

TM8712 使用手册

十速科技股份有限公司

TEL: 886-2-29728029 FAX: 886-2-29728774 網址: www.tenx.com.tw

<u>目</u> 錄

第1章 功能簡介	頁
1-1 前言	2
1-2 規格(Feature)	2
1-3 功能區塊圖(Function Block)	3
1-4 腳位定義(Pin Assignment)	3
1-5 腳位說明(Pin Description)	4
第2章 內部系統結構	
2-1 系統時鐘(System Clock)	5
2-2 程式記憶器(ROM)	5
2-3 資料暫存器(RAM)	6
2-4 堆疊器(Stack)	6
2-5 累加器(Accumulator)	6
2-6 索引暫存器(Index Register)	7
2-7 十進位運算(Decimal Operation)	7
2-8 計時器 1(Timer 1)	8
2-9 計時器 2(Timer 2)	10
2-10 狀態暫存器(Status Register)	10
2-11 控制暫存器(Control Register)	13
2-12 蜂鳴器輸出腳(Buzzer Ouput Pin)	14
2-13 輸入/輸出埠(Input/Output Port)	14
2-14 冷光驅動線路(EL Plant Driver)	17
2-15 外部中斷線路(External Interrupt)	17
2-16 電阻對頻率轉換器(Resister to Frequency Converter)	
18	
2-17 按鍵掃描(Key Board Scanning)	20
2-18 液晶驅動輸出腳(LCD Driver Output Pin)	22
2-19 電源線路的接法(The Connection of Power Circuit)	26
第3章 其他控制功能	
3-1 中斷功能(Interrupt Function)	
29	
3-2 重置功能(Reset Function)	29
3-3 頻率產生器(Frequency Generator)	30
3-4 預除器(Pre-divider)	31
3-5 Back-up 模式	31
第4章 指令說明	

1

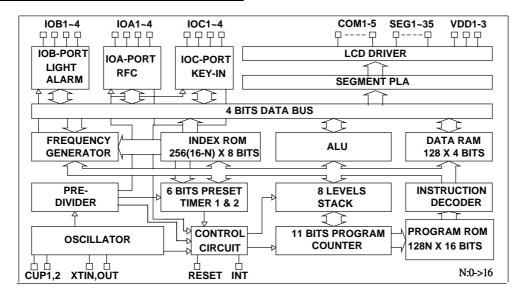
Jan.27,2000 Rev.0.5

第 1 章 功能簡介

1-1 前言

TM87系列產品是一特別針對省電的電池應用而設計的四位元單晶片,晶片內部包含 ROM, RAM, Clock, I/O 及 LCD 驅動器,工作電壓可以從 1.5V 到 5V,內部 Data Bus 爲 8 位元,每一個指令是 16 位元,是一精簡指令架構(RISC),亦即每一行指令佔 2 個 Bytes(16 bits),其效率相當之高。

其內部有兩種省電模式,一種是 Halt mode,即高速的 Clock 停住後,只剩下低速 Clock 在工作的模式,此時到耗電約為 3uA;另一種是 Stop mode,即關掉所有的 Clock,此時幾乎是完全不耗電。


此系列內建有一個 PLA(Programmable Logic Array)架構的 LCD 驅動器可以讓寫程式的人任意編排他所要的 LCD 顯示圖案. 對於非矩陣式的 LCD 顯示來說,PLA 的架構遠比 Display RAM 的架構來的好用。

另外值得一提的優點是這一系列的 IC 的選擇相當的多與靈活,例如 Clock可以選擇高低速同時使用(Dual Clock),只有高速(Fast Only)或只有低速(Slow Only). I/O 腳,Buzzer,冷光版介面(EL light)及溫度介面(R/F converter)均可與 LCD 驅動腳分享腳位,使能充分的運用到每一隻腳位而讓晶片發揮到更大的效用。

1-2 規格(Feature)

- 非常寬的工作電壓範圍: 1.2V~5.5V (經由 mask option 選擇)
- ROM 大小: 2048 x 16 bits
- RAM 大小: 128 x 4 bits
- 最大 LCD 驅動點數: 5 com x 35 segment -> 175 segments
- 每一隻 segment 都可以 mask option 選擇爲 P open drain 或 DC output
- 最多可有 3 組(12 個 I/O port): I/OA1~4, IOB1~4, I/OC1~4
- 副程式(Subroutine)呼叫可有 8 層堆疊(Stack)
- 中斷功能
 - 外部中斷因子(Factor): 3 個,分別為 INT 腳, IOC 腳和 KI 腳
 - 內部中斷因子(Factor): 4個,分別爲預除器(Pre-divider), Timer1, Timer2 和 RFC(R to F converter 即電阻對頻率轉換器)
- 內建冷光介面(EL Light),鬧鈴(Alarm),頻率(Frequency)及弦樂(Melody)產生器
- 內建兩組 6 位元之可程式化之計時器(Programmable Timer)
- 內建看門狗計時器(Watchdog Timer)
- 雙時鐘(Dual Clock)操作
- 內建 LED 驅動掃描模式

1-3 功能區塊圖(Block Diagram)

1-4 腳位定義(Pin Assignment)

No	Name	No	Name
1	BAK	27	SEG13(K13)
2	XIN	28	SEG14(K14)
3	XOUT	29	SEG15(K15)
4 5	GND	30	SEG16(K16)
	VDD1	31	SEG17
6	VDD2	32	SEG18
7	VDD3	33	SEG19
8	CUP1	34	SEG20
9	CUP2	35	SEG21
10	COM1	36	SEG22
11	COM2	37	SEG23
12	COM3	38	SEG24/IOA1/CX
13	COM4	39	SEG25/IOA2/RR
14	COM5	40	SEG26/IOA3/RT
15	SEG1(K1)	41	SEG27/IOA4/RH
16	SEG2(K2)	42	SEG28/IOB1/ELC
17	SEG3(K3)	43	SEG29/IOB2/ELP
18	SEG4(K4)	44	SEG30/IOB3/BZB
19	SEG5(K5)	45	SEG31/IOB4/BZ
20	SEG6(K6)	46	SEG32/IOC1/KI1
21	SEG7(K7)	47	SEG33/IOC2/KI2
22	SEG8(K8)	48	SEG34/IOC3/KI3
23	SEG9(K9)	49	SEG35/IOC4/KI4
24	SEG10(K10)	50	RESET
25	SEG11(K11)	51	INT
26	SEG12(K12)	52	TEST

1-5 腳位說明(Pin Description)

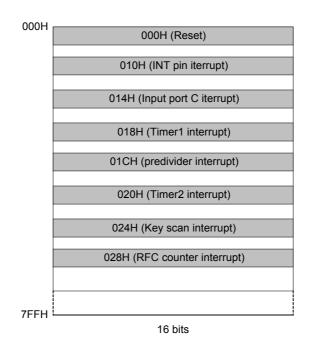
名稱	輸入/輸出	說明
BAK	電源	省電用,在 Li 電池模式下要接 0.1u 電容到地線。
VDD1,2,3	電源	供應 LCD 驅動器及 IC 的電源電壓。
RESET	輸入	系統重置信號。
INT	輸入	外部中斷要求信號,正緣或負緣觸發可由 mask option
		選擇,內部電阻要 pull-up, pull-down 或者 open 也是經
		由 mask option 選擇。
TESTA		測試用腳位,建議接到地線。
CUP1,2	輸出	產生電源用來供應 VDD1,2,3 的電壓,當 1/2 或 1/3 偏壓
		(Bias)時,必須跨接一個沒極性的電容,如果沒有選擇
		偏壓(Bias)則必須空接。
XIN	輸入	系統時鐘(System Clock)輸入。
XOUT	輸出	系統時鐘(System Clock)輸出。
		在雙時鐘模式下外接 32.768KHz 的晶體振盪器(Crystal)
		作爲低速時鐘,若是選擇高速(Fast Only)模式,則可以
		外接電阻而形成 RC 震盪線路。
COM1~5	輸出	輸出信號去驅動 LCD 玻璃或 LED 的 common 腳。
SEG1~35	輸出	輸出信號去驅動 LCD 玻璃或 LED 的 segment 腳。
IOA1~4	輸入/輸出	輸入/輸出口 A,這個腳位與 SEG24~27/CX,RR,RT,RH 共
		用腳位,可經由 mask option 來選擇。
IOB1~4	輸入/輸出	輸入/輸出口 B,這個腳位與 SEG28~31/ELC,ELP,BZB,
		BZ 共用腳位,可經由 mask option 來選擇。
IOC1~4	輸入/輸出	輸入/輸出口 C,可用程式來設定內部 pull-low 電阻
		這個腳位與 SEG32~35/KI1~4 共用腳位,可經由 mask
		option 來選擇。
CX	輸入	類比信號偵測介面,把電阻信號轉換成頻率,即我們所
RR,RT,RH	輸出	說的 RFC(Resistor to Frequency Converter),例如溫度計或
		濕度計的應用。
ELC,ELP	輸出	冷光片顯示介面,用來驅動冷光片,與 SEG28~29 /
		IOB1~2 共用腳位。
BZB,BZ	輸出	鬧鐘輸出,可直接推 Buzzer,與 SEG30~31 / IOB3~4 共
		用腳位。
KI1~4	輸入	鍵盤掃描輸入腳。
GND	電源	接地腳。

第2章 內部系統結構

2-1 系統時鐘(System Clock)

本晶片共有四種不同的時鐘(Clock)模式,可經由 mask option 來選擇:

- a. 雙時鐘模式(Dual Clock)
 - 內建高速 RC 振盪,約為 250KHz 或 500KHz(以 Mask Option 來選擇),及外接 32.768KHz 的晶體或 RC 低速振盪(以 Mask Option 來選擇)。
- b. 高速時鐘模式且使用內部電阻(Fast Only and Use Internal Resistor)
 用內部電阻產生高速 RC 振盪,約為 280KHz,XIN 及 XOUT 空接。
- c. 高速時鐘模式且使用外部電阻(Fast Only and Use External Resistor)
 用外部電阻產生高速 RC 振盪,電阻跨接在 XIN 及 XOUT 之間。
- d. 低速時鐘模式(Slow Only) 外接 32.768KHz 的晶體低速振盪器或 RC 振盪跨接在 XIN 及 XOUT 之間。


2-2 程式記憶器(ROM)

TM8712 的 ROM 大小為 2048x16 bits,因為是精簡指令架構(RISC)所以每個指令只需要一個記憶空間,因而總共可寫 2048 行指令,ROM 可分為程式 ROM (Program ROM)及表格 ROM(Table ROM),這兩種 ROM 其實是共同分享全部的 ROM 大小,而如何切分則由光罩選擇(Mask Option)來做,程式 ROM(Program ROM) 的大小切分公式為: (128*N)*16 bits,而表格 ROM(Table ROM)的大小切分公式為: 256*(16-N)*8 bits,N=1~16,兩者相加總和剛好是 2048*16bits,假設

N=1 則程式 ROM(Program ROM)的大小: (128*1)*16 bits=128 * 16 bits 則表格 ROM(Table ROM)的大小: 256*(16-1)*8 bits=3840 * 8 bits

在 2048 * 16 bits 的 ROM 裡面, 前面有 8 個中斷向量位址(Interrupt Vector Address), 當程式會用到該中斷時, 其對應的中斷向量位址不能寫入一般程式.

