses: the video buffer and the keyboard buffer. The location of the
video buffer is fixed in the hardware. But the keyboard buffer is only fixed by DOS, and hence it can be
moved. Referring to Figure 12-1, programs which access these physical memory areas directly are definitely
"rude" programs as opposed to "polite" programs.

Figure 12-1. Unprotected Operating System such as DOS

Rude \
Prg s j ; Memory
grams

and
- Peripherals
Polite Operating
User Svst
Programs JERETR

12.3.1 Video Buffer

On standard PCs, there is a region of memory starting at the address BSOOOH called the video buffer. In the
most commonly used video text mode, the video buffer holds the text information which is displayed on the

screen. A very simple, but somewhat tedious, way to output information on a PC is to store ASCII codes in
this buffer. (See Table 11.1.)

The address B8OOOH is the actually address of the ASCII code for the character in the upper left-hand corner
of the screen. See Figure 12-3. The next byte, which is at BSOO1H, contains the attribute information for this
same character. Table 12.2 shows how the eight bits of an attribute byte are used. B8002H is the ASCII code
of the second character in the first row; B80O3H is its attribute byte, and so on. The top row consists of 80
characters, or 160 bytes, since each character takes two bytes of storage. One screenful is 25 rows x 80
columns x 2 bytes per character = 4000 bytes. The buffer actually contains 4096 bytes = 1000H.

Figure 12-3. Upper Left at B§000 through Lower Right at BSFIE

+0l+2 oE
Pk
B800O [\
BS8OAO
B8140
BSF00 \]

\rll |
I I

Program 12.1 prints "Hello" on the screen by storing five ASCII codes into the video buffer. Figuring the
address of the thirty-seventh character on line 13 in hex,

B8OOOH + Dx A0 + 24Hx2 = B8000OH + 820H + 48H = BR868H

Program 12.2 is a little 17-byte program which colors the screen yellow on blue by writing to all the
attribute bytes in the video buffer. It begins at FFFH and counts down by twos.

12.3.2 Keyboard Buffer

When a key is either pressed or released, an interrupt is generated. On an ISA machine this interrupt is
allotted, IRQ #1, which in turn is reported by the interrupt controller as interrupt number 9. (See Table 9.3.)

The DOS interrupt service routine 9 interrogates the keyboard at I/O port 64H and deposits characters it
receives from there in a tiny buffer located at 41EH. The

characters come in from the keyboard as scan codes. The ISR converts each scan code to an ASCII character
and stores both a scan code and an ASCII code in the

Program 12.1
USE

DOTO

r

16
COM

; Write Hello by storing ASCII codes into the video buffer.

MOV AX, OB886H ; First 4 digits of B8868H

MOV DS, AX

MOV DI, 8 ; Last digit of B8868H
MOV AH, 72 ASCII for H

MOV [DI], AH Store the character.
ADD DI, 2 Next odd address

MOV AH, 101
MOV [DI], AH
ADD DI, 2

MOV AH, 108
MOV [DI], AH
ADD DI, 2

MOV AH, 108
MOV [DI], AH
ADD DI, 2

MOV AH, 111
MOV [DI], AH
RET

ASCII for e
Store the character.

ASCII for 1
Store the character.

ASCII for 1
Store the character.

ASCII for o
Store the character.
Return to DOS

Ne Ne Ne N Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne N

buffer. From this buffer, the keys are picked up by the application program or the command line interpreter.
The two bytes stored at 41 A point to the next departing bytes. In Figure 12-4, there is one key waiting to be
picked up. It is the letter C, whose ASCII code is 43H. 2E is its scan code. The two bytes stored at 41C point
to the location where the next arriving bytes will be stored. Since the departing pointer is only two bytes
behind the arrival pointer, this means there is only one character in the buffer, C in this case. Both pointers
wrap around when they reach 43E. For this reason, the buffer is called a circular buffer.

Figure 12-4. DOS Keyboard Buffer

Keyboard Buffer (ASCII - Scan)
41E|41F|420(421 [422|423 43C[43D

31|02 |43 |2E |4C | 26 5A | 2C
P f f

Head pointer: 20

Tail pointer: 22

Program 12.3 stores the string DIR into the keyboard buffer.

12.4 Real Mode Interrupts

When "polite" user programs want access to peripherals, they call the operating system. In a protected
operating system, there is no choice about this. In an unprotected operating system like DOS, the call to the
operating system is optional. (See Figure 12-1.) Just as the programs in section 12.3 accessed peripherals by
barging

Program 12.2

USE .= 16
DOTO .= COM

MOV AX, OB80OH ; Video buffer begins at B8000H

MOV DS, AX

MOV BX, OFFFH ; Odd address ending the 4K buffer.

