
1

Using Linux to Implement 8- and 16- Bit Device Networking Solutions

Glen Mann
Extend The Internet Alliance FAE

emWare, Inc.
6322 South 3000 East, Suite 250

Salt Lake City, UT 84121

Abstract:
By using gateway systems on large 32-bit platforms, networks of small, 8- and 16-bit
microcontrollers can be monitored and controlled over the Internet. With embedded Linux, these
gateways are easily moved from full-blown host PCs to embedded platforms like the PC104. In
this class you will learn about hardware platforms that support embedded Linux, Linux kernel
configuration, feature selection, installation, booting and tuning.

The Gateway Approach

A gateway system provides an embedded architecture that provides networking capability to even
the smallest of embedded controllers. By establishing a gateway that acts as an intermediary
"broker" between lightweight device networks (RS232, RS485, Modem, IR, RF) and
heavyweight networks, including intranets and the Internet, you off-load the device and achieve
the desired communication. The gateway can reside on a PC, single board computer, handheld, or
a device with sufficient resources (32-bit microprocessor). The gateway, having more resources,
can augment a device and enable more information and data to be exchanged. (A Gateway
Method, Figure 1)

Client

Browser

Gateway

Applications

Services

8- or 16-bit
Device

Application

Comm Agent
Lightweight

Network
TCP/IP
NetworkApplication

Figure 1 – A Gateway Method

A gateway provides device access and management services to nodes on the Internet or an
intranet. A gateway method for networking embedded devices has a number of unique
characteristics that it can provide:

• Device Firewall. The devices can rely on a gateway process to provide authentication and
encryption where appropriate. In addition, the gateway can augment the security on the
device by enforcing the most current security policies in this rapidly changing, Internet-
connected world.

• Protocol Translation. The gateway can provide methods for adapting to the variety of device
connectivity hardware and software solutions and delivering a uniform TCP/IP based access
service.

2

• Device Watchdog. An optional service of the gateway is monitoring device status. Whether
the devices are to remain connected at all times and the gateway reports failure of the
ancillary network or device, or the device connection is required to periodically contact the
gateway process, the gateway reports to a designated client when a device becomes
unavailable.

• Event Handling. A particular event from a device may require a launch of an application, or
dispatch of a pager or e-mail message. In this situation, there is no connection to a "client"
waiting for a message.

• Device Services. Instead of viewing the network as a client of an embedded application, it
may be desirable to offer a set of network services to an embedded application. The gateway
acts as a provider of services to embedded device applications.

• Support for any lightweight network. Just like embedded processors, there is no single
physical network transport that is appropriate for all environments. Whether it is cost,
communications robustness, security, or a myriad of other reasons, solutions for networking
embedded devices must support a wide variety of networking types that offer a range of
capabilities.

• Wide Variety of Interface Options. There are countless methods to interface with devices
including Windows, the Web browser and the phone. There is no such thing as the
"ubiquitous interface" for embedded electronic devices. For certain types of applications, a
simple, text-based HTML interface may be sufficient, however, in other types of applications
it may be overkill or not sophisticated enough. To provide rich, device-networking solutions,
human and machine interface options need to be provided that scale from DTMF—phone
key—to complex enterprise databases and resource planning applications—such as SAP R-3.
In addition, many of these "interfaces" may be used with these devices at the same time.

Five aspects of a gateway-based system to consider include the following points.

Gateway: Any Processor
There are more than 1,000 “flavors” of microcontrollers currently on the market. Each one is
designed to cut costs and service a certain set of functions. There is no single processor or
processor family that can service all embedded system requirements. In many cases, assumptions
are being made in the embedded market that higher-end processors are required for any form of
communications external to the embedded device – but the major logic flaw is that this is OK due
to the ever-lowering cost in higher-end processors due to Moore’s Law. We have seen OEM
manufactures that are “sweating” the decision of a $0.50 8-bit microcontroller vs. a $1.00 8-bit
microcontroller for a high-volume embedded application. The lowest cost 32-bit microprocessor
was not even in consideration with costs only starting at 10x to 20x the 8-bit cost.