名 稱	位 址
重置(Reset)	000Н
外部中斷腳中斷(INT pin Interrupt)	010H
輸入口 C 中斷(IOC port Interrupt)	014H
計時器 1 中斷(Timer1 Interrupt)	018H
預除器中斷(Pre-divider Interrupt)	01CH
計時器 2 中斷(Timer2 Interrupt)	020H
按鍵掃描中斷(Key Scan Interrupt)	024H
電阻對頻率轉換中斷(RFC Interrupt)	028H

ROM 的位址對應圖

2-3 資料暫存器(RAM)

TM8712 的 RAM 大小為 128 * 4 bits , 所有資料的存取都是以 4 位元(bits)為單位。程式對 RAM 的存取方式有兩種,一種是直接定指法(Direct Addressing Mode),即直接對 RAM 做存取,另一種方法是索引定址法(Index Addressing Mode),是利用索引暫存器(Index Register) HL 間接對 RAM 做存取的動作,存取的範圍都是從 00H 到 7FH。

特別要說明的是資料暫存器位址從 70H 到 7FH 的 16 個位址稱為工作暫存器 (Working Register),簡寫成 WR 或是指令集裡的 Ry,這是因為有一些指令是針對工作暫存器而設計的,例如 ADCI、SBCI、ANDI、EORI、LCT 等等,所以當程式設計師要使用這些指令做運算時,務必將資料先存在工作暫存器裡。

2-4 堆疊器(STACK)

當程式執行 CALL 呼叫副程式(Subroutine)時,系統會先將現有位址,亦即程式計數器(Program Counter,簡稱 PC)先存到堆疊器內,等執行到 RTS 指令時才去堆疊器找回原有位址而存回程式計數器。此系列 IC 均有 8 層的堆疊器,亦即最多可連續呼叫 8 層副程式(Subroutine)。

2-5 累加器(Accumulator)

累加器是用來當作資料暫存器(RAM)及算術邏輯運算單元(簡寫爲 ALU)中間運算時的緩衝(Buffer)。

2-6 索引暫存器(Index Register)

@HL索引暫存器(@只是符號並無實際意義)是一個 12 位元的暫存器,其中 @L是 4 位元,而@H是 8 位元,此暫存器是用於索引定址模式(Index Addressing Mode)的運算中,當執行 MVL 指令時,資料暫存器(RAM,指令表簡寫成 Rx)內的 4 位元數值會被搬入@L 暫存器中,當執行 MVH 指令時,累加器(Accumulator,簡寫 AC)的 4 位元數值會與資料暫存器(RAM,指令表簡寫成 Rx)內的 4 位元數值 湊成 8 位元的數值而搬入@H 暫存器中,詳細請參照下圖:

2-7 十進位運算(Decimal Operation)

正常的情況下,IC 均是使用十六進位作爲數值運算,然而經過十進制的轉換指令 DAA 之後,所有記憶體(RAM)、累加器(Accumulator) 、表格 ROM 及立即運算數值(Immediate Data)都將變爲十進位。下表是進位旗號(Carry Flag,簡寫爲CF)在加法運算前後對應累加器(AC)的變化:

在 DAA 運算之前的	在 DAA 運算之前的	在 DAA 運算之後的	在 DAA 運算之後的
AC 資料	CF 資料	AC 資料	CF 資料
$0 \le AC \le 9$	CF = 0	沒改變	沒改變
$A \le AC \le F$	CF = 0	AC = AC + 6	CF = 1
$0 \le AC \le 3$	CF = 1	AC= AC+ 6	沒改變

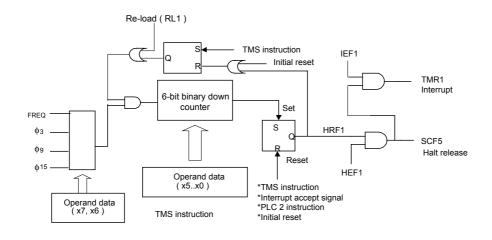
<例1>

LDS	10h,9	;將立即運算數值 9 存入 RAM 10H 及 AC
LDS	11h,1	;將立即運算數值 1 存入 RAM 11H 及 AC
RF	1h	;將 CF 清除爲 0
ADD*	10h	;RAM 10H 的內容與 AC 作二進位相加,
		;(即 9+1=0Ah,CF=0) 結果存回 RAM 10H
		;及 AC

DAA* 10h ;轉換內容成十進制

結果 RAM 10H 的內容會轉爲"0",而 CF 會變成"1",也就是十進制的"10"。 另外減法的運算也是一樣,下表是進位旗號(Carry Flag,簡寫爲 CF)在減法運算前 後對應累加器(AC)的變化:

在 DAS 運算之前的	在 DAS 運算之前的	在 DAS 運算之後的	在 DAS 運算之後的
AC 資料	CF 資料	AC 資料	CF 資料
0 ≤ AC ≤ 9	CF = 1	沒改變	沒改變
$6 \le AC \le F$	CF = 0	AC= AC+ 0AH	沒改變


<例 2>

LDS	10h,1	;將立即運算數值 1 存入 RAM 10H 及 AC
LDS	11h,2	;將立即運算數值2存入RAM11H及AC
SF	1h	;將 CF 設爲 1 表示沒有借位
SUB*	10h	;RAM 10H 的內容與 AC 作二進位相減,
		;(即 1-2=0FH,CF=0) 結果存回 RAM 10H
		;及 AC

DAS* 10h ;轉換內容成十進制

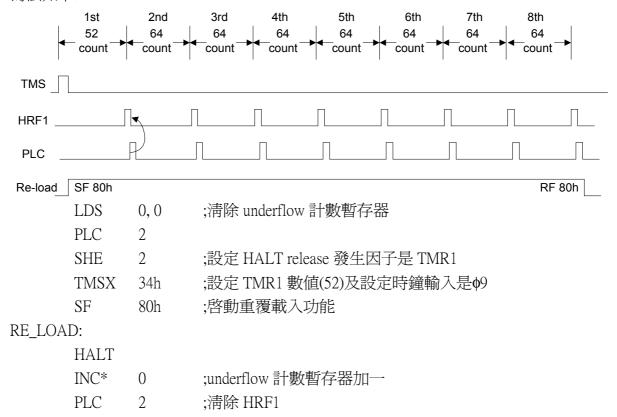
結果 RAM 10H 的內容會轉爲"9" , 而 CF 會變成"0" , 也就是十進制的"-1"。

2-8 計時器 1(TMR1)

2-8-1 一般動作

TMR1包含了一個6位元的二進位倒數計數器,當計數到3Fh時將會產生underflow的信號而且會設 Halt 解除需求旗號 1(Halt Release Request Flag 1,HRF1),這時如果TMR1中斷致能旗號 1(Interrupt Enable Flag1,IEF1)有設的話,中斷就會產生。在電源打開的起始狀態,TMR1預設的時鐘輸入(Clock input)爲 ϕ 3(註 1)。當系統因看門狗時鐘(Watch Dog Timer)而產生重置(Reset)時,TMR1的時鐘輸入(Clock input)仍會保留爲上一次的設定。

(註 1) ϕ 3: 預除器(Pre-divider)的第三級輸出,即(預除器頻率/ 2^3 Hz)。

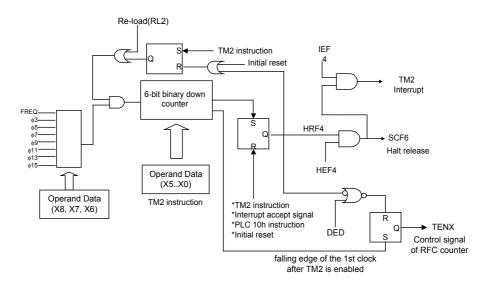

2-8-2 重覆載入動作(Re-load Operation)

當計數的數字超過 3Fh 時就需要用重覆載入功能, SF 80h 指令啟動此功能, RF 80h 關掉此功能, 當重覆載入功能啟動時,即使 TMR1 倒數到 3Fh 也不會產生 Underflow 而中止計數, 在這期間, 使用者必須利用 Halt 解除需求旗號(Halt Release Request Flag, HRF)或中斷去查核計數數值是否爲所希望的數值。 <注意>

在希望發生的最後一個 Halt Release 或中斷發生之前,請絕對不要關掉重覆載入功能,只要一關掉這功能,重覆計數的功能馬上停止。

<範例>

假設我們希望 TMR1 計數 500 個單位,亦即要計數 64*7+52,時序圖及程式的 寫法如下:


JB3 END_TM1 ;如果 underflow 計數暫存器等於 8 則停止計數

JMP RE_LOAD ;

END_TM1:

RF 80h ;關掉重覆載入功能

2-9 計時器 2(TMR2)

基本上 TMR2 的控制方式除了時鐘輸入的選擇較多外其餘均與 TMR1 相同。而如果使用電阻/頻率轉換器(R to F converter, RFC)的話,就只能用 TMR2。

2-10 狀態暫存器(Status Register, STS)

TM8712 總共有 5 個狀態暫存器(Status Register),每一個狀態暫存器是 4 bits:

2-10-1 狀態暫存器 1(Status Register1, STS1)

Bit 3	Bit 2	Bit 1	Bit 0
CF	ZF	X	X

CF	說明
1	當加法有進位或減法有借位時
0	除了上述以外的情況

ZF	說明
1	當累加器(Accumulator)等於 0
0	當累加器(Accumulator)不等於 0

2-10-2 狀態暫存器 2(Status Register2, STS2)

Bit 3	Bit 2	Bit 1	Bit 0
X	Start Condition Flag2	Start Condition Flag1	Back-up Flag
	(SCF2)	(SCF1)	(BCF)

SCF2	說明
1	Halt Release 是因爲 SCF4,5,6,7,9 的變化而產生
0	除了上述以外的情況

SCF1	說明
1	Halt Release 是因爲 IOC port 的變化而產生
0	除了上述以外的情況

BCF	說明
1	更多的電流將供應給震盪器(Oscillator)以使 IC 更穩定
0	除了上述以外的情況

2-10-3 狀態暫存器 3(Status Register3, STS3)

Bit 3	Bit 2	Bit 1	Bit 0
Start Condition Flag7	預除器第 15 級輸出	Start Condition Flag5	Start Condition Flag4
(SCF7)	狀態 (PRED)	(SCF5)	(SCF4)

SCF7	說明
1	Halt Release 是因爲預除器的溢位而產生
0	除了上述以外的情況

PRED	說明
1	預除器的第 15 級輸出爲 1
0	除了上述以外的情況

SCF5	說明
1	Halt Release 是因為 TMR1 underflow 而產生
0	除了上述以外的情況

	SCF4	說明
Ī	1	Halt Release 是因爲 INT 腳而產生
	0	除了上述以外的情況

11

Jan.27,2000 Rev.0.5

2-10-4 狀態暫存器 3X(Status Register3X, STS3X)

Bit 3	Bit 2	Bit 1	Bit 0
Start Condition Flag9	X	Start Condition Flag6	Start Condition Flag8
(SCF9)		(SCF6)	(SCF8)

SCF9	說明
1	Halt Release 是因爲電阻/頻率轉換器(RFC)計數完成而產生
0	除了上述以外的情況

SCF6	說明
1	Halt Release 是因為 TMR2 underflow 而產生
0	除了上述以外的情況

SCF8	說明
1	Halt Release 是因爲掃描鍵輸入腳 KI1~4 有被按而產生
0	除了上述以外的情況

2-10-5 狀態暫存器 4(Status Register4, STS4)

Bit 3	Bit 2	Bit 1	Bit 0
X	16 位 RFC 計數器的	看門狗時鐘啓動旗	系統時鐘選擇旗號
	溢位旗號(RFVOF)	號(WDF)	(CSF)

RFVOF	說明
1	表示 16 位電阻/頻率轉換器(RFC)計數器溢位(Overflow)
0	表示 16 位電阻/頻率轉換器(RFC)計數器沒有溢位(Overflow)

WDF	說明
1	啓動看門狗時鐘(Watch Dog Timer)
0	關掉看門狗時鐘(Watch Dog Timer)

CSF	說明
1	表示系統時鐘是在高速狀態(Fast Clock Mode)
0	表示系統時鐘是在低速狀態(Slow Clock Mode)

2-11 控制暫存器(Control Register, CTL)

總共有 4 個控制暫存器,分別為 CTL1~CTL4,每一個暫存器有的 bit 數多少不一定。

2-11-1 控制暫存器 1(Control Register1, CTL1)

Bit 4
啓動 Halt Release 是
由於 IOC 信號的變
化 (SEF4)

2-11-2 控制暫存器 2(Control Register2, CTL2)

Bit 6	Bit 5	Bit 4	
	啓動 Halt Release 是		
由於 RFC 計數器完	由於按鍵掃瞄	由於 TMR2	
成計數 (HEF6)	(HEF5)	Underflow(HEF4)	
Bit3	Bit 2	Bit 1	
啓動 Halt Release 是	啓動 Halt Release 是	啓動 Halt Release 是	
由於預除器溢位	由於 INT 腳 (HEF2)	由於 TMR1	
(HEF3)		Underflow(HEF1)	

2-11-3 控制暫存器 3(Control Register3, CTL3)

Bit 6	Bit 5	Bit 4	Bit 3
啓動中斷會由 RFC	序動中斷會由 RFC 啓動中斷會由按鍵		啓動中斷會由預除
計數器完成計數引	掃瞄引起 (IEF5)	TMR2 Underflow 引	器溢位引起 (IEF3)
起 (IEF6)		起(IEF4)	
Bit3	Bit 2	Bit 1	
啓動中斷會由 INT	啓動中斷會由	啓動中斷會由 IOC	
腳引起 (IEF2)	TMR1 Underflow 引	信號變化引起	
	起(IEF1)	(IEF0)	

2-11-4 控制暫存器 4(Control Register4, CTL4)

Bit 7	Bit 5	Bit 4
啓動 Stop 解除會由	啓動 Stop 解除會由	啓動 Stop 解除會由
K1~4 信號改變引起	INT 腳信號改變引	IOC 信號改變引起
(SRF7)	起 (SRF5)	(SRF4)

2-12 蜂鳴器輸出腳(Buzzer Output Pin)

TM8712 有兩支輸出腳,分別爲 BZ 及 BZB,這兩支腳與 IOB3 和 IOB4 共用輸出腳,輸出的頻率有 1K、2K、4K 及 FREQ 信號頻率,另外也可以當作直流輸出,詳細請參照指令 ALM 的說明。

當蜂鳴器輸出腳配合 Timer 和頻率產生器(Frequency Generator)時也可以用來當作紅外線遙控器(IR Remote Controller),此時頻率產生器(Frequency Generator)的設定值必須大於或等於 3,並且 ALM 指令必須緊跟在 FRO 指令之後,範例程式如下:

SHE 1 ; 啓動 TMR1 halt release 旗號.