MOV AH, 1lEH ; Yellow on blue.
AGN: MOV [BX], AH ; Attribute goes into odd address

DEC BX ; Get next

DEC BX ; odd address

JNS AGN ; Continue till the beginning of the buffer

RET ; Return to DOS

Table 12.2. Attribute Byte: Yellow on Blue is 1IEH

Bit Usage Example
7 Blinking 0
6 Background Red 0
5 Background Green 0
4 Background Blue 1
3 Foreground Intensity 1
2 Foreground Red 1
1 Foreground Green 1
0 Foreground Blue 0

in on their private memory space, "rude" programs can also access peripherals by using using 18 and ouT
instructions.

Like Linux, the DOS operating system is accessed using software interrupts. The interrupt most used for
access to DOS is InT 21H. To call one of the functions available under INT 218, its number is stored in the
AH register before the interrupt is called.

12.4.1 DOS Interrupts

To call the DOS function which outputs a character to the cursor location on the screen, the function number
2 is stored in the AH register and the ASCII code of the character to be printed is stored in the DL register.
(Table 11.1 shows the ASCII code.) For example, the following code would print the letter H.

Program 12.3

MOV AH, 2
MOV DL.72; ASCII code for H.
INT 21H
USE .= 16
DOTO .= COM
MOV AX, 40H ; Make 400H the base address
MOV DS, AX ; of the DS segment.

MOV DL, 44h ASCII code for 'D'

CALL CST ;
MOV DL, 49H ; ASCII code for 'I'
CALL CST ;
MOV DL, 52H ; ASCII code for 'R'
CALL CST ;
RET
CST: MOV SI, [1CH] ; Pointer to end of keyboard buffer
MOV [SI], DL ; Store the character into the buffer.
SUB SI, 1CH
AND SI, 15 ; Add 2 (mod 16) to SI - 1EH

ADD SI, 1EH ;
MOV [1CH], SI ; Store the revised pointer.
RET

A related DOS function which outputs a string of characters can be called using AH = 9. The segment:offset
address of the string is stored in DS:DX. The string must be terminated by a dollar sign character, ASCII
24H.

Many of these DOS functions call programs stored in ROM. They are often called BIOS programs. Many
BIOS interrupts are accessed using INT 16H Or INT 10H.

12.4.2 BIOS Interrupts

To call the BIOS function to output a character to the cursor location on the screen, the function number
0AH is stored in the AH register, and the ASCII code of the character to be printed is stored in DL. The
number of times the character is to be written is stored in CX.

MOV AH, 10

MOV DL, 72; ASCII code for H

MOV CX, 1; Number of times H is printed
MOV BH, 0; Current page

INT 10H

The BH register needs a 0 in order to send the output to the video buffer described in section 12.3. There is
usually another 4K video buffer starting at B9OOOH. To access this buffer, a 1 should be stored in BH. Each
of these buffers is called a page.

These pages make it possible to flip from one screen to another without copying 4K of memory. The DOS
function call takes responsibility for accessing the current page; the BIOS call does not.

Figure 12-5 illustrates the typical sequence of function calls. The fact that DOS programs call BIOS
programs and not directly to the hardware leaves hardware designers free to make at least minor changes in
their hardware without the necessity for changes in DOS. By revising the BIOS programs so as to maintain
the same functionality of BIOS interrupts, changes in DOS become unnecessary. Similarly, changes in DOS
can be accomplished without disrupting applications programs, provided that the DOS interrupt is rewritten
so that it affords the same functionality to the applications program. These layers afford applications
programmers, systems programmers, and hardware designers a modest degree of independence from one
another.

Figure 12-5. DOS Memory and Peripheral Access

(User Program)

l
(DOS ISR)

l
(BIOS ISR)
l

Memory & Peripherals

User programs which bypass one or more of these layers risk a loss in portability. A program which calls
directly to the hardware may not run on a machine with different hardware. The strongest reason a software
developer has for sacrificing portability is that bypassing software layers reduces execution time. Execution
time is still a problem in connection with video processing. That is one reason that the video buffer became
standardized. So much software wrote to it directly that moving it would have made the graphics hardware
with the old video buffer missing difficult to sell.

