S3C44B0X 中文数据手册

S3C44B0X	中文数据手册	1
6 处理:	器 Wrapper 和总线优先级	2
	1Cache 的组织	
6.	2Cache 替换操作	2
6.	3 cache 禁止操作	2
6.	4 cache 刷新	3
6.	5 非 cache 区域	3
6.	6 通过使用 cache 来提高程序的执行速度	3
6.	7 内部 SRAM	3
6.	8 写缓冲区操作	4
6.	9 总线优先级地图	5
6	10 特殊寄存器	5

6 处理器 Wrapper 和总线优先级

处理器 wrapper 包括一个 cache,写入缓冲器,和 CPU 内核。总线仲裁逻辑决定每个总线占用者的优先权。

处理器 wrapper 有一个 8k 直接的内部存储器。内部存储器可以以 3 种方式采用。第一是 8k 字节的存储空间作为 8k 字节的统一(指令或数据)cache(高速缓冲存储器)。第二,内部存储器可以用作一个 4k 字节的统一 cache 和一个 4k 字节的内部 SRAM。第三,内部存储器可以整个地用作 8k 字节的内部 SRAM。

内部统一(指令或数据)cache 采用 4 种方式与某个 4 个字(16 个字节)的行建立链接结构。它采用一种写穿式(write-through)的原则保持数据的一致性。当在 cache 中找不到相应的内容(称为 cache miss),4 个字的存储内容从外部存储器连续地取得。它采用一种LRU(最近使用最少)算法来提升命中的比率。统一 cache 通过有区别的方式来处理指令和数据。

内部 SRAM 主要用来减少 ISR 的执行时间。由于内部 SRAM 具有最短的操作时间,因此能够减少 ISR 的执行时间。当然 ISR 在 SRAM 运行也是非常有效率的因为大多数的 ISR 代码都会引起 cache miss。

总线仲裁逻辑可以决定总线占用者的优先级。总线仲裁逻辑支持一种 round-robin 优先级模式和一种固定的优先级模式。同样 LCD_DMA, BDMA, ZDMA, nBREQ(外部总线控制器)之间的优先级可以通过软件来修改。

6. 1Cache 的组织

S3C44B0X 的 cache 有一个 8k 字节的 cache 存储器, 4 个 RAM 标签和一个 LRU 存储器。

6. 2Cache 替换操作

在系统初始化之后,CS 的值被设置为"0000", 这表示 set0, set1, set2 和 set3 cache 存储器是无效的。当某个 cache 填充发生,特定行的 CS 的值改为"0110", 表明只有 set0 是有效的。当并发的 cache 填充发生,……

6. 3 cache 禁止操作

S3C44B0X 的 cache 提供整个对 cache 进行使能/禁止的功能。你可以通过设置 SYSCFG中的 CM 位为 01 或 11 来使能 cache,或者将 SYSCFG[2:1]设置为 00 来禁止 cache。如果 cache 被禁止,指令和数据将一直从外部存储器中获取。S3C44B0X 还可以在 cache 使能模式下提供非 cache 区域,这样使能一些特殊的存储空间操作可以进行,例如 DMA 操作。通过 4 个特殊的寄存器可以指定 2 个非 cache 区域,后面将会介绍到。

当一个存储区域恢复 cache 功能时,保持它与源数据的一致性是非常重要的,因为 cache

杭州立泰电子有限公司 电话: 0571-88331446 第 2 页 共 2 页 http://www.hzlitai.com.cn Email:office@hzlitai.com.cn 存储空间是不会自动刷新的。因此,你必须小心是否 DMA 操作改变了外部存储空间的数据。 允许 DMA 操作的存储区域应该设置为非 cache 区域,这样就保证了数据的一致性。 S3C44B0X 采用的是写穿式(write-through)的方法来保持 cache 和外部存储器之间数据的 一致。

※写穿式(Write Through)

任一从 CPU 发出的写信号送到 Cache 的同时,也写入主存,以保证主存的数据能同步地更新。它的优点是操作简单,但由于主存的慢速,降低了系统的写速度并占用了总线的时间。

6. 4 cache 刷新

一个 cache 刷新能够重新使能 cache 操作。当 cache 被禁止,LRU RAM 可以作为一个通常的存储器来操作。Cache 可以通过写入 0 到 LRU RAM 来实现刷新,并使得所有的 cache 数据无效。