TMSX 3Fh ;設 TMR1 的數值為 3Fh 及時鐘來源爲 69.

SCC 40h ;設頻率產生器的時鐘來源爲 BCLK.

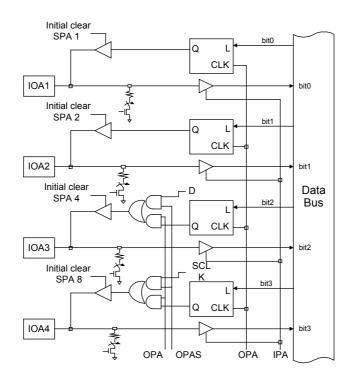
FRQX 2,3 ;FREQ = BCLK / (4*2), 設頻率產生器的値爲 3

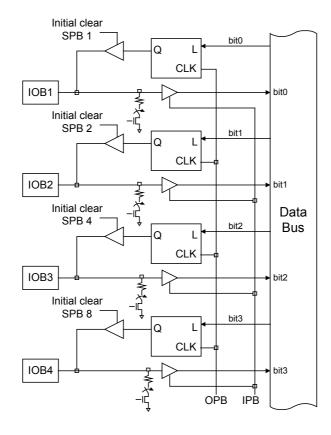
;且 Duty cycle 是 1/2

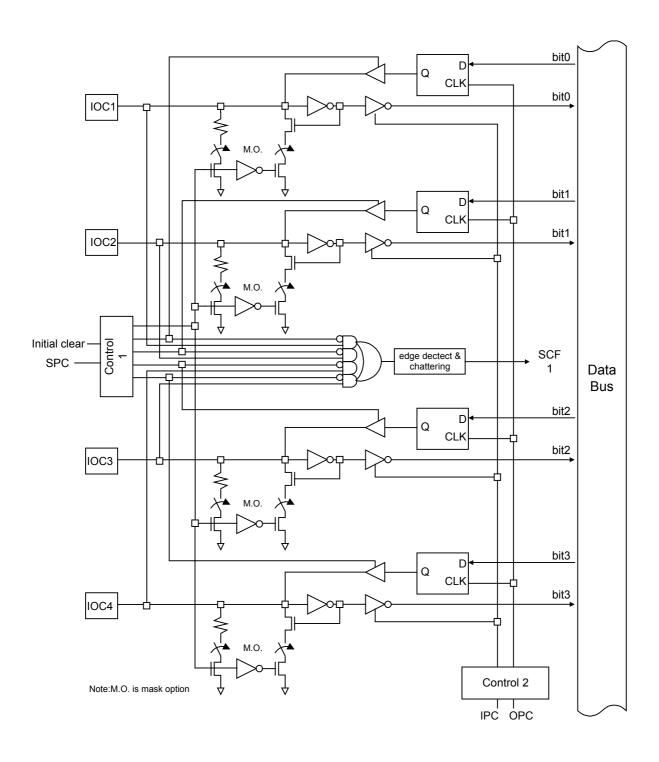
ALM 1C0h ;FREQ 信號輸出.

HALT ;等 halt release 因爲 TMR1 而解除.

ALM 0 ;停止蜂鳴器輸出

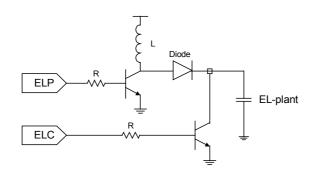

2-13 輸入/輸出埠(Input/Output Pin)

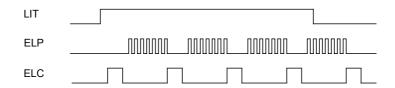

TM8712 總共有三組 12 個輸入/輸出埠,分別為 IOA、IOB 及 IOC,除了 IOC 埠當 成輸入埠時有消除抖動(Chattering Cancel)的功能以外,其於兩組只能當一般的輸入/輸出埠,另外為了節省外接電阻,所有輸入/輸出埠當成輸入埠時都有下拉電阻(Pull-down Resistor),此一架構對於按鍵的應用很有幫助,若是不需要下拉電阻(Pull-down Resistor),也可以用 SF 指令將它關掉。


IOC 埠裡面還有一個 Low Level Hold 的功能,此一功能須透過光罩選擇(Mask Option)來選,當下拉電阻(Pull-down Resistor)及 Low Level Hold 功能都存在的情況,開機重置(Power-on Reset)時會自動啟動下拉電阻(Pull-down Resistor)而關掉 Low Level Hold 功能,執行 SPC 10h 指令可以獲得同樣的效果,如果執行 SPC 0h 則剛好相反,會關掉下拉電阻(Pull-down Resistor)而啟動 Low Level Hold 功能。這些功能都只有在 IOC 埠當成輸入埠時才有。當 IOC 埠爲輸出埠時,下拉電阻 (Pull-down Resistor)及 Low Level Hold 功能都自動會關掉。

IOC 埠消除抖動(Chattering Cancel)的頻率還可以有三種不同的選擇,可以用 SCC 指令來選。

下圖爲 IOA,IOB 及 IOC 埠的硬體架構:



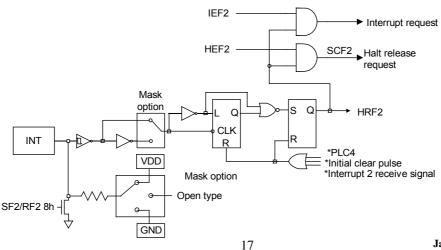


冷光板驅動線路(EL-Plant Driver)

TM8712 提供冷光驅動線路,可以透過外接線路將電壓升至交流(AC) 100V 以上, 參考的線路及時序圖如下:

<範例>

ELC ;設 ELP 腳輸出 2/3Duty 的 BCLK 時鐘及 ELC 腳輸出 110h


:1/4 duty 的 **Φ**8 時鐘.

SF ; 啓動冷光驅動線路 4h

:關閉冷光驅動線路 RF 4h

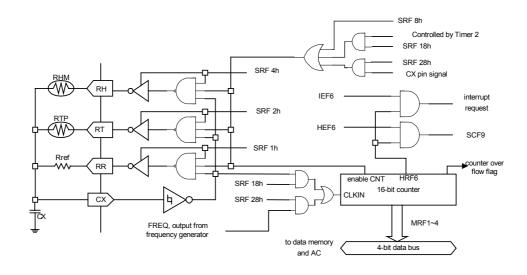
外部中斷線路(External Interrupt) 2-15

INT 腳總共有上拉電阻(Pull-up Resistor)、下拉電阻(Pull-down Resistor)及全開(Open) 等三種模式,可經由光罩選擇來選取,中斷腳的內部結構線路如下圖所示:

Jan.27,2000 Rev.0.5

2-16 電阻對頻率轉換器(Resistor to Frequency Converter, RFC)

TM8712 可以外接兩個電阻式感知器(Sensor), RFC 的對外接腳總共有 4 支,分別如下定義:


CX: Schemmit 觸發輸入腳(Schemmit Trigger Input)

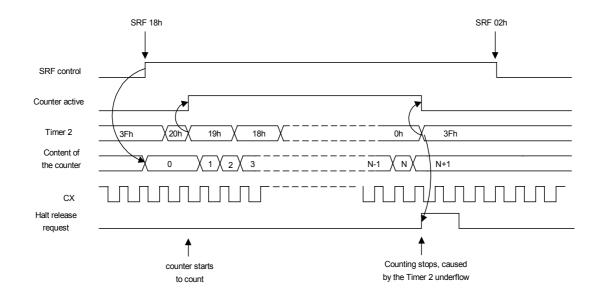
RR:參考電阻輸出腳(Reference Resistor Output)

RT:溫度感知器輸出腳(Temperature Sensor Output)

RH:濕度感知器或是另一個溫度感知器輸出腳(Humidity or Temperature Sensor

Output)

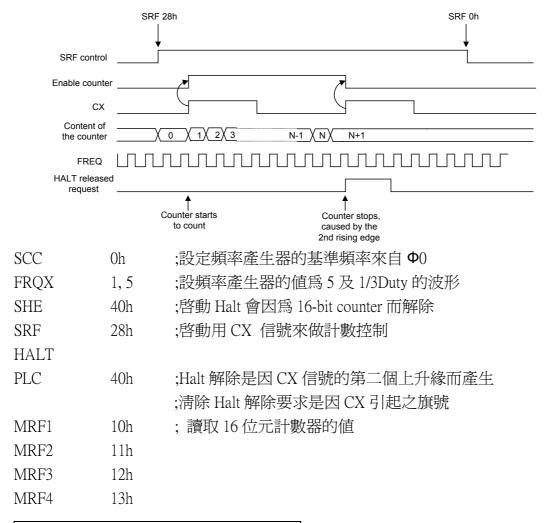
RFC 功能提供了三個方式來計數 16 位元的計數器,詳細以程式說明如下:


2-16-1 以軟體來計數

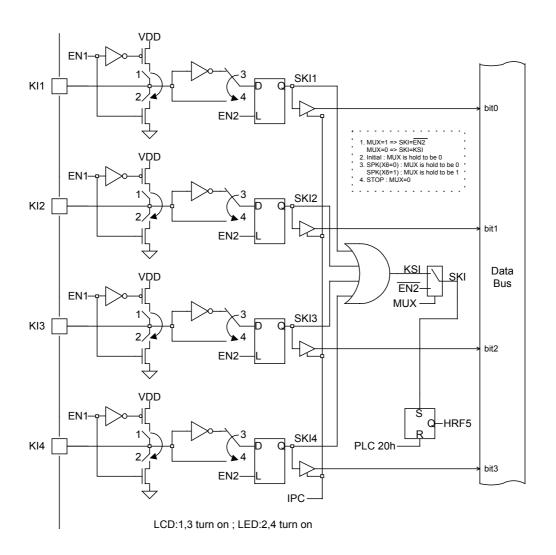
;TMR1 用來啟動/關閉計數器

/ / / / / / /	E/4: 2/4 -4E 20 FBB	
LDS	0, 0	;設 TMR1 時鐘來源爲 Φ 9
LDS	1, 3	;設 TMR1 起始值為 3Fh
LDS	2, 0Fh	
SHE	2	;啓動 halt 會因爲 TMR1 underflow 而解除
RE_CNT:		
LDA	0	
OR*	1	;combine the TMR1 setting value
TMS	2	;啟動 TMR1 開始計數
SRF	9	;啓動 RR 振盪線路並且啓動 16 位計數器
HALT		
SRF	1	;當 TMR1 underflows 發生時停止計數
MRF1	10h	;讀取 16 位元計數器內容
MRF2	11h	

MRF3 12h MRF4 13h **MSD** 20h JB2 CNT1 OF ;檢查計數器的溢位旗號(Overflow Flag) **JMP** DATA_ACCEPT CNT1_OF: DEC* :TMR1的值減一 2 LDS 20h, 0 SBC* 1 JΖ CHG_CLK_RANGE;改變 TMR1 的時鐘來源 ;清除 Halt 解除要求是因 TMR1 引起之旗號 **PLC** 1 **JMP** RE_CNT


2-16-2 以 TMR2 來計數

;在這個範例中,例用RT線路來產生時鐘來源(Clock Source).