12.4.3 The Real Mode Interrupt Table

When an interrupt occurs, the interrupt number is used as an index into the interrupt table. The interrupt
table contains the locations of all the service routines. The first entry in the table is for interrupt number 0,
the second is for interrupt number 1, etc. The Linux interrupt table is described briefly in chapter 9, section
9.2.1. The real mode interrupt table differs from the protected mode interrupt table used by Linux in several
respects.

Figure 12-6. Real Mode Interrupt Table

Memory

00 84H

ISR #0 is stored at 01 11H
21DD:1184

— 29F54H 02| DDH

03 21H

04 F4H

ISR #1 is stored at 05 06H
0070:06F4

= 076F4H 06 70H

07 00H

08 16H

ISR #2 is stored at 09 00H
0490:0016

= 04916H 0OA | 90H

0B 04H

Every entry in the real mode interrupt table occupies four bytes. The first two bytes are a little endian offset
value and the next two are a little endian segment value designation.

In real mode, the table is customarily located starting at address zero in memory. So the address of the
interrupt service routine for interrupt O is stored in bytes 0 through 3. The address of the routine for interrupt
1 is stored in bytes 4 through 7. In general, if # is the number of an interrupt, then the address of the entry
number # in the interrupt table is 4xn. For example, if the interrupt number is 33H then the address of the
ISR #33 is to be found in bytes CCH to CFH. The largest valid interrupt number is 255. The address for that
routine is stored in bytes 1020 through 1023, or 3FCH through 3FFH. 4 x 255 = 1020.

Interrupt Vectors

The term interrupt vector is often used in connection with this table. Unfortunately, many conflicting
meanings of the term are in use. The term has been used to mean

e the interrupt table itself
e one of the 256 entries contained in the table
e a memory location containing an entry in the table
e anumber in the range 0-255 used as an index into the table
The term has been damaged beyond repair and it is best to just not use it any more.

Knowledge of this table makes it possible to write a program which supercedes a DOS or BIOS interrupt.
By changing the stored ISR address from that of the DOS or BIOS interrupt, the new program can take the
place of the old one. A new program can also insert itself as a layer by calling the old program after it has
done whatever it wants with the original function call.

12.5 Checking DOS Memory

One simple but useful application of the shift commands is the conversion of the contents of a register into a
four-digit sequence of hex characters. For example, to print out the first digit of the number stored in BX,
say 3C4DH, we can make a copy of BX and shift it 12 bits to the right and get 0003H. The ASCII code for 3
is 30H + 3 = 33H. We can then send this code to the screen either directly using the video buffer, as in
section 12.3, or as an interrupt, as in section 12.4. To get the second digit, we can shift a copy of BX eight
bits to the right and get 003CH. To mask out all but the bottom four bits, we can AND with 000FH.

Program 12.4 uses this simple register conversion to display the regions of the 1 Meg DOS memory which
are ROM. It works by checking every 16th byte in memory. The fact that the program sweeps through the
entire memory means that at some point it becomes self-modifying code. The critical lines where code is
modified in Program 12.4 span from the instructions Mov [DI], DL tothe DEC BYTE [DI] instruction. The
value stored in DI at the beginning must be chosen so that the modified bytes skip over this critical section
of code. It so happens that 0 works with this code. To see why you can check the hex code to find the
addresses of this critical section of code. You can use Edlinas to do this, or the DOS program DEBUG, or a
hex editor. Both Emacs and the the e1vis clone of vi can be used as hex editors. In this case the addresses
are from 11H to 1BH, so 0 works fine.

Program 12.4 prints out ROM and RAM one letter at a time. They can also be printed out as strings. DOS
interrupt 21H, using AH =9, will print out a string which ends in a § character and whose starting address is
stored in DX. Instead of using

MOV DX, ABC
ABC: db 'RAMS'

to store a pointer to the string, we need to add the offset of the beginning of the program to DX. DOS
loads .COM programs at an offset of 100H. So the code shown works if the Mov instruction is followed by

ADD DX, 10O0H

A sample run of Program 12.4 produces an output such as
Program 12.4

RAM 00000
ROM A0000
RAM B800O
ROM C8000

; Map RAM vs. ROM in DOS's 1 Meg

’

