

ME271 DC/DC 升压转换器

ME271 DC/DC 芯片是采用 CMOS 工艺制造的静态电流极低的 VFM 开关型直流/直流升压转换器。该芯片由振荡器、VFM 控制电路、LX 开关驱动晶体管、基准电压单元、误差比较放大器、电压采样电阻、LX 开关保护电路等部分组成。ME271 DC/DC 升压转换器具有低纹波、高效率等特点,外围只需接三个元件。

ME271 DC/DC 芯片适用于低噪声、小电流的电池供电设备:

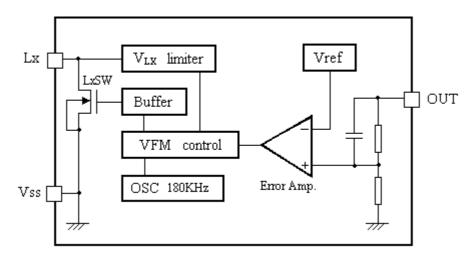
- 1、电池供电设备的电源部分;
- 2、无线鼠标、无线键盘、照相机、摄象机、VCR、PDA、手持电话、电动玩具等便携式设备的电源部分:
- 3、要求提供电压比电池所能提供电压高的设备的电源部分。

一、特点

- 1) 只需少量的外接元件: 仅一只肖特基管、一只电感和一只电容;
- 2) 极低的输入电流: 典型值为 6µA(无负载、输入电压为 1.6V 时);
- 3) 输出电压高精度: ±2.5%;
- 4) 低纹波及低噪声;
- 5) 启动电压低: 最高值为 0.9V (输入电流为 1mA 时);
- 6) 高效率: 典型值为 80%;
- 7) 封装体积小: SOT-89-3。

二、芯片模型及引脚介绍

封装形式: SOT-89-3



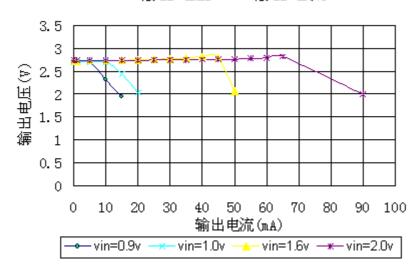
引脚说明:

引脚号	符号	引脚描述		
1	Vss	接地引脚		
2	OUT	升压输出引脚		
3	Lx	开关引脚		

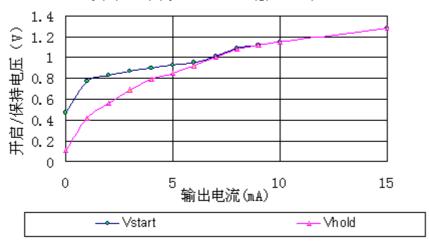
三、功能块框图

四、主要参数及工作特性

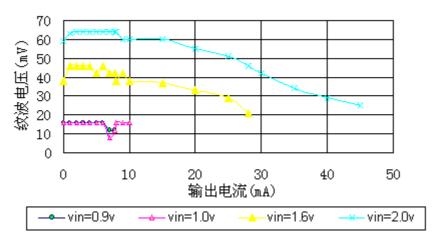
测试条件: $V_{IN}=1.6V$, $V_{SS}=0V$, $I_{OUT}=10$ mA, $T_{opt}=25$ \mathbb{C} 。有特殊说明除外。(测试电路见第 4 页。)


主要参数如下表:

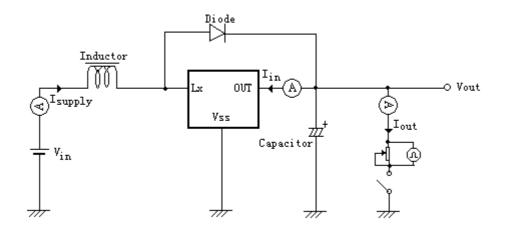
符号	含义	测试条件	数值			*
			最小	典型	最大	単位
V_{OUT}	输出电压		2.633	2.700	2.767	V
V_{IN}	输入电压				8	V
V_{start}	启动电压	I _{OUT} =1mA, V _{IN} : 0→2V		0.8	0.9	V
V_{hold}	保持电压	I _{OUT} =1mA, V _{IN} : 2→0V	0.7			>
I _{IN1}	输入电流 1	无负载时		8	12	μΑ
I _{IN2}	输入电流 2	V _{IN_} =3.2V		6		μΑ
I_{LX}	开关管合闸电 流	V _{LX} =0.4V, V _{IN} =2.55V	40			mA
I _{LXleak}	开关管漏电流	$V_{IN}=3.5V V_{LX}=6V$			0.5	μΑ
F _{osc}	振荡频率			180		kHz
Maxdty	占空比	on(V _{LX} "L")side		75		%
η	效率			80		%