Moore’s Law is being misapplied. We can’t assume that 32- and 64-bit processors will drop so
low in price—to pennies—and still deliver incredible performance. Even if cost is not an issue,
there are still the issues of power consumption, package size, thermal dissipation, and other
“embedded” requirements that are difficult, if not impossible, for larger processors to satisfy. At
the same time, Moore’s law also applies to 8- and 16-bit microcontrollers. These smaller MCUs
are gaining additional capabilities while also costing less. Every device and application has
different needs, therefore, a large array of processor choices with different performance, power
requirements and capabilities is critical.

Gateway: Any Capillary Network
Lightweight, capillary networks using transports such as RS232, dial-up, 485, RF, IR and CAN
must all be supported to provide adequate options for networking 8- and 16-bit devices. Just like

3

embedded processors, there is no single physical network transport that is appropriate for all
environments. Whether it is cost, communications robustness, security, or a myriad of other
reasons, solutions for networking embedded devices must support a wide variety of networking
types that offer a range of capabilities. In addition, networks for 8- and 16-bit-based devices need
to be able to operate in low-power, transient environments where devices may or may not have
continuous access to a network. The method by which these lightweight networks communicate
with larger, wide-area networks, including the Internet, must be efficient and timely. Unlike
Ethernet and TCP/IP, which are proving to be an effective single-communications method for
larger computer systems, there is no single lightweight network that is appropriate for smaller
electronic devices.

Gateway: Flexibility
Flexibility - the architecture must be flexible, scalable and can be configured for a wide variety of
applications, including existing devices and proprietary networks. The user interface can operate
on a remote Web browser, a directly connected laptop, or even a handheld PDA. Where a user
interface is not necessary, it can connect directly to an application or database. By utilizing a
gateway approach, implementers can also have flexibility on where interface descriptions are
stored. With a gateway, the interface can be fully described and stored on the gateway,
eliminating any resource requirements for storing the interface on the device. Or, the gateway
can be used to augment partial interface description such as a tagging method.

Gateway: Any Interface
There are countless methods to interface with devices including Windows, the Web browser and
the phone. There is no such thing as the “ubiquitous interface” for smaller electronic devices.
For certain types of applications, a simple, text-based HTML interface may be sufficient,
however, in other types of applications it may be overkill or not sophisticated enough. To
provide rich, device-networking solutions, human and machine interface options need to be
provided that scale from DTMF—phone key—to complex enterprise databases and resource
planning applications—such as SAP. In addition, many of these “interfaces” may be used with
these devices at the same time.

Gateway: The Object Model
An object model for lightweight devices is required to accommodate the diversity of embedded
devices, the different transport systems and collaboration requirements, creating the building
blocks for making the integration of multiple object environments (CORBA, JINI, and DCOM)
possible. This will allow for even greater sharing of information and control.

The end result for embedded device communication should be an object representing the
capabilities of the device. Everything that the application engineer wants to make public is
exported from the embedded application to a device object server and then through a Gateway to
applications on the Internet or an intranet.

In many applications it is desirable to treat embedded devices as abstract data types. By
encapsulating functional behaviors of a particular device type, and standardizing around these
encapsulations, we create an environment that will foster the development of network-client
applications. These applications use an object model and definition of a particular application
function to de-couple the client interface from the manufacturer’s device. The gateway provides
access to the device through an object service, and isolates the client from network and
device-specific considerations. A home management software package, which could run on a
PDA or browser, may access a heating control unit based on the object definition of an HVAC.
The gateway provides the necessary object interface to an HVAC and isolates the client from

4

the specific network and device characteristics.

Gateway Pros: Gateway Cons:
Supports any appropriate networking transport
(RS232, RS485, RF, IR, CAN, …)

Possible Software Distribution Issues

Leverages TCP/IP standard and ISP infrastructure Distributed Networking can be more complex
Leverages HTML and Java Development Tools

Supports Internationalization and multiple HTML
page interfaces
Can provide robust APIs for applications and
databases to access and control devices

Operating Systems and Gateways

As microprocessors and microcontrollers have evolved to meet specific industry needs, so too has
the variety of operating systems. In the early days, engineers had to build their own OS from the
ground up. Today, that option still exists but is often passed over in favor of commercial off-the-
shelf products. Buying an OS allows designers to concentrate on the application rather than the
OS and the application. Time to market pressures are eased significantly with an OS out of the
way and the path cleared to build the application. Having a pre-built OS allows the engineer to
select from a variety of host processors if the OS vendor has support for the various CPUs.