BITS 16 ; DOS programs use a 1l6-bit coding default
MOV AH, 2 ; AH = 2 for DOS wvideo output interrupt
XOR BL, BL ; BL = RAM/ROM check, 1 = RAM, 0 = ROM
MOV DI, O ; DI is which byte out of each 16 to check
XOR SI, SI ; SI = 0 Start at the beginning of memory
TOP: MOV DS, SI
MOV BH, BL ; Save previous RAM/ROM indication in BH
XOR BL, BL ; BL = 0 unless incremented below
MOV DL, [DI] ; Get memory value
INC DL ; Change it
MOV [DI], DL ; Try storing the changed value
CMP [DI], DL ; See if it worked
JNE ROM ; If they're not equal it's ROM
DEC BYTE [DI] ; Quick! Put back original value
INC BL ; 1 = RAM, 0 = ROM
ROM: CMP BH, BL ; Compare old with new value
JG PRO ; Changed from RAM to ROM, so print ROM
JL PRA ; Changed from ROM to RAM, so print RAM
INC ST ; Increment main loop counter
BOT: JNz TOP
DUN: RET ; All done
PRO: MOV DL, 'R' ; 'R'. Print start of ROM
INT 21H
MOV DL, 'O’ ;
INT 21H
JMP MRG
PRA: MOV DL, 'R' ; 'R'. Print start of RAM
INT 21H
MOV DL, 'A' ; 'A'
INT 21H
MRG: MOV DL, 'M' ; 'M!
INT 21H
MOV DL, 32 ; <space>
INT 21H
MOV CL, 12 ; Prepare to print four digits
PRL: MOV DX, DI ;
SHR DX, CL ;
AND DX, 15 ; Mask everything except hex one's digit
CMP DL, 10 ; Does this print as a numeral or as a letter?
JL NML
ADD DL, 7 ; Letters need an extra seven
NML: ADD DL, 30H
INT 21H ; Print hex digit
SUB CL, 4
JGE PRL ;
MOV DL, '0' ; Fifth digit is 0
INT 21H
MOV DL, 13 ; Carriage return
INT 21H
MOV DL, 10 ; Need an EOL too
INT 21H

RET

Further Reading

Advanced Assembly Language Programming, AlienWyatt, Sr., Que: 1992.

Chapter 13. LINUX BOOT TIME PROGRAMS

In chapter 12, we discussed the main differences between the environment provided to user programs which
run under Linux and the environment under which DOS programs run. We saw how very different these two
environments are. Much of the difference between these two environments is due to the fact that a different
operating system is running in each. But there is also a difference at the hardware level. DOS was written for
the 8086 processor. In order for DOS to run on a machine, that machine must act like an 8086. Linux is a
multitasking system. In order for it to run on a machine, that machine must have hardware support for the
protection of one task from another. The x86 processors, from the 80386 on, support both of these operating
systems by running in two distinct operating modes, real mode which emulates an 8086 and protected mode,
which has multitasking support.

13.1 Changing to Protected Mode

Whether an x86 processor runs in real or protected mode is determined by the bottom bit of the CRO
register. This register is a 32-bit extension of the 16-bit Machine Status Word register on the 80286. The
least significant bit in this register is actually the most significant bit on the entire processor. If it is cleared,
the processor operates in real mode. If it is set, the processor operates in protected mode.

Table 13.1 shows the bit allocations of the CRO register in the 486.
To change to protected mode from DOS is easy.

Program 13.1

MOV EAX, CRO
OR EAX, 1 ; Make the least significant bit 1.
MOV CRO, EAX ; Here goes!

But changing to protected mode should not be attempted without preparation. The

Table 13.1. 486 CRO Register

Bits Label Full Name

31 PG Paging Enable

30 CD Cache Disable

29 NW No Write Through

18 AM Alignment Mask

15 WP Write Protect

5 NE Numeric Error Enable
4 ET Extension Type (287 vs. 387)
3 TS Task Switched

2 EM Emulate Math Chip

1 MP Math Chip Present

0 PE Protected Mode Enable

machine will promptly crash if Program 13.1 is run before the following steps are taken.
Step 1.

In protected mode, all memory references depend on memory segment descriptor tables, particularly
on the global descriptor table. Memory references, including those used in code fetching, will not

work until these tables are set up. These tables are discussed in section 13.2.
Step 2.

In protected mode, the use of a radically different addressing system means that instructions will be
fetched from a different CS segment. Code must be stored in the new CS segment.

Step 3.

In protected mode, each entry in the interrupt table is a specially formatted eight-byte entry. So the
DOS interrupt table where each entry is just a four-byte address will not work. Before going into
protected mode, a new interrupt table must be created.

This is why all x86 processors boot in real mode.

Note that switching to protected mode does not start paging. As checking Table 13.1 shows, paging is turned
on using the top bit of CRO.