工作特性曲线如下:

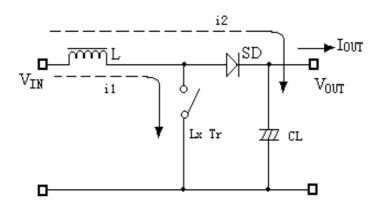

输出电压 vs. 输出电流

开启/保持电压 vs. 输出电流



纹波电压vs. 输出电流

五、测试电路


Inductor: 270 µ H; Diode: 肖特基二极管(正向压降约 0.2V);

Capacitor: 铝电解电容, 47 µ F。

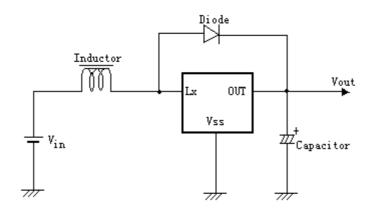
六、工作原理

ME271 升压转换器利用电感对能量的存储,并通过其与输入端电源共同的泄放作用,从而获得高于输入电压的输出电压。如图:

开关式 DC/DC 升压转换器工作原理图

七、外部器件的选择及注意事项

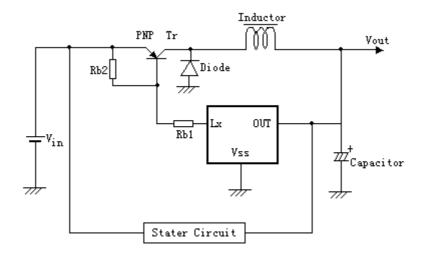
外围电路对 ME271 性能影响很大,需合理选择外部器件:

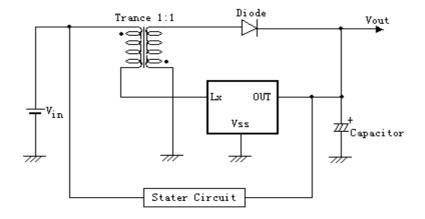

- (1) 外接电容值不宜小于 10 µ F (电容值过小将导致输出纹波过大),同时要有良好的频率特性(最好使用钽电容)。此外,由于 LX 开关驱动晶体管关断时会产生一尖峰电压,电容的容压值至少为设计输出电压的 3 倍;(普通的铝电解电容 ESR 值过高,所以可选购专门应用于开关式 DC/DC 转换器的铝电解电容,如 OS-CON 电容。)
- (2) 外接电感值要足够小以便即使在最低输入电压和最短的 LX 开关时间内能够存储足够的能量,同时,电感值又要足够大从而防止在最高输入电压和最长的 LX 开关时间时 ILXMAX 超出最大额定值。此外,外接电感的直流阻抗要小、容流值要高且工作时不至于达到磁饱和:
- (3) 外接二极管宜选择具有较高切换速度的肖特基二极管。

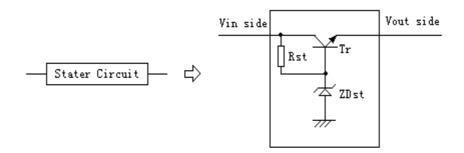
注意事项:

- (1) 外部元器件与芯片距离越小越好,连线越短越好。特别是接到 OUT 端的元器件应尽量减短与电容的连线长度:建议在芯片 OUT 和 Vss 两端并接一 0.1µ的陶瓷电容。
- (2) Vss 端应充分接地,否则芯片内部的零电位会随开关电流而变化,造成工作状态不稳定:

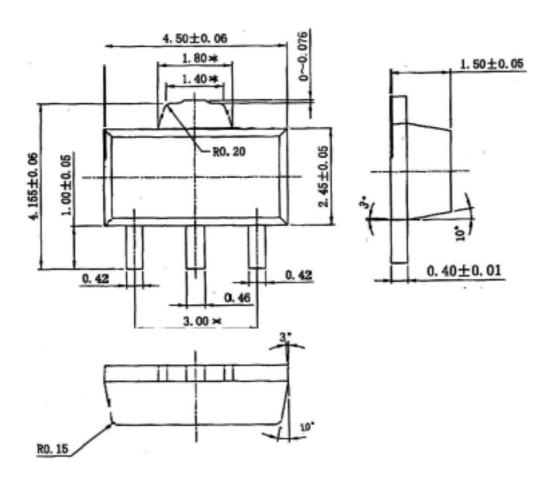
八、ME271 升压芯片应用实例


典型应用电路:


上图是能将输入电压(<2.7V)转换成 2.7V 输出的最基本应用电路。


降压电路:

升压/降压电路:



注: 以上电路中的启动电路

九、封装尺寸

SOT-89-3