: 啓動 RT 線路及設定 TMR2 來控制 16 位元計數器 **SRF** 1Ah ;啓動 Halt 會因為 TMR2 underflow 而解除 SHE 10h TM2X 20h ;設 TMR2 時鐘來源爲 Φ9 且倒數值爲 20h HALT PLC ;清除 Halt 解除要求是因 TMR2 引起之旗號 10h :讀取 16 位元計數器的值. MRF1 10h MRF2 11h MRF3 12h MRF4 13h

2-16-3 以 CX 信號來計數

2-17 按鍵掃描(Key Board Scanning)

TM8712 的按鍵掃描輸出腳 SK1~16 是與 LCD Segment 腳 SEG1~16 共用同一支腳位,而且是同時存在,按鍵掃描是例用 LCD 時序的一小段時間來做,而按鍵掃描的輸入腳 KI1~4 則與 LCD Segment 腳 SEG32~35 共用同一支腳位,但是必須經由光罩選擇(Mask Option)來選取一種用途,詳細硬體的架構及範例程式如下:

SPK 10h ; 啓動所有的按鍵掃描輸出腳.

SHE 20h ; 啓動 Halt 會因爲按鍵掃描而解除

HALT

MCX 10h ;讀 SCF8 旗號(SKI).

JB0 ski_release ;清除 HRF5(SKI)

•

.

ski_release:

IPC 10h ;讀 KI1~4 輸入的擷取值.

JB0 ki1_release JB1 ki2_release JB2 ki3_release JB3 ki4_release

.

.

ki1_release:

SPK 40h ;只啟動 SK1 掃描輸出(第 1 排).

PLC 20h ;清除 HRF5 以避免模式切換時引起錯誤的 Halt 解除

CALL wait scan again ;等時間結束停止 LCD 時鐘以確定再掃描

IPC 10h ;讀 KI1 輸入的擷取值

JB0 kil seg1

•

SPK 4fh ; 只啓動 SKF 掃描輸出(第 16 排).

PLC 20h ;清除 HRF5 以避免模式切換時引起錯誤的 Halt 解除

CALL wait_scan_again ;等時間結束停止 LCD 時鐘以確定再掃描

IPC 10h ;讀 KI1 輸入的擷取值

JBO kil seg16

•

wait_scan_again:

HALT

PLC 20h

RTS

read_scf5:

MSC 10h ;讀 SCF5(TMR1)旗號

JB1 exit_wait
JMP read scf5

exit_wait:

RTS

2-18 液晶驅動輸出腳(LCD Driver Output Pin)

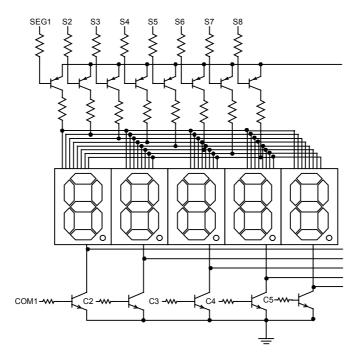
TM8712 的 LCD 驅動輸出腳,也可以用光罩選擇(Mask Option)選成 LED mode,但驅動 LED 時需外加電晶體,當不是選 LED mode 時,Common 腳與 Segment 腳就用來做 LCD 的驅動或者直流輸出(DC Output)。LCD 的輸出方式可分爲 Static,1/2 bias 1/2 duty,1/2 bias 1/3 duty,1/2 bias 1/4 duty,1/2 bias 1/5 duty,1/3 bias 1/3 duty,1/3 bias 1/4 duty,1/3 bias 1/5 duty,光罩選擇(Mask Option)在不同的輸出方式對應的頻率如下:

LCD duty cycle	Static			
Mask option	LCD not used Slow Typ. Fast			
LCD 掃描頻率	0Hz	32Hz	32Hz	64Hz

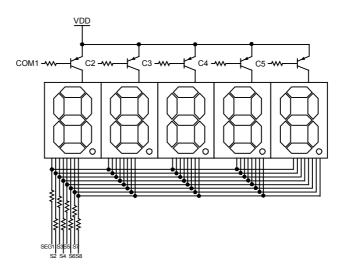
LCD duty cycle	1/2 duty			
Mask option	LCD not used Slow Typ. Fast			
LCD 掃描頻率	0Hz	16Hz	32Hz	64Hz

LCD duty cycle	1/3 duty			
Mask option	LCD not used Slow Typ. Fast			
LCD 掃描頻率	0Hz	21Hz	42Hz	85Hz

LCD duty cycle	1/4 duty					
Mask option	LCD not used	Slow	Тур.	Fast		
LCD 掃描頻率			32Hz	64Hz		


LCD duty cycle	1/5 duty					
Mask option	LCD not used	Slow	Тур.	Fast		
LCD 掃描頻率	0Hz	25Hz	51Hz	102Hz		

上述 Segment 腳可以光罩選擇(Mask Option)當做直流輸出(DC Output), 直流輸出 又可分為 CMOS 的直流輸出及 P open-drain 的直流輸出,所以 Segment 腳有些拿來當 LCD 驅動,另一些拿來當輸出腳的現象是可能存在的。


在定義 LCD 的*.cfg 檔裡,"COM"欄位填 0 表示是 CMOS 輸出,填 9 表示是 P open-drain 輸出。

當選成 LED mode 時,又可分為 High 工作模式及 Low 工作模式,其應用線路如下:

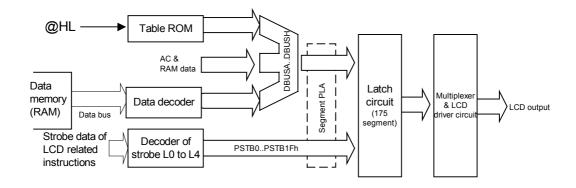
(1) High 工作模式

(2) Low 工作模式

<注意>請務必留意驅動電流大小避免將 IC 燒壞

同樣的當工作於 LED mode 時,不同的 Duty 對應的掃描頻率亦不相同,如下所示:

LED duty cycle	Static			
Mask option	Slow	Тур.	Fast	
LED 掃描頻率	32Hz	32Hz	64Hz	


LED duty cycle	1/2 duty				
Mask option	Slow Typ. Fast				
LED alternating frequency	16Hz	32Hz	64Hz		

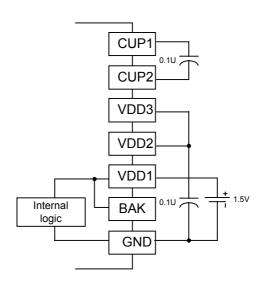
LED duty cycle	1/3 duty				
Mask option	Slow	Тур.	Fast		
LED alternating frequency	21Hz	42Hz	85Hz		

LED duty cycle	1/4 duty				
Mask option	Slow	Тур.	Fast		
LED alternating frequency	16Hz	32Hz	64Hz		

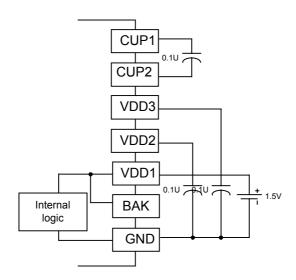
TM87 系列 LCD 驅動器的結構是一個可程式邏輯陣列(Programmable Logic Array, PLA)的方式,不同於一般 Display RAM 的方式,本系列在使用 LCD 驅動器前需要事先定義 PLA 的內容,詳細區塊圖如下圖所示:

24

區塊圖含有幾個部分分別說明如下:

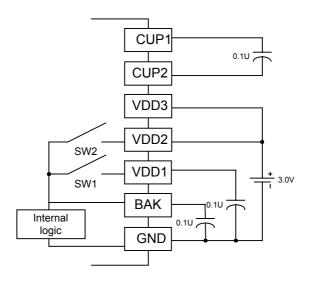

- (1) 資料解碼器(Data Decoder)用來解從資料暫存器(RAM)及表格 ROM(Table ROM) 送過來的資料
- (2) 擷取(Latch)線路用來儲存 LCD 點亮的資料
- (3) L0~L4 解碼器用來解 LCD 相關的指令所指定的 strobe 資料(從 00h 到 1Fh)
- (4) 多工器(Multiplexer)用來選 1/2Duty, 1/3Duty, 1/4Duty 或 1/5Duty
- (5) LCD 驅動線路
- (6) 連接資料解碼器(Data Decoder), L0~L4 解碼器和擷取(Latch)線路的 Segment 可程式邏輯陣列(Programmable Logic Array, PLA)

資料解碼器(Data Decoder)與解出來的 DBUSA~DBUSH 的對應表格如下:

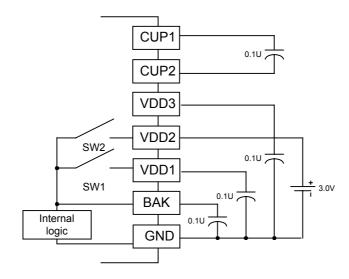

資料解		資料解碼器的輸出							
碼器的 內容	DBUSA	DBUSB	DBUSC	DBUSD	DBUSE	DBUSF	DBUSG	DBUSH	
0	1	1	1	1	1	1	0	1	
1	0	1	1	0	0	0	0	1	
2	1	1	0	1	1	0	1	1	
3	1	1	1	1	0	0	1	1	
4	0	1	1	0	0	1	1	1	
5	1	0	1	1	0	1	1	1	
6	1	0	1	1	1	1	1	1	
7	1	1	1	0	0	*	0	1	
8	1	1	1	1	1	1	1	1	
9	1	1	1	1	0	1	1	1	
A-F	0	0	0	0	0	0	0	0	

2-19 電源線路的接法(The Connection of Power Circuit)

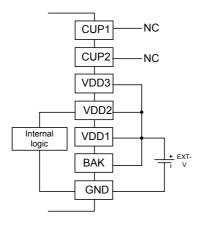
本系列選擇不同的電源及偏壓時電源線路的接法也會不同,詳細如下: 2-19-1 Ag 電池模式及 1/2 Bias 或 Static



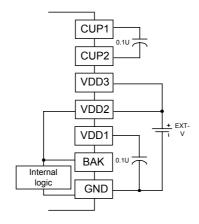
2-19-2 Ag 電池模式及 1/3 Bias

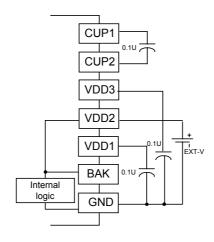

2-19-3 Li 電池模式及 1/2 Bias 或 Static

Backup flag(BCF)	SW1	SW2
BCF=0	ON	OFF
BCF=1	OFF	ON



2-19-4 Li 電池模式及 1/3 Bias


Backup flag(BCF)	SW1	SW2
BCF=0	ON	OFF
BCF=1	OFF	ON


2-19-5 EXTV 電池模式及 Static

2-19-6 EXTV 電池模式及 1/2 Bias

2-19-7 EXTV 電池模式及 1/3 Bias

第 3 章 其它控制功能(Other Control Function)

3-1 中斷功能(Interrupt Function)

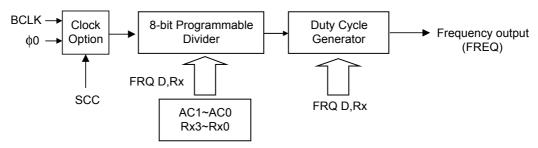
TM8712有7個中斷來源:3個外部中斷因子(Factor)及4個內部中斷因子(Factor),這7個中斷的向量位址,權位高低及對應的中斷啟動旗號如下:

中斷因子	INT pin	IOC port	TMR1	Predivider	TMR2	Key_Board	RFC
			underflow	overflow	underflow	Scanning	counter
							overflow
中斷的向量	010H	014H	018H	01CH	020H	024H	028H
位址							
中斷啟動旗	IEF2	IEF0	IEF1	IEF3	IEF4	IEF5	IEF6
號							
權位高低	6 th	5 th	2 nd	1 st	3 rd	7 th	4 th

3-2 重置功能(Reset Function)

重置(Reset)的方式共有開機重置(Power-on Reset), RESET腳重置, 看門狗重置 (Watch dog Reset)及IOC埠重置,系統經過Reset後,所有信號均回復到起始狀態,這些信號的起始值如下:

程式計數器(Program counter)	(PC)	位址 000H
Start condition flags 1 to 7	(SCF1-7)	Reset mode
Dealum flor	(DCE)	Set mode (Ag, Li 模式)
Backup flag	(BCF)	Reset mode (EXTV 模式)
Stop release enable flags 4,5,7	(SRF4,5,7)	Reset mode
Switch enable flags 4	(SEF4)	Reset mode
Halt release request flag	(HRF 0~6)	Reset mode
Halt release enable flags 1 to 3	(HEF1-6)	Reset mode
Interrupt enable flags 0 to 3	(IEF0-6)	Reset mode
Alarm output	(ALARM)	直流輸出(DC output) 0
Pull-down flags in I/OC		Set mode
Input/output ports I/OA, I/OB, I/OC	(I/OA, I/OB, I/OC 埠)	輸入模式(Input mode)
I/OC port chattering clock	Cch	φ10*
EL-light driver pumping clock	Celp	∮0, duty cycle 爲 1/4
source and duty cycle		+ - , 3 - 3 2.5
EL-light driver clearing clock	Celc	∮8, duty cycle 爲 1/4
source and duty cycle		
Frequency generator	Cfq	\$\phi 0\$, duty cycle \$\mathre{\beta}\$ 1/4,沒有輸出 的動作
Resistor frequency converter	(RFC)	停止沒動作,RR/RT/RH 輸出 0
LCD driver output		全亮或全滅(看 mask option)*
Timer 1/2		停止沒動作
Watchdog timer	(WDT)	Reset mode, WDF = 0
Clock source	(BCLK)	低速時鐘(在雙時鐘模式下)


3-3 頻率產生器(Frequency Generator)

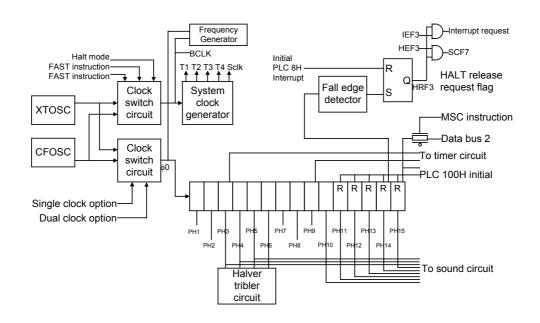
頻率產生器可用來產生鬧鈴(Alarm),TMR1,TMR2及RFC計數器的時鐘來源,輸出時鐘可用下列公式計算:

FREQ=(時鐘來源(Clock source))/((N+1)*X)Hz (X=1,2,3,4對應1/1,1/2,1/3,1/4Duty) (N為FRQ指令的運算子8位元資

料)

這裡的時鐘來源指的是BCLK或�O,選擇可用SCC指令來選,頻率產生器的區塊圖如下:

頻率產生器也可以用來產生單頻(Single Tone)Melody,它的音階如下面表格所示:


Tone	N數值	FREQ	Ideal	%	Tone	N	FREQ	Ideal	%
C2	249	65.5360	65.4064	0.19	C4	62	260.063	261.626	-0.60
#C2	235	69.4237	69.2957	0.18	#C4	58	277.695	277.183	0.18
D2	222	73.4709	73.4162	0.07	D4	55	292.571	293.665	-0.37
#D2	210	77.6493	77.7817	-0.17	#D4	52	309.132	311.127	-0.64
E2	198	82.3317	82.4069	-0.09	E4	49	327.680	329.628	-0.59
F2	187	87.1489	87.3071	-0.18	F4	46	348.596	349.228	-0.18
#F2	176	92.5650	92.4986	0.07	#F4	43	372.364	369.994	0.64
G2	166	98.1078	97.9989	0.11	G4	41	390.095	391.995	-0.48
#G2	157	103.696	103.826	-0.13	#G4	38	420.103	415.305	1.16
A2	148	109.960	110.000	-0.04	A4	36	442.811	440.000	0.64
#A2	140	116.199	116.541	-0.29	#A4	34	468.114	466.164	0.42
B2	132	123.188	123.471	-0.23	B4	32	496.485	493.883	0.53
C3	124	131.072	130.813	0.20	C5	30	528.516	523.251	1.01
#C3	117	138.847	138.591	0.19	#C5	29	546.133	554.365	-1.48
D3	111	146.286	146.832	-0.37	D5	27	585.143	587.330	-0.37
#D3	104	156.038	155.563	0.31	#D5	25	630.154	622.254	1.27
E3	98	165.495	164.814	0.41	E5	24	655.360	659.255	-0.59
F3	93	174.298	174.614	-0.18	F5	22	712.348	698.456	1.99
#F3	88	184.090	184.997	-0.49	#F5	21	744.727	739.989	0.64
G3	83	195.048	195.998	-0.48	G5	20	780.190	783.991	-0.48
#G3	78	207.392	207.652	-0.13	#G5	19	819.200	830.609	-1.37
A3	73	221.405	220.000	0.64	A5	18	862.316	880.000	-2.01
#A3	69	234.057	233.082	0.42	#A5	17	910.222	932.328	-2.37
В3	65	248.242	246.942	0.53	B5	16	963.765	987.767	-2.43

<註>

- (2) Duty設為1/2Duty(設D=0)
- (3) FREQ代表輸出頻率
- (4) Ideal表示理想的音階頻率值
- (5) %表示誤差百分比

3-4 預除器(Pre-divider)

預除器是一個15階的計數器,計數的時鐘來源為φ0,當φ0從"H"準位(Level)變為"L"準位(Level)時,計數器的內容會改變,當執行PLC 100H的指令後φ11到φ15將會被淸爲0,由預除器產生的信號將供應給LCD驅動線路,系統時鐘,中止解除需求及I/O埠消除抖動使用,詳細區塊圖如下:

3-5 Back-up 模式

因爲TM87系列的內部線路設計都是針對省電的觀念來設計,所以當有較大負載 (Heavy Load)產生時,就必須進入Back-up模式才能防止IC產生誤動作,所謂較大 負載(Heavy Load)如掃描按鍵、點亮LED及啓動鬧鈴(ALARM)等需要耗費較大電流 去驅動的工作。在重置(Reset)的狀態下當電源選爲Li或Ag時,BCF的旗號啓始值 爲1,所以在Reset動作結束後,程式剛開始時,必須先把BCF關閉,否則會有大電流發生;如果電源是選EXT-V的話,BCF的旗號起始值爲0,程式就不用把BCF 關閉。

第 4 章 指令說明

- 在使用 RAM 工作前請記得必須先將 RAM 起始化(Initialize),因為在電源打開時 RAM 的值是未知的。
- 工作記憶體(Working Register)也是記憶體(RAM)的一部份,他們的關係如下工作記憶體(Working Register)Ry = 記憶體(RAM)Rx + 70h

<Note> Ry: 工作記憶體(Working Register) ,位址範圍從 0~Fh,相對應的記憶體(RAM)

絕對位址為 70~7Fh。

工作記憶體(Working Register)Ry	對應的記憶體(RAM)Rx
0H	70H
1H	71H
2H	72H
DH	7DH
EH	7EH
FH	7FH

4-1 輸入/輸出指令(INPUT / OUTPUT INSTRUCTIONS)

指 令	功 能
LCT Lz, Ry	LCD latch [Lz] ← data decoder ← [Ry]

<說明>

將工作記憶體(Working Register)Ry的內容值經由數值解碼器(Data Decoder)存入Lz所指的LCD Latch。

指	令	功 能
LCB	Lz, Ry	LCD latch [Lz] ← data decoder ← [Ry]

<說明>

將工作記憶體(Working Register)Ry的內容值經由數值解碼器(Data Decoder)存入Lz所指的LCD Latch,與LCT不同的是假如Ry的內容是0,則數值解碼器(Data Decoder)輸出的值全爲0。

‡	旨令	功 能
LCP	Lz, Ry	LCD latch [Lz] ← [Ry] &AC

<說明>

將工作記憶體(Working Register)Ry 的內容值和累加器(Accumulator)的值存入 Lz 所指的 LCD Latch。

指	自 令	功 能
LCD	Lz,@HL	LCD latch [Lz] ← [T@HL]

<說明>

將@HL 所指的表格 ROM(Table ROM)的內容值直接存入 Lz 所指的 LCD Latch。

į	旨令	功 能
LCT	Lz,@HL	LCD latch [Lz] ← data decoder← [@HL]

<說明>

將索引暫存器**@HL** 所指 RAM 的內容值經由數值解碼器(Data Decoder)存入 Lz 所指的 LCD Latch。

指	自令	功 能
LCB	Lz,@HL	LCD latch [Lz] ← data decoder← [@HL]

<說明>

將索引暫存器**@HL** 所指 RAM 的內容值經由數值解碼器(Data Decoder)存入 Lz 所指的 LCD Latch。與LCT不同的是假如 Ry 的內容是 0,則數值解碼器(Data Decoder)輸出的值全為 0。

指	令	功 能
LCP L	z,@HL	LCD latch [Lz]← [@HL]&AC

<說明>

將索引暫存器**@HL** 所指 RAM 的內容值和累加器(Accumulator)的值存入 Lz 所指的 LCD Latch。

指	令	功 能	
SPA	X	定義 IOA 埠裡的每一支腳是輸入或輸出腳	

<說明>

以直接數值(Direct Data)X(X4 X3 X2 X1 X0)來定義相對應的 IOA 腳是輸入或輸出腳,其對應表格如下:

X數值	結果	X數值	結果
X4=1	啓動 IOA1~4 下拉電	X4=0	關掉 IOA1~4 下拉電
	阻(Pull low resistor)		阻(Pull low resistor)
X3=1	設 IOA4 是輸出模式	X3=0	設 IOA4 是輸入模式
X2=1	設 IOA3 是輸出模式	X2=0	設 IOA3 是輸入模式
X1=1	設 IOA2 是輸出模式	X1=0	設 IOA2 是輸入模式
X0=1	設 IOA1 是輸出模式	X0=0	設 IOA1 是輸入模式

指	令	功 能
OPA	Rx	I/OA ← [Rx]

<說明>

將記憶體 Rx 的內容值輸出至 IOA 埠。

指 令 功 能		功 能
OPAS	Rx,D	IOA1,2 ← [Rx], IOA3 ← D, IOA4 ← pulse

<說明>

將記憶體 Rx 的內容值輸出至 IOA 埠的 IOA1, IOA2, 直接數值(Direct Data)輸出至 IOA3, 脈波(Pulse)輸出至 IOA4。D 的值為 0 或 1。

	指 令	功 能
IPA		$[Rx], AC \leftarrow [I/OA]$

<說明>

將 IOA 埠讀入至記憶體 Rx 及累加器 AC 裡。

指 令 功 能		功 能
SPB	Х	定義 IOB 埠裡的每一支腳是輸入或輸出腳

<說明>

以直接數值(Direct Data)X(X4 X3 X2 X1 X0)來定義相對應的 IOB 腳是輸入或輸出腳,其對應表格如下:

X數值	結果	X數值	結果
X4=1	啓動 IOB1~4 下拉電	X4=0	關掉 IOB1~4 下拉電
	阻(Pull low resistor)		阻(Pull low resistor)
X3=1	設 IOB4 是輸出模式	X3=0	設 IOB4 是輸入模式
X2=1	設 IOB3 是輸出模式	X2=0	設 IOB3 是輸入模式
X1=1	設 IOB2 是輸出模式	X1=0	設 IOB2 是輸入模式
X0=1	設 IOB1 是輸出模式	X0=0	設 IOB1 是輸入模式

34

Jan.27,2000 Rev.0.5

指	令	功 能
OPB	Rx	I/OB ← [Rx]

<說明>

將記憶體 Rx 的內容值輸出至 IOB 埠。

	指令	功 能
IPB	Rx	$[Rx], AC \leftarrow [I/OB]$

<說明>

將 IOB 埠讀入至記憶體 Rx 及累加器 AC 裡。

指 令 功 能		功 能
SPC	X	定義 IOC 埠裡的每一支腳是輸入或輸出腳

<說明>

以直接數值(Direct Data)X(X4 X3 X2 X1 X0)來定義相對應的 IOC 腳是輸入或輸出腳,其對應表格如下:

X數值	結果	X數值	結果
X4=1	啓動所有下拉(pull	X4=0	關掉所有下拉(pull
	low)電阻及關掉 Low		low)電阻及啟動 Low
	level hold 功能		level hold 功能
X3=1	設 IOC4 是輸出模式	X3=0	設 IOC4 是輸入模式
X2=1	設 IOC3 是輸出模式	X2=0	設 IOC3 是輸入模式
X1=1	設 IOC2 是輸出模式	X1=0	設 IOC2 是輸入模式
X0=1	設 IOC1 是輸出模式	X0=0	設 IOC1 是輸入模式

指	令	功 能
OPC	Rx	I/OC ← [Rx]