Recently, the embedded world has been able to benefit from developments in the open source
movement around the Linux operating system. The rapid adoption of this operating system has
added support for “real time” functions for embedded design. The flexibility of the Linux
operating system allows the user to implement only what is needed.

The name Linux is a compilation of Linus Torvalds and UNIX. Linus is widely credited for
creating Linux. However, Linux is the creation of thousands of programmers and the free
software efforts of the GNU Project (see www.gnu.org). The concept of Linux is that the
community of programmers and users would benefit from having access to the source code of the
operating system such that features one group may find desirable could be quickly implemented
for the benefit of the group. The architecture of Linux is strikingly similar to Unix. This is not a
coincidence. The Linux system commands, directory structure and applications that are supported
are typically identical to Unix. Most applications built for Unix systems run on Linux with a
simple re-compile of the source to the specific version of Linux. The reason Linux is not branded
Unix is due to the fact that Unix is a trademark of AT&T. Unix is a brand only allowed for
software which is POSIX compliant and the vendor has paid a royalty to AT&T for the right to
use the Unix brand name.

Linux has been built on the POSIX standards. Since no one owns Linux and the effort is often
the result of free volunteers, there is no single entity to “pay” a Unix fee to AT&T or pay for the
testing. Several distributions have become available from commercial concerns but those groups
do not “own” the source code, which is the heart of Linux due to GPL. GPL is the General Public
License which entitles everyone to take and improve the code, but must supply source code for
any modifications for the benefit of the group. Details on the GPL can be found at www.gnu.org
or www.linux.org.

5

The GPL program does not require a vendor to share their application source but any
modifications to the Linux kernel source to enable the application must be shared for the benefit
of the group.

Key features of Linux:

• Multitasking
• Multithreading
• Shared Library
• POSIX compatibility
• TCP/IP networking/Routing

Some of the reasons a designer would choose Linux over Windows NT as an operating system
are as follows:

• The need to run on a wider variety of MCUs and CPUs
• The need for small code size approx. 450 KB program storage for the OS and 4-8 MB RAM

(See table 1 for details)
• The need for a stable system
• Remote administration without being local to the machine to gain “root” privileges
• Resistance to viruses and security violations
• Ability to take out the “bloat” of unnecessary portions of the OS

Table 1

Requirements Miniscule Tiny Mid-
range

High-end
Embedded

Embedded
PC

Desktop Server High-End
Server

RAM in MB 0-0.1 0.1-4 2-8 8-32 16-64 32-128 128+ Lots!
ROM/Flash/Disk 0.1-0.5

MB
.5-2
MB

2-4
Flash
MB

4-16 Flash
MB

MBs GBs GBs GB-TBs

Source: Lineo

The option to press the reset button on an embedded system is typically NOT acceptable. A
highly reliable system starts with complete control over every aspect of the embedded system.
The base layer of Linux under the GPL license conditions allows access to the source code of the
kernel and other vital system components. A Linux kernel can be “tuned” to meet the needs of
the system’s feature and performance requirements. Often an experienced Linux user will get a
system running to insure the application runs correctly and then will re-compile the kernel of the
OS to optimize the performance of the system. Unnecessary components will be stripped away.

There has been a big push to put the open standards of the Internet into embedded devices. One
of the glaring trends in the Internet-enabling saga is the desire to place the native protocol of the
Internet (TCP/IP) onto the device. This is at first a rather simple way of setting things right with
support of an “open standard” and moving on to build the application on the device. Upon closer
inspection however, it turns out that a wide-area networking protocol such as TCP/IP or UDP/IP

6

or SNMP over IP is overkill for the majority of applications that are perfectly supported via a
lighter-weight networking protocol. What the cost conscious embedded engineer really needs to
solve the problem is a simple lightweight protocol to address the small network issues. In order
to tie to the larger network it makes more sense to let a server handle the heavyweight protocol
and other services on a more capable server. What is the point in expending 250 KB of code
space just to handle the TCP/IP stack on the device when 90% percent of the protocol’s
capabilities are not even used? Several clever “hacks” have been devised to wrap a TCP/IP
packet header around a lightweight protocol. However, this places the burden at the end of the
network that must, in turn, be managed by some sort of gateway.