13.2 Protected Mode Segmentation

An assembler programmer working on an 8086 has access to whatever memory the machine has. All
addresses are accessible. To get around problems caused by the misfit of the 20-bit addresses and 16-bit
addresss registers, addressing on the 8086 uses 64K memory segments. The location of these memory
segments is specified by the segment registers. Once a segment register is loaded, one can read to or write
from the specified memory segment. Since on an 8086 the programmer can write to any segment register at
will, a programmer can read from or write to any location in memory, (except for physically read-only
memory). This means that memory protection on an 8086 is impossible.

Beginning with the 80286, the segmentation mechanism was completely redesigned for the purpose of
turning it into a memory protection mechanism. Memory segments on a 286 have access permissions
somewhat like Unix file permissions. They also have an access privilege level. Memory segments are no
longer required to be 64K in length, but can be whatever length the operating systems programmer decides
upon. Memory segments are defined by eight-byte data structures called a segment descriptors or sometimes
just a descriptors. These descriptors are stored in tables called descriptor tables. Descriptor tables are
located in memory just like the interrupt table. (See chapter 9, section 9.2.)

Segment registers are used to store pointers into these descriptor tables. These pointers are called selectors.
They select segment descriptors from the descriptor tables. See Figure 13-2.

Figure 13-2. Selector Picks Segment Descriptor from the Descriptor Table

Addresses Descriptor Table
Segment Register b
24 Descriptor #0
b+ 8

Descriptor #1

b+ 16
Descriptor #2

b+ 24
. Descriptor #3

b+ 32

etc.

13.2.1 Protected Mode Memory Segments

The most important characteristics of a protected mode memory segment are its base address and its limit.
See Figure 13-1 for an example of a 1 Meg segment situated at the halfway point of a 64 Meg memory.
Suppose that the DS register contains a selector selecting a descriptor for this memory segment. Then the
command

Figure 13-1. A Protected Mode Memory Segment

Addresses 64 Meg RAM
0000000
Segment
Definition e
Base: 2000000H
Limit: 00FFFFFH
2000000 1 Meg Segment
20FFFFF
SFFFFFF

MOV EAX, [DS:80000H]

would access the four bytes located at the addresses 2080000H through 2080003H. On the other hand, the
command

MOV EAX, [DS:180000H]

would cause a general protection fault, a hardware exception which generates interrupt number 13. See
chapter 9, section 9.4. This is because the all four offset addresses referenced by the command exceed the
limit. For example,

180003H > FFFFFH

The command is trying to read from a location 1.5 Meg from the beginning of a segment which is only 1
Meg in length. Because the hardware enforces these segment boundaries, the segmentation system can be
used to protect one task's memory from another's. It was used to protect kernel memory from user processes
in versions of Linux before version 2.1.39, but is no longer used for memory protection in Linux. Segments
in Linux now use a base address of 0 and a limit of FFFFFFFFH, i.e. all 4 Gig.

A more complete list of the characteristics of a protected mode memory segment is as follows:

1. Base. This is the address of the first byte of the segment. It is the address corresponding to the offset
of zero, [0]. In real mode, the base address is obtained by just appending a zero to the four hex digits
stored in the segment register.

2. Limit. This is the last valid offset address. It is one less than the number of bytes in the segment. It is
thanks to this parameter that segments are not necessarily 64K any more. The limit needed to specify
a 1 Meg segment, for example, is FFFFFH.

3. Access Permissions. Permissions to read, write, and execute can be specified.

4. Access Privilege Level. This privilege level is the least privileged value the CPL may have in order
for access to be granted.

5. Miscellaneous. There are four or five functional bits in the descriptor unused by items 1 through 4. In
the case of executable segments, one of these bits determines whether the code stored in the segment
will be executed using a 16-bit or a 32-bit default, (see section 5.5).

In order to carry out base plus offset computations and offset versus limit comparisons without the delay
which would be caused by a memory access, each segment register has associated with it base and limit
registers which are reloaded every time the segment register is changed to reference a different segment.
Figure 13-3 shows these registers. Although Figure 13-3 shows only base address and limit registers, there
are also registers for all the other permission and privilege bits defined by the segment descriptor.