<說明>

將記憶體 Rx 的內容值輸出至 IOC 埠。

	指 令	功 能
IPC	Rx	$[Rx], AC \leftarrow [I/OC] \text{ or } KI$

<說明>

將 IOC 埠或 KI 的值讀入至記憶體 Rx 及累加器 AC 裡。

	自令	功 能
SPK	Χ	設定掃描按鍵輸出的狀態

當 SEG1~16 以光罩選擇(Mask Option)來選為 LCD 或 LED 用時,以 X(X5~0)來設定掃描按鍵輸出的狀態,詳細對應如下表:

X5	X4	Х3	X2	X1	X0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
0	0	0	0	0	0	1	Hi-z														
0	0	0	0	0	1	Hi-z	1	Hi-z													
0	0	0	0	1	0	Hi-z	Hi-z	1	Hi-z												
0	0	0	0	1	1	Hi-z	Hi-z	Hi-z	1	Hi-z											
0	0	0	1	0	0	Hi-z	Hi-z	Hi-z	Hi-z	1	Hi-z										
0	0	0	1	0	1	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z	1	Hi-z									
0	0	0	1	1	0	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z	1	Hi-z								
0	0	0	1	1	1	Hi-z	1	Hi-z													
0	0	1	0	0	0	Hi-z	1	Hi-z													
0	0	1	0	0	1	Hi-z	1	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z								
0	0	1	0	1	0	Hi-z	1	Hi-z	Hi-z	Hi-z	Hi-z	Hi-z									
0	0	1	0	1	1	Hi-z	1	Hi-z	Hi-z	Hi-z	Hi-z										
0	0	1	1	0	0	Hi-z	1	Hi-z	Hi-z	Hi-z											
0	0	1	1	0	1	Hi-z	1	Hi-z	Hi-z												
0	0	1	1	1	0	Hi-z	1	Hi-z													
0	0	1	1	1	1	Hi-z	1														
0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	Hi-z															

Notes: 1. 1=H/L (LED/LCD)

2. S1~16 = SEG1~16 輸出狀態

指	令	功 能
ALM	Χ	設定蜂鳴器(Buzzer)的輸出頻率

<說明>

用直接數值(Direct Data)X(X8~X0)來設定蜂鳴器(Buzzer)的輸出頻率,X值與對應的頻率如下:

X8	X7	X6	音頻高低的時鐘來源
			(Clock source)
1	1	1	FREQ*
1	0	0	DC1
0	1	1	φ3(4KHz)
0	1	0	φ4(2KHz)
0	0	1	φ5(1KHz)
0	0	0	DC0

Bit	音頻長短的時鐘來源
	(Clock source)
X5	φ15(1Hz)
X4	φ14(2Hz)
Х3	φ13(4Hz)
X2	φ12(8Hz)
X1	φ11(16Hz)
X0	φ10(32Hz)

<注意> 1. FREQ 是頻率產生器的輸出信號

- 2. 當蜂鳴器(Buzzer)輸出不需要封包(Envelop)時, X0~X5 需設為 0
- 3. The frequency inside the () bases on the $\phi 0$ is 32768Hz.

指 令	-		功 能
IFI C	Χ	設定冷光板(EL)的輸出頻率	

<說明>

用直接數值(Direct Data)X(X8~X0)來設定冷光板(EL)的輸出頻率,X 值與對應的設定值如下:

ELP 腳的設定:

(X8,X7,X6)	昇壓的時鐘頻率	(X5,X4)	Duty cycle
000	φ0	00	3/4 duty
100	BCLK	01	2/3 duty
101	BCLK/2	10	1/2 duty
110	BCLK/4	11	1/1 duty
111	BCLK/8		

ELC 腳的設定:

(X3,X2)	放電脈波的頻率	(X1,X0)	Duty cycle
00	φ8	00	1/4 duty
01	φ7	01	1/3 duty
10	φ6	10	1/2 duty
11	φ5	11	1/1 duty

37

Jan.27,2000 Rev.0.5

	指 令	功 能
SRF	Х	電阻對頻率轉換器(Resistor to frequency converter, RFC)的控制

用直接數值(Direct Data)X(X5~X0)來設定 RFC 的狀態,X 值與對應的狀態如下:

X0=1	啓動 RR 的振盪線路	X0=0	關掉 RR 的振盪線路
X1=1	啓動 RT 的振盪線路	X1=0	關掉 RT 的振盪線路
X2=1	啓動 RH 的振盪線路	X2=0	關掉 RH 的振盪線路
X3=1	啓動 16 位元計數器	X3=0	關掉 16 位元計數器
X4=1	啓動 TMR2 控制 16 位元計數器. (當	X4=0	關掉 TMR2 控制 16 位元計數器
	這個位元設爲 1 時,X3 必須要設爲 1)		
X5=1	啓動 CX 控制 16 位元計數器. (當這	X5=0	關掉 CX 控制 16 位元計數器
	個位元設爲 1 時,X3 必須要設爲 1)		

<注意> X4 和 X5 不可以同時設爲 1.

4-2 累加器(Accumulator)及記憶體(RAM)的操作指令

指	令	功 能
MRW	Ry,Rx	$AC,[Ry] \leftarrow [Rx]$

<說明>

將記憶體 Rx 的內容值搬到工作記憶體 Ry 及累加器(AC)裡

指	令	功 能
MRW	@HL,Rx	AC,[@HL] ← [Rx]

<說明>

將記憶體Rx的內容值搬到索引暫存器(Index register)@HL所指的記憶體及累加器(AC)裡

指	令	功 能
MWR	Rx,Ry	$AC,[Rx] \leftarrow [Ry]$

<說明>

將記憶體 Ry 的內容值搬到工作記憶體 Rx 及累加器(AC)裡

指 令		功 能
MWR	Rx,@HL	$AC,[Rx] \leftarrow [@HL]$

<說明>

將索引暫存器(Index register)@HL所指的記憶體的內容值搬到記憶體Rx及累加器(AC)裡

指 令	功 能
	$[Rx]n, ACn \leftarrow [Rx](n+1), AC(n+1)$ $[Rx]3, AC3 \leftarrow 0$

將記憶體 Rx 的內容向右移一個位元,並且把最高的位元填 0

指 令	功 能
SR1 Rx	[Rx]n, ACn ← [Rx](n+1),AC(n+1) [Rx]3, AC3 ← 1

<說明>

將記憶體 Rx 的內容向右移一個位元,並且把最高的位元填 1

指	令	功 能
SL0		$[Rx]n, ACn \leftarrow [Rx](n-1), AC(n-1)$ $[Rx]0, AC0 \leftarrow 0$

<說明>

將記憶體 Rx 的內容向左移一個位元,並且把最低的位元填 0

	指 令	功 能
SL1	Rx	$[Rx]n, ACn \leftarrow [Rx](n-1), AC(n-1)$
		[Rx]0, AC0 ← 1

<說明>

將記憶體 Rx 的內容向左移一個位元,並且把最高的位元填 1

指令		功 能
MRA	Rx	CF ← [Rx]3

<說明>

將記憶體 Rx 內容的第三位元(Bit3)搬到溢位旗號(Carry flag, CF)

指 令		功 能
MAF	Rx	AC,[Rx] ← CF

<說明>

將溢位旗號(Carry flag, CF)的內容值搬到記憶體 Rx 及累加器(Accumulator),旗號的對應位元如下:

Bit 3 CF

Bit 2 AC=0 flag

Bit 1 沒使用

Bit 0 沒使用

4-3 運算指令(Operation Instruction)

指 令		功 能
INC*	Rx	$[Rx],AC \leftarrow [Rx]+1$

<說明>

記憶體 Rx 的內容值加一後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指令		功 能
INC*	@HL	[@HL],AC ← [@HL]+1

<說明>

索引暫存器@HL 所指記憶體的內容值加一後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
DEC*	Rx	[Rx],AC ← [Rx]-1

<說明>

記憶體 Rx 的內容值減一後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢(借)位旗號(Carry flag, CF)。

指	令	功 能
DEC*	@HL	[@HL],AC ← [@HL]-1

<說明>

索引暫存器@HL 所指記憶體的內容值減一後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢(借)位旗號(Carry flag, CF)。

指	令	功 能
ADC	Rx	AC ← [Rx]+AC+CF

<說明>

二進位運算,記憶體 Rx 的內容值加累加器(AC)再加溢位旗號(Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ADC	@HL	AC ← [@HL]+AC+CF

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)再加溢位旗號(Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ADC*	Rx	$AC,[Rx] \leftarrow [Rx] + AC + CF$

二進位運算,記憶體 Rx 的內容值加累加器(AC)再加溢位旗號(Carry flag, CF)後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指令		功 能
ADC*	@HL	AC,[@HL] ← [@HL]+AC+CF

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)再加溢位旗號(Carry flag, CF)後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
SBC	Rx	$AC \leftarrow [Rx]+\sim(AC)+CF$

<說明>

二進位運算,記憶體 Rx 的內容值減累加器(AC)再加溢位旗號(Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

4 7 7	Į Ž	功 能
SBC	@HL	$AC \leftarrow [@HL]+\sim(AC)+CF$

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值減累加器(AC)再加溢位旗號(Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
SBC*	Rx	$AC,[Rx] \leftarrow [Rx]+\sim(AC)+CF$

<說明>

二進位運算,記憶體 Rx 的內容值減累加器(AC)再加溢位旗號(Carry flag, CF)後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
SBC*	@HL	AC,[@HL] ← [@HL]+~(AC)+CF

二進位運算,索引暫存器@HL 所指記憶體的內容值減累加器(AC)再加溢位旗號(Carry flag, CF)後存入索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
ADD	Rx	$AC \leftarrow [Rx] + AC$

<說明>

二進位運算,記憶體 Rx 的內容值加累加器(AC)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
ADD	@HL	AC ← [@HL]+AC

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ADD*	Rx	$AC,[Rx] \leftarrow [Rx] + AC$

<說明>

二進位運算,記憶體 Rx 的內容值加累加器(AC)後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
ADD*	@HL	$AC,[Rx] \leftarrow [@HL] + AC$

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
SUB	Rx	$AC \leftarrow [Rx]+\sim(AC)+1$

<說明>

二進位運算,記憶體 Rx 的內容值減累加器(AC)再加 1 後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
SUB	@HL	AC ← [@HL]+~(AC)+1

二進位運算,索引暫存器@HL 所指記憶體的內容值減累加器(AC)再加 1 後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
SUB*	Rx	$AC,[Rx] \leftarrow [Rx]+\sim(AC)+1$

<說明>

二進位運算,記憶體 Rx 的內容值減累加器(AC)再加 1 後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
SUB*	@HL	AC,[@HL] ← [@HL]+~(AC)+1

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值減累加器(AC)再加 1 後存入索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指 令		功 能
ADN R	X	$AC \leftarrow [Rx] + AC$

<說明>

二進位運算,記憶體 Rx 的內容值加累加器(AC)後存入累加器(AC)裡,運算結果不會影響溢位旗號(Carry flag, CF)。

指	令	功 能
ADN	@HL	AC ← [@HL]+AC

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)後存入累加器(AC)裡,運算結果不會影響溢位旗號(Carry flag, CF)。

指 令	功 能
ADN* Rx	$AC,[Rx] \leftarrow [Rx] + AC$

<說明>

二進位運算,記憶體 Rx 的內容值加累加器(AC)後存入原來之記憶體 Rx 及累加器(AC)裡,運算結果不會影響溢位旗號(Carry flag, CF)。

指	令	功 能
ADN*	@HL	$AC,[Rx] \leftarrow [@HL]+AC$

二進位運算,索引暫存器@HL 所指記憶體的內容值加累加器(AC)後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡,運算結果不會影響溢位旗號(Carry flag, CF)。

指	令	功 能
AND	Rx	AC ← [Rx] & AC

<說明>

二進位運算,記憶體 Rx 的內容值與累加器(AC)作邏輯 AND 運算後存入累加器(AC)裡。

指	令	功 能
AND	@HL	AC ← [@HL] & AC

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯 AND 運算後存入累加器(AC)裡。

指	令	功 能
AND*	Rx	$AC,[Rx] \leftarrow [Rx] \& AC$

<說明>

二進位運算,記憶體 Rx 的內容值與累加器(AC) 作邏輯 AND 運算後存入原來之記憶體 Rx 及累加器(AC)裡。

指 令		功 能
AND* @	2HL	AC,[Rx] ← [@HL] & AC

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯 AND 運算後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡。