Why not just place embedded Linux down onto the embedded device and run SNMP? The Linux
“footprint” can be small by conventional server standards and Internet appliances are starting to
show up on the market for a “reasonable” consumer price. Combined with Moore’s law, it would
seem reasonable to simply save oneself a lot of extra work in cramming an embedded system into
a low cost 8- or 16-bit microcontroller and spend it on higher level general programmers targeting
larger processors. This would make the product faster to market and reduce the dependence on
dedicated embedded hardware designers. It would also enable the development system and the
target systems to be very similar, and it would save the engineer from becoming concerned about
managing the complex interaction of peripherals and the application on the MCU.

The problem is, there are so many devices that need simple, effective functionality without a
large cost associated with the hardware, that it still makes sense to hand-craft an embedded
solution with emphasis placed on software overhead at the embedded device. As a testament to
the volume of products that do not use a processor capable of running Linux or similar large OS,
consider that the annual volume of 8- and 16-bit microcontrollers is 3.29 billion units vs. 0.24
billion 32 bit MCUs/CPUs. Linux, RTOSes, other OSes and even Sun’s Jini virtual machine
typically require the latter 32 bit processors. See figure 1.

Fig. 1
Source: International Architects WSTS & ICE

7

With all the industry talk about Moore’s Law making 32-bit MCUs viable for low cost
applications, it’s interesting to note just how dramatically different the volumes are between the
8- and 16-bit markets vs. 32-bit. What drives this delta in volume?

Consider the cost issues for a product that uses large quantities of 8-bit MCUs. The automotive
industry is a large consumer of 8- and 16-bit microcontrollers. A single modern automobile uses
up to 80 8-bit MCUs for a variety of functions including safety (airbags), antilock brakes,
suspension and engine controls.

One of the challenges facing a designer when building a complex embedded application is
keeping track of all the critical time and resource related processes. An operating system is often
selected to take care of this peripheral administration.

Consider a simple design trade-off for an airbag controller that needs a UART function to
communicate to other systems on the vehicle. The designer may choose a hardware UART and
pay more to the MCU vendor for this luxury. Or, the engineer could write a software UART to
manage communication and place more of the burden on the MCU for communications. Finally,
the software UART and other peripheral communications tasks could be left to an operating
system from a 3rd party so the designer is free to concentrate on the application development.
This last option may push the MCU requirements up to support an OS with additional overhead.
As a result many embedded design cost trade-off choices come down to time-to-market and cost-
per-device issues.

For some applications it’s more cost effective to pay a clever engineer to make a low-cost
solution than to find an OS (i.e. Linux or an RTOS) and insulate the designer from the peripheral
management details in order to focus on the application.

It is this kind of super cost sensitive design that drives many OEMs to create a simple lightweight
networking model. The designer can choose to “outsource” the communications methods or
spend valuable time creating a protocol and communications algorithm to interact with other
devices in the network. Just as an OS may make sense for a designer to save time, it has now
become possible to use an off-the-shelf embedded device-networking model that has been
established.

Linux is a key component in this kind of cost control strategy. An engineer may not place an OS
on the 8-bit device for the application, but may instead rely on the communications power of the
Linux OS to provide a platform for connectivity to the outside world.

The x86 processors are the dominant platform for Linux due to the history of Linux. However,
an embedded system is not always best served by an Intel x86 CPU architecture. Linux is well
supported on other CPU platforms. A sample list includes PowerPC, ARM, Dragonball, MIPS,
Atmel and Transmeta's TM3120 Crusoe processor and various other RISC architectures.

Linux offers the convenience that an application developed on a x86 platform can be readily
ported to the target system without a large amount of re-work to the code. This portability is one
of the key reasons companies value supporting the embedded Linux server approach.

Case Study: Automotive Design Engineer

An automotive design engineer is testing an 8-bit MCU based design to go into production.
There are two key design issues, cost and product field upgrade.