注意: cache 刷新必须在 cache 禁止的模式下进行。

6. 5 非 cache 区域

S3C44B0X 提供 2 个非 cache 区域。每个要求 2 个 cache 控制区域,控制区域展示了每个非 cache 区域的开始地址和结束地址。在非 cache 区域中,当发生了 cache 读未命中, cache 区域中的数据不会更新。

通常, cache 可以存储整个系统存储器内的任何数据,但是有时它需要非 cache 区域,因为 cache 不能跟踪外部存储设备的数据变化,如果外部设备的数据内容并不总是通过 cpu 对它的读或写操作来更新的,例如允许 DMA 的存储器空间,或者 I/O 口,例如串口等。

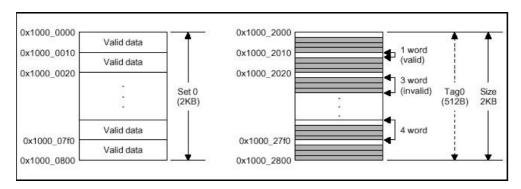
非 cache 空间的大小以 4KB 的块为单位增加或减少。结束地址必须指向下一个 4KB 的块。例如,如果非 cache 的区域地址为 $0x10000\sim0x22fff$,则 NCACHEBEn 的开始地址值为 0x10,结束地址值为 0x23。

6. 6 通过使用 cache 来提高程序的执行速度

- 1. 将经常执行的 ISR 放置到内部 SRAM 执行。
- 2. 让 ISR 不使用 cache,因为大部分的 ISR 代码执行时都会发生 cache 命中失败。而且在 ISR 执行完之后,cache 存储空间不能够再利用,它会立即被主程序代码覆盖。
- 3. 将相关的、互相调用的函数共同执行,这样提高 cache 的命中率。
- **4.** 有时,如果将数据区域被设计为非 cache 区域,程序执行速度将会提高,因为大多数变量不会被再利用。对不需要再利用的数据变量,恢复 16 字节的 cache 存储空间的动作将是浪费的。

6. 7内部 SRAM

S3C44B0X 具有一个最小 8KB 的 4组相连 cache 或内部 SRAM。如果内部 SRAM 为 4KB,另外 4KB 内部存储器可以用来作为 2 组相连 cache。内部 SRAM 的存储器操作周期为

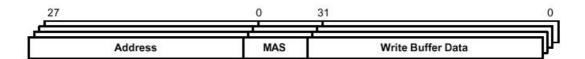

杭州立泰电子有限公司 电话: 0571-88331446 第 3 页 共 3 页

1MCLK.

在每一个组的存储空间内, 地址是连续增加的, 在 TAG/LRU 中的地址按照 16 字节增加。不要对内部地址空间: 0x10003004~0x1000300f进行操作。

区域(组/cache)	存储空间地址	大小
cache set 0	0x10000000 - 0x100007ff	2KB
cache set 1	0x10000800 - 0x10000fff	2KB
cache set 2	0x10001000 - 0x100017ff	2KB
cache set 3	0x10001800 - 0x10001fff	2KB
cache tag 0	0x10002000 - 0x100027f0	512bytes (note)
cache tag 1	0x10002800 - 0x10002ff0	512bytes (note)
cache tag 2	0x10003000 - 0x100037f0	512bytes (note)
cache tag 3	0x10003800 - 0x10003ff0	512bytes (note)
LRU	0x10004000 - 0x100047f0	512bytes (note)

注意: cache 中的 tag3:0 和 LRU 必须以字(32bit)为单位进行读/写。tag3:0 和 LRU 的地址 的最低 3 位必须是 0。例如,如果你希望读 tag0 中 128 个项目中的第 2 个,你不应该使用地址 0x10002004,而是 0x10002010。因此,tag0 中的地址为:0x10002000,0x10002010,0x10002020,…,0x100027f0。



6. 8 写缓冲区操作

写缓冲区操作,S3C44B0X 有 4 个写缓冲区寄存器来提高存储器的写性能。当写缓冲器模式使能,CPU 不再将数据直接写入外部存储器而是将数据写入写缓存区。即便是外部总线已经有其它 master 占用,例如 DMA 操作的情况下,也如此。

写缓冲区模块在系统总线没有被别的更高优先级的 master 占用时,将数据写入外部存储器。这样,CPU 的性能就提高了,因为 CPU 不需要一直等到写操作结束。

写缓冲区具有 4 个寄存器。每个寄存器包括一个 32 位数据区域, 28 位的地址区域和 2 位的 状态区域, 如下图所示:

[31:0] Write Buffer Data 将要写到外部存储器中的数据

[1:0] MAS

00 = 8-bit 数据模式 01 = 16-bit 数据模式 10 = 32-bit 数据模式 11 = Not used

[27:0] Address 写入数据的地址

6. 9 总线优先级地图

在 S3C44B0X 中,有 7 种总线 master, LCD_DMA, BDMA0, BDMA1, ZDMA0, ZDMA1, Nbreq(外部总线 master)和 CPU wrapper。复位之后,这些总线 master 的优先级排列如下:

- 1. DRAM 刷新控制器;
- 2. LCD_DMA;
- 3. ZDMA0,1
- 4. BDMA0,1
- 5. 外部总线 master
- 6. 写缓冲区
- 7. Cache 和 cpu

LCD_DMA, ZDMA, BDMA 之间的总线优先级是可编程的,可以通过 SBUSCON 寄存器来设置。如果不考虑 SBUSCON 的设置 CPUwrapper 始终具有最低的优先级。

Round一robin 优先级模式或固定优先级模式是可以选择的。在 round一robin 优先级模式中,已经被服务过依次的总线占有者将具有最低的优先级。通过这种方式,使得所有的 master 都具有相同的优先级。

在固定优先级模式下,每个总线 master 的优先级都写在 SBUSCON 中,SBUSCON 寄存器决定第 1 到第 4 个优先级的总线 master。

6. 10 特殊寄存器

对于 CPUwrapper 块(包括 cache, write buffer, 和 ARM7TDMI)。SYSCFG 寄存器控制了系统的总体操作。NCACHBE0 和 NCACHBE1 寄存器提供非 cache 区域的设置。

SYSCFG	Bit	Description	Initial State
Reserved	[7]	Reserved to 0	0
Reserved	[6]	Reserved to 0	0
DA(reserved)	[5]	DATA ABORT controls. This bit is recommended to be 0. 0: Enable data abort 1: Disable data abort	0
RSE(reserved)	[4]	Enable read stall option. This bit is recommended to be 0. 0: read stall disable 1: read stall enable (Read stall option: Insert one internal wait cycle when reading data for cache & CPU core.)	0
WE	[3]	This bit determines write buffer enable / disable. Some external devices, which require the minimum writing cycle time, do not operate normally because the period between consecutive writings is shortened the write buffer. 0 = Disable write buffer operation 1 = Enable write buffer operation	0
CM	[2:1]	These two bits determine cache mode 00 = Disable cache (8KB internal SRAM) 01 = Half cache enable (4KB cache, 4KB internal SRAM) 10 = Reserved 11 = Full Cache enable (8KB cache)	00
SE	[0]	Enable stall option. This bit is recommended to be 0. 0:stall disable 1:stall enable (Stall option: Insert one internal wait cycle when a non-sequential address is generated for caching)	1

NCACHBE0: 非 cache 区 1 的开始地址和结束地址; NCACHBE1: 非 cache 区 2 的开始地址和结束地址。

SBUSCON	Bit	Description	Initial State
FIX	[31]	0: round-robin priorities 1: fixed priorities	0x1
S_LCD_DMA	[15:14]	Indicates the LCD_DMA bus priority (read only) 00: 1st 01: 2nd 10: 3rd 11: 4th	00
S_ZDMA	[13:12]	Indicates the ZDMA bus priority (read only) 00: 1st 01: 2nd 10: 3rd 11: 4th	01
S_BDMA	[11:10]	Indicates the BDMA bus priority (read only) 00: 1st 01: 2nd 10: 3rd 11: 4th	10
S_nBREQ	[9:8]	Indicates the nBREQ bus priority (read only) 00: 1st 01: 2nd 10: 3rd 11: 4th	11
LCD_DMA	[7:6]	Determines the LCD_DMA bus priority 00: 1st 01: 2nd 10: 3rd 11: 4th	00
ZDMA	[5:4]	Determines the ZDMA bus priority 00: 1st 01: 2nd 10: 3rd 11: 4th	01
BDMA	[3:2]	Determines the BDMA bus priority 00: 1st 01: 2nd 10: 3rd 11: 4th	10
nBREQ	[1:0]	Determines the nBREQ bus priority 00: 1st 01: 2nd 10: 3rd 11: 4th	11