Figure 13-3. Selector, Base, and Limit Registers

Segment Base Limit
Register Register Register

ES
CS
SS
DS
FS
GS
LDTS
TSS
GDT
IDT

13.2.2 Special Memory Segments, the GDT and the IDT

Shown in Figure 13-3 are registers for the task state segment, the local and global descriptor tables, and the
interrrupt descriptor table, the TSS, LDTS, GDT, and IDT. None of these are memory segments in the sense
that they can be used in an ordinary memory access command. For example,

MOV EAX, [TSS:10H]

is not valid code. But they are chunks of memory that have base addresses and limits. Since the GDT and
the IDT are not accessed via selectors, they are not called memory segments. The TSS and the LDT are
referred to as special memory segments.

The task state segment is used in task switches. The task being exited saves its registers in its task state
segment. The base address and limit of the TSS is defined by a segment descriptor, just like other memory
segments.

The local descriptor table (segment), LDTS, is used to store descriptors of segments which are not shared
with all other tasks on the system.

o

The global descriptor table is used for storing descriptors of memory segments which are accessed by all
tasks on the system, as well as all LDTS and TSS descriptors.

As we can see from Figure 13-3, there can be only one global and one local descriptor table in effect at any
given time. When a task switch occurs, the local descriptor table is changed, just like the page tables are
changed. But the global descriptor table stays the same.

The IDT, the interrupt descriptor table, and its entries are described in chapter 9.

The global descriptor table and interrupt descriptor table also have base addresses and limits, and hence,
there are registers for them. But these addresses are never coded into descriptors, so there is no point in
having selectors for them. Intel does not consider the global descriptor table or the interrupt descriptor table
to be segments because they are not accessed using selectors.

13.2.3 Selectors

In real mode, segment registers such as DS specify segments by holding the first four hex digits of the base
address of the segment. In protected mode segment, registers specify segments by holding pointers to their
descriptors. Each descriptor consists of a complete definition of the segment. The pointer points into a
descriptor table. The table may either be the global descriptor table or the local descriptor table.

A very simple way to implement a pointer like this would be to use the offset from the beginning of the
descriptor table. This is what is shown in Figure 13-2. Although the value 24 shown in the figure would
work just as illustrated, it is not the case that the selector is simply an offset.

Suppose that a descriptor we want to point to were located 48 bytes from the beginning of a descriptor table.
In that case, the offset 48 would make a very good pointer to that descriptor, assuming we know which table
the descriptor is located in. Since each descriptor occupies eight bytes of storage, all such offsets are
multiples of 8. Hence in binary, the three least significant bits of each offset are zero. The x86 takes
advantage of this fact and puts those three bits of the selector to work carrying other information. Bits 0 and
1 carry a privilege level. Bit 2 is the table indicator bit which determines whether the selector is a pointer
into the global table or the local table, 1 = local, 0 = global. To recover the offset from the selector, the
bottom three bits must be zeroed back out again. Figure 13-4 illustrates the example where DS contains 51,
or 33H. As a 16-bit binary number, it is The pointer into the descriptor table is the table offset, 48 in this
case, or 30H.

Figure 13-4. Selector Encoding

0000 0000 0011 0011

L Privilege Level = 3 (User)

Table Indicator = 0 (Global)
Table Offset = 0000 0000 0011 0000

The three least significant bits are zeroed out. To locate the descriptor for the DS segment, we would get the
address of the global descriptor table from the GDT base address register and add 30H.

There is one selector which does not use the format just described.

It is desirable that one selector value be a null-value. That makes it possible to shut down unused segments.
A selector which points to offset zero in the global table is by definition a null selector. Storing a null
selector in a segment register disallows the use of that segment. All attempts to access a segment marked
with a null selector cause a general protection fault. This, incidentally, makes it impossible for any selector

to actually point to the first entry in the global table. (So it doesn't matter what this entry contains.)
13.2.4 Segment Operations

The GDT has to be there for memory references to work in protected mode and the IDT has to be there for
interrupts to work. The load commands for these tables are

LGDT mem
and

LIDT mem

where mem points to six bytes of memory containing a two-byte limit, followed by a four byte base address.
These commands would ordinarily be executed just once while the system was booting in real mode.

Other segment registers are loaded using selectors. Figure 13-5 shows the commands for loading and saving
segment registers, as well as the commands for loading and saving the GDT and IDT base and limit
registers. When segment registers are loaded, all the other registers associated with them are loaded as well,
unless the null selector is used or unless some access violation occurs.

