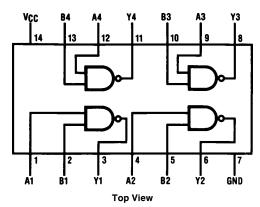


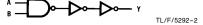
MM54HC00/MM74HC00 Quad 2-Input NAND Gate

General Description


These NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 54HC/74HC logic family is functionally as well as pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 8 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads


Connection and Logic Diagrams

Dual-In-Line Package

TL/F/5292-1

Order Number MM54HC00 or MM74HC00

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{\rm CC} + 1.5 V_{\rm CC}$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC} + 0.5 V_{\rm CC}$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Dawer Dissination (D.)	

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds)

Supply Voltage (V_{CC}) 2 6 DC Input or Output Voltage 0 V_{CC}

Max

+85

+125

Units

V

٧

°C

ns

ns

ns

(V_{IN}, V_{OUT})
Operating Temp. Range (T_A)
MM74HC

Operating Conditions

MM54HC Input Rise or Fall Times (t_r, t_f) $V_{CC} = 2V$

 $\begin{array}{lll} V_{CC}\!=\!2V & 1000 \\ V_{CC}\!=\!4.5V & 500 \\ V_{CC}\!=\!6.0V & 400 \end{array}$

-40

-55

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Typ Guaranteed Limits					
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V	
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V	
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V	
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V	
		$V_{IN} = V_{IH}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V	
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		2.0	20	40	μΑ	

260°C

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

 $[\]textbf{Note 3:} \ \ Power \ Dissipation \ temperature \ derating \\ -- plastic "N" \ package: \\ -- 12 \ mW/^{o}C \ from \ 65^{o}C \ to \ 85^{o}C; \ ceramic "J" \ package: \\ -- 12 \ mW/^{o}C \ from \ 100^{o}C \ to \ 125^{o}C.$

Note 4: For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{CH}, and V_{CL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		8	15	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ \ \text{to 6.0V}, \ C_L = 50 \ \ \text{pF}, \ t_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V 4.5V 6.0V	45 9 8	90 18 15	113 23 19	134 27 23	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		20				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

 $\textbf{Note 5:} \ \ C_{PD} \ \ \text{determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \$

Physical Dimensions inches (millimeters) (19.939) MAX 14 [3] [2] [1] [10] [9] [8] 0.025 (0.635)0.220-D.310 RAD (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.200 (5.080) MAX 0.020-0.060 (D.127) MIN (7.366-8.128) 0.060 ± 0.005 (1.524 ±0.127) 0.180 (0.508-1.524) -MA (4.572) 95° ±5 86°94° TYF 10° MAX 0.008-0.012

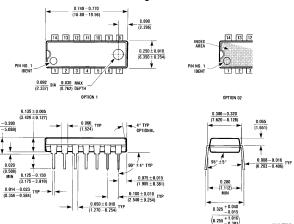
(0.203-D.305)

MAX BOTH ENDS

0.098

(2.489)

0.310-0.410


(7.874-10.41)

Cavity Dual-In Line Package (J) Order Number MM54HC00J or MM74HC00J NS Package J14A

(0.457 ±0.076)

0.100 ±0.010

(2 540 +0 254)

Molded Dual-In Line Package (N) Order Number MM74HC00N NS Package N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.125-0.200

(3.175-5.080)

J14A (REV G)

(3.81) MIN

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408