8

For the cost issue, there is the trade-off of building masked ROM versions vs. newer FLASH
based MCUs. In addition there is the issue of product upgrade or recall. On the first issue the
designer takes advantage of Moore’s Law and chooses a flash-based MCU over the traditional
masked ROM method of cost reduction.

In performing the design, the designer implements remote connectivity methods that are
appropriate. The production product will not necessarily benefit the end user on a daily basis by
having the remote connectivity feature. The engineer realizes that this is the case and so chooses
a lightweight method that will not significantly impact cost of the device performance or his own
time to market concerns.

What other benefits does remote connectivity offer the designer? It turns out the engineer has
provided this remote connectivity method to deal with three other cost drivers.

1. Time to market
Reduction of travel time to visit the “proving grounds” and make design changes
based on first hand field observations.

2. Government and Insurance companies
Remote connectivity allows the device to verify ROM revision and compliance
with product recalls.

3. Feature creep
The marketing department has discovered a new feature that will better
differentiate the product in the market.

Because of this “backdoor” diagnostic mechanism, the engineer has insured a path to observe and
change the application on the FLASH-based MCU. The diagnostic equipment vendors have
designed in the capability to inspect and upgrade vehicles quickly with a standard method of
interface.

So where does Linux come into the picture?

Due to the variety of interaction points, it is vital that each client be able to access the device with
the appropriate interface. The engineer designed the product on a x86 based Linux workstation,
the OEM field technician used a 32-bit CPU based handheld instrument to field test and gather
data.

The repair/recall dealer used a 32-bit CPU handheld instrument and a sophisticated 64-bit
CPU database to connect “online” to the factory database to “flag” the suspicious MCU. The fix
was performed and all concerned parties were informed of the successful 8-bit target MCU
update via e-mail, verbal, paper mail and reports. The Linux OS supporting these connections
was used on the two portable instruments, the engineer’s desk and the database. In each instance,
the gateway running on the Linux OS was able to be scaled to the respective 32-bit CPU and 64
bit platforms. The gateway was simply an application on the Linux OS servicing connectivity to
the 8-bit target device.

The diagnostic tool vendor could not justify the cost, bulk and power requirements of a traditional
PC for the field technician or the dealer service person. Linux was chosen to enable the low-
power and low-cost CPU to provide the needed instrument functionality.

9

Linux running a gateway serviced the connection to the embedded device with the appropriate
level of CPU resources. Additionally, the e-mail and large database applications were served via
the gateway on Linux via TCP/IP connectivity.

Example: Building Automation

Consider the value of the following scenario.

An employee walks into his office on a weekend during non-business hours. The employee
presents a valid “key” to the building access security system. The security system is disarmed
and the employee takes the elevator to his office on the 5th floor. The rest of the building is still
secured and the lights and HVAC systems are on low-power standby mode. However, the 5th

floor lights and air conditioning systems have anticipated his arrival and have gone into active
mode. The value of the three separate systems interacting presents a good business case for
integrating the communications between these systems. Further, a case can be made for a new
program offered by the building’s energy provider. The energy provider proposes an annual
savings of 30% via “load shedding” during peak hours. In order for the load shedding program to
work however, the energy provider must have the capability to control the discretionary loads.

Load shedding allows the power provider to reduce costs during peak power usage when the end
user allows the supplier to signal a need to turn off the power consumption on the discretionary
loads.

The key in the above scenario is that the devices must have a communications method that is
accessible via low cost “open standards”. TCP/IP is the open standard that will best interface to
the energy provider’s sophisticated load management software at their offices. However, TCP/IP
at the device for the end user would require a 32-bit CPU for each and every device. The cost
savings would be hard to recoup if this were the method on the devices. A gateway approach
makes more sense in this situation.

The cost issues for this project demand that the following devices are strictly controlled for their
cost. A motion sensor (8-bit), electronic lighting ballasts (8-bit), building access control (8-bit),
HVAC system (8-bit).

A system is proposed that must allow the security system to interact with the lighting and heating
so the above scenario can be realized in a cost effective way.

Using methods described earlier, the reader will see that the gateway method makes the best use
of the limited resources at the device.

Summary

With the addition of support for the Linux embedded environment, a gateway can be easily
supported on the range of platforms that Linux offers. A designer using a gateway method is free
to select the best fit for the particular design requirements.

10