Figure 13-5. Segment Load and Store Commands

MOV MOV
Load Store Load Store

ES LES X
CS
SS LSS
DS LDS
FS LFS
GS LGS
LDTS | LLDT | SLDT
TSS | LTR STR
GDT| LGDT | SGDT
IDT | LIDT SIDT

Akl sl s
Skl Bl sl el s

These eight bytes would include the base address and size of the DS segment. These eight bytes would also
include a privilege level. Since the privilege carried in DS is only a 3, the privilege level in the segment
descriptor would need to be a 3, or the processor would nail us with an error. In protected mode, a command
such as

MOV DS, AX

will cause a protection fault whenever the privilege level carried by the two least significant bits of the
selector in AX is inferior to the privilege level written into the descriptor of the segment. Because the local
descriptor table is implemented as a segment, access to it requires that a selector for it be loaded into a
segment register. Since the local descriptor table is a special segment, not just any segment register will do.
There is a segment register dedicated to the local descriptor table, the LDT register. To load the LDT
register, the following command is used,

LLDT rm2

where rm2 must be a two-byte register or memory location containing a selector referencing an entry in the
global descriptor table. This entry should be a descriptor for a local descriptor table. Because the command
uses the global table, it only works in protected mode. For example, if AX contains a selector which points

at a descriptor located in the global descriptor table and this descriptor describes a local table, then

LLDT AX

Suppose we have a computer with 64 Meg of memory and we want a 1 Meg segment starting at the
beginning at the halfway point, i.e., at the address 32 Meg.

Base: 02000000H (Start at 32 Meg)

Limit: 000FFFFFH (1 Meg Segment)

Permissions: Read and Write

Privilege Level: User
This information can be coded into an eight-byte descriptor. This descriptor can then be added to a
descriptor table. For a user program to access this segment, it must have the index or selector of this
descriptor stored in a segment register such as DS. The offset address used in accessing the segment must be

less than the limit defined in the descriptor.

13.2.5 Descriptor Encoding

Figure 13-6. Segment Descriptor Layout

63 565554 ol 48 47 44 43 40 39 16 15 0
Top Top D S
P B R Base Address Limit
Base |GID Limit P| P I11E W Al Lower 3 Bytes |Lower 2 Bytes
Byte Bits L

The two main items that need to be encoded into the memory segment descriptor are the base and the limit.
Since these are both four-byte numbers and the descriptor is an eight-byte structure, it would appear that the
space available is all used up by just these two items. By squeezing on the limit encoding, however, extra
bits are freed up. Instead of allowing all eight hex digits of the four-byte limit value to be configurable, the
segment designer is allowed only five digits to play with. This saves three hex digits or 12 bits. These three
hex digits are allowed to be either Os tacked on at the front or Fs tacked on at the end. The first is called byte
granularity and the second is called page granularity. Specifying which of these two granularities is used
costs one more bit. This bit is called the granularity bit. As an example of how this descriptor format is
used, let us encode the sample 1 Meg segment just described. The four-byte base value 02000000H would
be stored in bits 16-39 and 56-63, 24 bits plus eight bits. (This odd fracture is a vestige of the 24-bit
addressing used on the 80286.) Displaying all eight bytes as a 16-digit hex number, using X for
undetermined digits yields

02 XX XX 0000 00 XX XX

The 32-bit limit values are coded into 21 bits by restricting the number of allowable limit values. The 20 bits
from 0-15 and 48-51 encode five hex digits. Bit 55, G for granularity, determines whether the three

remaining hex digits will be Os added to the top end or Fs added to the bottom. The value 000FFFFFH may
be encoded using either scheme. If we use G = 0 for byte granularity, then inserting the 20 limit bits,
FFFFFH, gives us:

02 XF XX 00 00 00 FF FF

In the CS segments, the D bit is extremely important. In x86 code, there is a coding default which may either
be for 16-bit code or 32-bit code. See chapter 5, section 5.5 for details on how this works. In protected
mode, the default is determined by the D bit of the CS segment descriptor. D = 1 means that the default is
32-bit code, D = 0 means it is 16. In real mode, the default is always 16-bit code. With G =0, D = 1 and bits
52 and 53 as 0, we get

02 4F XX 00 00 00 FF FF

Bit 51, P for present, should be marked 1. If this is to be a user accessible segment, then the DPL bits must
be 3. DPL stands for descriptor privilege level. If this is a data segment, then E = 0, i.e., it is not
executeable, and W = 1, i.e., it is writeable. Making the remaining two bits, 40 and 42, 0 yields

02 4F F2 00 00 00 FF FF
13.2.6 Task Isolation via Local Descriptor Tables

A process can only access memory segments that are listed in two tables, its own table called the local
descriptor table, and another table called the global descriptor table. The system has only one global
descriptor table. All processes have access to the global table, but local tables need not be shared.
Consequently one method the operating system could use to isolate tasks from one another would be to hand
out different local descriptor tables to different processes. If a segment is not listed in either the global
descriptor table or the process's own local descriptor table, then the process can't get to it. Before discussing
protection further, we need to look at some of the details of descriptors, selectors, and the descriptor tables.

Segmentation on the 80286 was designed to allow different tasks to have their own memory segments to
which other tasks would not have access. Each task can have its own local descriptor table. Descriptors of
private memory segments can be stored in these local tables. The x86 architecture implements local
descriptor tables as segments, complete with descriptors in the global table. In the memory shown in Figure
13-7, there are eight memory segments. Each of these memory segments is defined by a descriptor situated
in a descriptor table. Although the global table is like a segment, it is not a segment. There is no descriptor
for it anywhere in memory and no selector for it anywhere in the processor.

Figure 13-7. Memory with Protected Segments

Global Table

Local Table #1 -

Local Table #2 -

Local Table #3 -

System Segment

Macl 2 Qaoaocrrmant

Local Table #3 -~

System Segment —

- Task 3 Segment

Y

Task 2 Segment

— Task 2 Segment

" Task 1 Segment

Reviewing briefly, the operating system protects the memory belonging to one task from access by another
task by using local descriptor tables. A new task would receive a local descriptor table containing
descriptors of all the segments to which that task is allowed access. So long as the operating system did not
put the same descriptor in the local table belonging to some other task, that segment would then be private.
A task can only access a segment if a descriptor for that segment is in the global table or its own local table.

This system of protection is incomplete, however. Locking the front door to your house doesn't lock the
house if the back door is unlocked. Since all tasks can access the global table, there must be something to
prevent a rogue task from reading the descriptors defining the local descriptor tables belonging to other
tasks.

Consider this code:
Program 13.2

MOV AX, O
AX is a l6-bit selector.

Bit 2 is 0. ; We're pointing into the global table.
Bits 0 and 1 are O

That's system level privilege.

HAK: LLDT AX
AX is pointing at some descriptor

It could be a local table descriptor

If so it's probably not our own local table.
And in that case we have just borrowed someone
else's private descriptor table and we can

e mm mem oot L - ORI S

L Ne Ne Ne Ne Ne Ne N Ne Ne Ne N.

dCcCess 4dllylnlng L1i1stea 111 Lnere.

ADD AX, 8 Maybe not.
Go to the next descriptor
JMP HAK The local tables are in here.

Ne Ne Ne Ne N

We'll find them.

Memory protection by itself doesn't work. User processes must not be allowed to execute code like the
above code.

13.3 Setting Up the Global Descriptor Table

When an x86 processor is turned on or restarted, it does not create a global descriptor table automatically.
Hence (unless a manufacturer puts one in ROM), none exists at boot time. Since the processor can't use
memory in protected mode without a global table, the processor must boot up in real mode. The processor
can subsequently be switched into protected mode, but only after the global table has been set up.

The processor has base address and limit registers for the global descriptor table (GDT). These registers are
loaded using the command

LGDT mem

where mem points to six bytes of memory containing a two-byte limit and a four-byte base address for the
global table. Although a register Mov command might have been a more convenient way of doing this, there
are no six-byte registers available.

As an example of how we might use the LGDT command, suppose that ten descriptors that we want to use as
our global table have been stored starting at address 10000H. Our global table will therefore be eighty bytes
long and start at 10000H. The limit is one less than eighty, or 4FH. In order to use the LGDT command, we
need to store these values in memory somewhere. Suppose we set up a "scratch" memory area at 20000H
and put our GDT values there. After this code

Program 13.3

MOV AX, 2000H
MOV DS, AX
MOV AX, 4FH
MOV [DS:0], AX

Set up a segment for the scratch area.

; GDT's limit is a 2 byte value.
; Store 79 into the first 2 bytes of
; scratch.
MOV EAX, 10000H ; GDT's base address is a 4 byte value.
MOV [DS:2], EAX ; Store this 4 byte address
; 2 bytes into the scratch.
; (Don't overwrite the first two bytes.)
LGDT [DS:0] ;
; This loads the both the GDT base address register
; and the GDT limit register
; 1i.e., load all 6 bytes.

has executed, the GDT bases address and limit registers will be loaded. The global table has not been used

for anything yet. In fact, we could even run this code first and then store those eighty bytes next. The global
table will not go into operation until the processor is switched into protected mode.

13.4 Closing

The surface has barely been scratched. But the way forward is open.