指	令	功 能
EOR	Rx	$AC \leftarrow [Rx] \oplus AC$

<說明>

二進位運算,記憶體 Rx 的內容值與累加器(AC)作邏輯互斥或(Exclusive OR)運算後存入累加器(AC)裡。

指。	令	功 能
EOR	@HL	AC ← [@HL] ⊕ AC

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯互斥或 (Exclusive OR)運算後存入累加器(AC)裡。

指	令	功 能
EOR*	Rx	$AC,[Rx] \leftarrow [Rx] \oplus AC$

<說明>

二進位運算,記憶體 Rx 的內容值與累加器(AC) 作邏輯互斥或(Exclusive OR) 運算後存入原來之記憶體 Rx 及累加器(AC)裡。

指	令	功 能
EOR*	@HL	$AC,[Rx] \leftarrow [@HL] \oplus AC$

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯互斥或 (Exclusive OR)運算後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡。

	指 令	功 能
OR	Rx	$AC \leftarrow [Rx] \mid AC$

<說明>

二進位運算,記憶體 Rx的內容值與累加器(AC)作邏輯 OR 運算後存入累加器(AC) 裡。

指 令	功 能
OR @F	L AC ← [@HL] AC

<說明>

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯 OR 運 算後存入累加器(AC)裡。

指	令	功 能
OR*	Rx	$AC,[Rx] \leftarrow [Rx] \mid AC$

<說明>

二進位運算, 記憶體 Rx 的內容值與累加器(AC) 作邏輯 OR 運算後存入原來之記憶體 Rx 及累加器(AC)裡。

指 令	ì	功 能
OR*	@HL	$AC,[Rx] \leftarrow [@HL] AC$

二進位運算,索引暫存器@HL 所指記憶體的內容值與累加器(AC) 作邏輯 OR 運算後存入原來索引暫存器@HL 所指記憶體及累加器(AC)裡。

指 令		功 能
ADCI	Ry,D	AC ← [Ry]+D+CF

<說明>

二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 再加溢位旗號 (Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ADCI*	Ry,D	$AC,[Ry] \leftarrow [Ry]+D+CF$

<說明>

二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 再加溢位旗號 (Carry flag, CF)後存入原來之工作記憶體 Ry 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指	令	功 能
SBCI	Ry,D	$AC \leftarrow [Ry]+\sim(D)+CF$

<說明>

二進位運算,工作記憶體 Ry 的內容值減直接數值(Direct data)D 再加溢位旗號 (Carry flag, CF)後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
SBCI*	Ry,D	$AC,[Ry] \leftarrow [Ry]+\sim(D)+CF$

<說明>

二進位運算,工作記憶體 Ry 的內容值減直接數值(Direct data)D 再加溢位旗號 (Carry flag, CF)後存入原來之工作記憶體 Ry 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
ADDI	Ry,D	AC ← [Ry]+D

二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 後存入累加器 (AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ADDI*	Ry,D	$AC,[Ry] \leftarrow [Ry]+D$

<說明>

- 二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 後存入原來之
- 工作記憶體 Ry 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
SUBI	Ry,D	$AC \leftarrow [Ry] + \sim (D) + 1$

<說明>

二進位運算,工作記憶體 Ry 的內容值減直接數值(Direct data)D 再加 1 後存入累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指 令		功 能
SUBI*	Ry,D	$AC,[Ry] \leftarrow [Ry]+\sim(D)+1$

<說明>

二進位運算,工作記憶體 Ry 的內容值減直接數值(Direct data)D 再加 1 後存入原來之工作記憶體 Ry 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。~表示補數。

指	令	功 能
ADNI	Ry,D	AC ← [Ry]+D

<說明>

二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 後存入累加器 (AC)裡,運算結果會影響溢位旗號(Carry flag, CF) 。

指 令	功 能
ADNI* Ry,[$AC,[Ry] \leftarrow [Ry]+D$

<說明>

二進位運算,工作記憶體 Ry 的內容值加直接數值(Direct data)D 後存入原來之工作記憶體 Ry 及累加器(AC)裡,運算結果會影響溢位旗號(Carry flag, CF)。

指 令		功 能
ANDI	Ry,D	AC ← [Ry] & D

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯 AND 運算後存入累加器(AC)裡。

指	令	功 能
ANDI*	Ry,D	AC,[Ry] ← [Ry] & D

<說明>

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯 AND 運算後存入原來之工作記憶體 Ry 及累加器(AC)裡。

指 令		功 能
EORI	Ry,D	AC ← [Ry] ⊕ D

<說明>

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯互斥或 (Exclusive OR)運算後存入累加器(AC)裡。

指 令		功 能
EORI*	Ry,D	$AC,[Ry] \leftarrow [Ry] \oplus D$

<說明>

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯互斥或 (Exclusive OR)運算後存入原來工作記憶體 Ry 及累加器(AC)裡。

	令	功 能
ORI	Ry,D	AC ← [Ry] D

<說明>

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯 OR 運算後存入累加器(AC)裡。

指	令	功 能
ORI*	Ry,D	$AC,[Ry] \leftarrow [Ry] \mid D$

<說明>

二進位運算,工作記憶體 Ry 的內容值與直接數值(Direct data)D 作邏輯 OR 運算後存入原來工作記憶體 Ry 及累加器(AC)裡。

4-4 載入(Load)/儲存(Store)指令

指	令	功 能
STA	Rx	[Rx] ← AC

<說明>

將累加器(AC)的內容值儲存到記憶體 Rx 裡。

扌	<u> </u>	功 能
STA	@HL	[@HL] ← AC

<說明>

將累加器(AC)的內容值儲存到索引暫存器@HL 所指的記憶體裡。

指 令		功 能
LDS	Rx,D	$AC,[Rx] \leftarrow D$

<說明>

將直接數值(Direct data)D 載入記憶體 Rx 及累加器(AC)裡。

指 令		功 能
LDA	Rx	$AC \leftarrow [Rx]$

<說明>

將記憶體 Rx 的內容值載入累加器(AC)裡。

指	令	功 能
LDA	@HL	AC ← [@HL]

<說明>

將索引暫存器@HL 所指的記憶體的內容值載入累加器(AC)裡。

指 令		功 能
LDH	Rx,@HL	AC,[Rx] ← [@HL]最高的 4 個位元

<說明>

將索引暫存器@HL 所指的記憶體的內容值中最高的 4 個位元(High nibble)載入記憶體 Rx 及累加器(AC)裡。

指 令		功 能
LDH*	Rx,@HL	AC,[Rx] ← [@HL]最高的 4 個位元

<說明>

將索引暫存器@HL 所指的記憶體的內容值中最高的 4 個位元(High nibble)載入記憶體 Rx 及累加器(AC)裡。之後@HL 所指的位址自動加 1。

指 令		功 能
LDL	Rx,@HL	AC,[Rx] ← [@HL]最低的 4 個位元

將索引暫存器@HL 所指的記憶體的內容值中最低的 4 個位元(Low nibble)載入記憶體 Rx 及累加器(AC)裡。

扌	旨令	功 能
LDL*	Rx,@HL	AC,[Rx] ← [@HL]最低的 4 個位元

<說明>

將索引暫存器@HL 所指的記憶體的內容值中最低的 4 個位元(High nibble)載入記憶體 Rx 及累加器(AC)裡。之後@HL 所指的位址自動加 1。

指	令	功 能
MRF1	Rx	$AC,[Rx] \leftarrow RFC[3\sim0]$

<說明>

將 RFC 16 位元計數器的最低 4 位元資料(Low nibble data)載入記憶體 Rx 及累加器(AC)裡。

指 令		功 能
MRF2	Rx	$AC,[Rx] \leftarrow RFC[7\sim4]$

<說明>

將 RFC 16 位元計數器的第二低 4 位元資料(2nd low nibble data)載入記憶體 Rx 及累加器(AC)裡。

指 令		功 能
MRF3	Rx	AC,[Rx] ← RFC[11~8]

<說明>

將 RFC 16 位元計數器的第三低 4 位元資料(3nd low nibble data)載入記憶體 Rx 及累加器(AC)裡。

指 令		功 能
MRF4	Rx	$AC,[Rx] \leftarrow RFC[15\sim12]$

<說明>

將 RFC 16 位元計數器的最高 4 位元資料(high nibble data)載入記憶體 Rx 及累加器(AC)裡。

4-5 CPU 控制指令(CPU Control Instructions)

指 令	功 能
NOP	無運算

<說明>

無任何運算。

指 令	功 能
HALT	CPU 進入中止狀態

<說明>

CPU 進入中止狀態,在雙時鐘工作模式下,只剩下低速時鐘在工作,能夠解除中止狀態(Halt release)有以下三種情況:

- 1. 中斷產生
- 2. IOC 埠產生信號變化
- 3. 符合 SHE 指令所設定的解除中止狀態的條件

指 令	功 能
STOP	CPU 進入停止狀態

<說明>

CPU 進入中止狀態,在雙時鐘工作模式下,兩個時鐘均停止不動,能夠解除停止狀態(STOP release)有以下三種情況:

- 1.KI1~4 中任何一支腳在掃描的周期裡產生信號變化
- 2.INT 腳有信號變化
- 3.IOC 埠的任何一支腳產生 Hi 的信號

指	令	功 能
SCA	Х	由直接數值 X 所設定的值可解除中止狀態(Halt release)

<說明>

當 X4=1 時表示 IOC 埠的信號改變可解除中止狀態(Halt release)。 X7~X5,X3~X0 保留沒用。

指令		功 能
SIE*	Х	設定(Set)/重置(Reset)中斷致能旗號(Interrupt Enable Flag)

X0=1	啓動 IOC 埠的信號改變會產生中斷
X1=1	啓動 TMR1 underflow 發生時會產生中斷
X2=1	啓動 INT 的信號改變會產生中斷
X3=1	啓動預除器(Pre-divider)溢位(overflow)發生時會產生中斷
X4=1	啓動 TMR2 underflow 發生時會產生中斷
X5=1	啓動按鍵掃描期間按鍵被按時會產生中斷
X6=1	啓動 RFC 16 位元計數器溢位(overflow)發生時會產生中斷

<註> X7 保留沒用

指	自令	功 能
SHE	Х	設定(Set)/重置(Reset)中止解除旗號(Halt Release Flag)

<說明>

374	CLCL TARRA I SI TANI MIL TARREST I LILINGIA
X1=1	啓動 TMR1 underflow 發生時可解除中止狀態
X2=1	啓動 INT 的信號改變可解除中止狀態
X3=1	啓動預除器(Pre-divider)溢位(overflow)發生時可解除中止狀態
X4=1	啓動 TMR2 underflow 發生時可解除中止狀態
X5=1	啓動按鍵掃描期間按鍵被按時可解除中止狀態
X6=1	啓動 RFC 16 位元計數器溢位(overflow)發生時可解除中止狀態

<註> X7 保留沒用

指		功 能
SRE	X	設定(Set)/重置(Reset)停止解除旗號(Halt Release Flag)

<說明>

X4=1	啓動 IOC 埠的信號改變可解除停止狀態
X5=1	啓動 INT 的信號改變可解除停止狀態
X7=1	啓動按鍵掃描期間按鍵被按時可解除停止狀態

<註>X6, X3~X0 保留沒用

指 令	功 能
FAST	雙時鐘模式下,切換系統時鐘至高速時鐘模式

<說明>

以 TM8712 來說是將時鐘切換至高速的內建 RC 振盪器。

指 令	功 能
SLOW	雙時鐘模式下,切換系統時鐘至低速時鐘模式

以 TM8712 來說是將時鐘切換至低速的外接 XIN/XOUT 振盪器。

指 令		功 能
MSB	Rx	AC,[Rx] ← SCF1,SCF2,BCF

<說明>

將 SCF1, SCF2 及 BCF 旗號載入記憶體 Rx 及累加器(AC)以便判別中止解除的原因及 Backup 模式的狀態。相對應的位元意義如下:

Bit 3 Bit 2 Bit 1

Bit 0

NA	Start condition flag 2	Start condition flag 1	Backup flag (BCF)
	(SCF2)	(SCF1)	
	中止解除是因	中止解除是因 IOC	Backup 的狀態
	SCF4,5,6,7,8,9	port 信號變化	

指令		功 能
MSC	Rx	AC,[Rx] ← SCF4~SCF7

<說明>

將 SCF4 到 SCF7 旗號載入記憶體 Rx 及累加器(AC)以便判別中止解除的原因。相對應的位元意義如下:

DICO DICE DICE	Bit 3	Bit 2	Bit 1	Bit 0
----------------	-------	-------	-------	-------

Start condition flag 7		Start condition flag 5	Start condition flag 4
(SCF7)		(SCF5)	(SCF4)
中止解除是因預除器	第15階預除器的輸	中止解除是因 TMR1	中止解除是因 INT 腳
(Pre-divider)	出內容	underflow 而產生	信號變化而產生
overflow 而產生			

指 令		功 能
MCX	Rx	$AC,[Rx] \leftarrow SCF6,SCF8,SCF9$

將 SCF6, SCF8 及 SCF9 旗號載入記憶體 Rx 及累加器(AC)以便判別中止解除的原因。相對應的位元意義如下:

Bit 3	Bit 2	Bit 1	Bit 0
Start condition flag 9	沒使用	Start condition flag 6 (SCF6)	Start condition flag 8 (SCF8)
(SCF9)			
中止解除是因 RFC	沒使用	中止解除是因 TMR2	中止解除是因按鍵掃描
16 位元計數器		underflow 而產生	期間按鍵被按而產生
overflow 而產生			

指 令		功 能
MSD Rx		AC,[Rx] ← WDF,CSF,RFOVF

<說明>

將 WDF, CSF 及 RFOVF 旗號載入記憶體 Rx 及累加器(AC)。相對應的位元意義如下:

Bit 3	Bit 2	Bit 1	Bit 0
沒使用	RFVOF	WDF	CSF
沒使用	RFC 16 位元計數	啓動看門狗時間旗號	選擇系統時鐘旗號
	器 overflow 旗號	(Watchdog timer	(System select flag)
		enable flag)	

4-6 索引位址指令(Index Address Instructions)

指	令	功 能
MVH	Rx	[@H] ← [Rx],AC

<說明>

將記憶體 Rx 與累加器 AC 的內容合併後載入索引暫存器@HL 較高的 8 位元暫存器@H。

指	令	功 能
MVL	Rx	[@L] ← [Rx]

<說明>

將記憶體 Rx 的內容載入索引暫存器@HL 較低的 4 位元暫存器@L。

4-7 十進制算術運算指令(Decimal Arithmetic Instructions)

指令	功 能
DAA	AC ← BCD[AC]

<說明>

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相加指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF)作正確的轉換。

指令		功 能
DAA*	Rx	$AC, [Rx] \leftarrow BCD[AC]$

<說明>

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 和記憶體 Rx 中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相加指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF) 作正確的轉換。

指	令	功 能
DAA*	@HL	AC, [@HL] ← BCD[AC]

<說明>

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 和索引暫存器 @HL 所指的記憶體中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相加指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF)作正確的轉換。

指令	功 能
DAS	AC ← BCD[AC]

<說明>

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相減指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF)作正確的轉換。

指 令		功 能
DAS*	Rx	$AC, [Rx] \leftarrow BCD[AC]$

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 和記憶體 Rx 中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相減指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF) 作正確的轉換。

指	令	功 能
DAS*	@HL	AC, [@HL] ← BCD[AC]

<說明>

將累加器 AC 的內容值轉換成為十進位並且重新存入累加器 AC 和索引暫存器 @HL 所指的記憶體中,運算結果會影響溢位旗號(Carry flag, CF)。當這個指令被執行時,累加器 AC 必須是任何相減指令運算後的結果,如此才能配合溢位旗號(Carry flag, CF)作正確的轉換。

4-8 跳躍指令(Jump Instructions)

指 令	功 能
JB0 X	當 AC bit0=1 時,程式會跳至 X

<說明>

當 AC bit0=1 時,程式會跳至 X,如果 bit0=0 時,程式會繼續往下執行。X 的 節圍從 000h~7FFh。

指令	1	功 能
JB1 X		當 AC bit1=1 時,程式會跳至 X

<說明>

當 AC bit1=1 時,程式會跳至 X,如果 bit1=0 時,程式會繼續往下執行。X 的 範圍從 000h~7FFh。

指 令	功 能
JB2 X	當 AC bit2=1 時,程式會跳至 X

<說明>

當 AC bit2=1 時,程式會跳至 X,如果 bit2=0 時,程式會繼續往下執行。X 的 節圍從 $000h\sim7FFh$ 。

扌	旨令	功 能
JB3	Х	當 AC bit3=1 時,程式會跳至 X

當 AC bit3=1 時,程式會跳至 X,如果 bit3=0 時,程式會繼續往下執行。X 的 範圍從 $000h\sim7FFh$ 。

指令		功 能
JNZ	Х	當 AC!=0時,程式會跳至 X

<說明>

當 AC 不等於 0 時,程式會跳至 X,如果 AC=0 時,程式會繼續往下執行。X 的 節圍從 $000h\sim7FFh$ 。

	指 令	功 能
JZ	Х	當 AC=0 時,程式會跳至 X

<說明>

當 AC 等於 0 時,程式會跳至 X,如果 AC 不等於 0 時,程式會繼續往下執行。 X 的範圍從 000h~7FFh。

指 令	功 能
JNC X	當 CF=0 時,程式會跳至 X

<說明>

當 CF 等於 0 時,程式會跳至 X,如果 CF=1 時,程式會繼續往下執行。X 的範 圍從 $000h\sim7FFh$ 。

指 令		功 能				
JC	X	當 CF=1 時,程式會跳至 X				

<說明>

當 CF 等於 1 時,程式會跳至 X,如果 CF=0 時,程式會繼續往下執行。X 的範圍從 $000h\sim7FFh$ 。

指 令		功 能
JMP	Х	程式無條件跳至X

<說明>

程式無條件跳至 X。X的範圍從 000h~7FFh。

指令		功 能
CALL	Х	STACK ← (PC)+1

呼叫副程式(Subroutine) ,程式直接跳至 X 執行且會將原來之程式計數器 (Program counter, PC)存入堆疊器(Stack)中。X 的範圍從 000h~7FFh。

指 令	功 能
RTS	PC ← (STACK)

<說明>

從副程式(Subroutine)中返回,程式計數器(Program counter, PC)從堆疊器(Stack)中回存。

4-9 其他的指令(Miscellaneous Instructions)

排	令	功 能
SCC X		設定頻率產生器(Frequency generator)及 IOC 消除抖動(Chattering
		cancel)的時鐘來源(Clock source) 。

<說明>

相對應的位元定義如下:

位元	時鐘來源(Clock source)	位元	時鐘來源(Clock source)
X6=1	設頻率產生器的時鐘來源	X6=0	設頻率產生器的時鐘來
	(Clock source)為系統時		源(Clock source)爲系統
	鐘 BCLK		時鐘爲 þ 0
(X2,X1,X0)=001	設消除抖動(Chattering	(X2,X1,X0)=010	設消除抖動(Chattering
	cancel)的時鐘爲 ф10		cancel)的時鐘爲 ∮8
(X2,X1,X0)=100	設消除抖動(Chattering		
	cancel)的時鐘爲 ф6		

<註>X7,X5,X4,X3 沒使用

指 令		功 能				
FRQ	D,Rx	頻率產生器(Frequency generator) ← D, [Rx], AC				

<說明>

將累加器 AC 和記憶體 Rx 的內容值合併成 8 位元的數值來設頻率產生器 (Frequency generator) 的起始值,D 則是設定頻率產生器的 Duty 值。

指	令	Bit7	Bit6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FRQ	D,Rx	AC3	AC2	AC1	AC0	Rx3	Rx2	Rx1	Rx0

D 隻	Duty 周期	
D1		
0	0	1/4 duty
0	1	1/3 duty
1	0	1/2 duty
1	1	1/1 duty

指	令	功 能
FRQ	D,@HL	頻率產生器(Frequency generator) ← D, [@HL]

將索引暫存器@HL 所指的表格 ROM(Table ROM)的 8 位元數值來設頻率產生器 (Frequency generator) 的起始值,D 則是設定頻率產生器的 Duty 值。

扎	旨令	Bit7	Bit6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FRQ	D,@HL	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0

<註> TD0 ~ TD7 表示索引暫存器@HL 所指的表格 ROM(Table ROM)的 8 位元內容值

D隻	D數值				
D1	D0				
0	0	1/4 duty			
0	1	1/3 duty			
1	0	1/2 duty			
1	1	1/1 duty			

指	令	功 能
FRQX	D, X	頻率產生器(Frequency generator) ← D, X

<說明>

將 8 位元的直接數值(Direct data)X 來設頻率產生器(Frequency generator) 的起始值,D 則是設定頻率產生器的 Duty 值。

指令	Bit7	Bit6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FRQX D, X	X7	X6	X5	X4	X3	X2	X1	X0

<註> X0 ~ X7 表示直接數值(Direct data)

D隻	D數值				
D1	D0				
0	0	1/4 duty			
0	1	1/3 duty			
1	0	1/2 duty			
1	1	1/1 duty			

指令		功 能
TMS R	X	選擇 TMR1 時鐘來源(Clock source)及預設 TMR1 數值

將累加器 AC 和記憶體 Rx 的內容値合併成 8 位元的數值來設定 TMR1 時鐘來源 (Clock source)及預設 TMR1 數值。

		時鐘	來源			TMR1 數值			
TMS	Rx	AC3	AC2	AC1	AC0	Rx3	Rx2	Rx1	Rx0

時鐘來源選擇

AC3	AC2	時鐘來源				
0	0	φ9				
0	1	ф3				
1	0	φ15				
1	1	FREQ				

指	令	功 能
TMS	@HL	選擇 TMR1 時鐘來源(Clock source)及預設 TMR1 數值

<說明>

將索引暫存器@HL 所指的表格 ROM(Table ROM)的 8 位元的數值來設定 TMR1 時鐘來源(Clock source)及預設 TMR1 數值。

		時鐘	來源	TMR1 數值					
TMS	@HL	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0

時鐘來源選擇

TD7	TD6	時鐘來源
0	0	ф9
0	1	ф3
1	0	φ15
1	1	FREQ

指 令	功 能			
TMSX X	選擇 TMR1 時鐘來源(Clock source)及預設 TMR1 數值			

<說明>

用 8 位元的直接數值(Direct data)X 來設定 TMR1 時鐘來源(Clock source)及預設 TMR1 數值。

		時鐘	來源	TMR1 數值					
TMSX	X	X7	X6	X5	X4	X3	X2	X1	X0

時鐘來源選擇

X7	X6	時鐘來源
0	0	φ9
0	1	ф3
1	0	φ15
1	1	FREQ

‡	指 令	功 能
TM2	Rx	選擇 TMR2 時鐘來源(Clock source)及預設 TMR2 數值

<說明>

將累加器 AC 和記憶體 Rx 的內容値合併成 8 位元的數值來設定 TMR2 時鐘來源 (Clock source)及預設 TMR2 數值。

		時鐘	來源	TMR2 數值					
TMS	Rx	AC3	AC2	AC1	AC0	Rx3	Rx2	Rx1	Rx0

時鐘來源選擇

AC3	AC2	時鐘來源
0	0	φ9
0	1	ф3
1	0	φ15
1	1	FREQ

指 令	功 能
TM2 @HL	選擇 TMR2 時鐘來源(Clock source)及預設 TMR2 數值

<說明>

將索引暫存器@HL 所指的表格 ROM(Table ROM)的 8 位元的數值來設定 TMR2 時鐘來源(Clock source)及預設 TMR2 數值。

	時鐘來源		時鐘來源 TMR2 數值					
TM2 @HL	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0

時鐘來源選擇

TD7	TD6	時鐘來源
0	0	φ9
0	1	ф3
1	0	φ15
1	1	FREQ

指 令		功 能
TM2X	Х	選擇 TMR2 時鐘來源(Clock source)及預設 TMR2 數值

<說明>

用9位元的直接數值(Direct data)X來設定TMR2時鐘來源(Clock source)及預設TMR2數值。

		眊	時鐘來源			TMR2 數值					
TM2X	Χ	X8	X7	X6	X5	X4	Х3	X2	X1	X0	

時鐘來源選擇

	4		
X8	X7	X6	時鐘來源
0	0	0	ф9
0	0	1	ф3
0	1	0	φ15
0	1	1	FREQ
1	0	0	ф5
1	0	1	φ7
1	1	0	φ11
1	1	1	φ13

	指 令	功 能
SF	Х	設旗號

<說明>

用 8 位元的直接數值(Direct data)X 來設定旗號。

X0:"1" 設溢位旗號(Carry flag, CF)為 1

X1: "1" 設 Back up flag(BCF) 為 1 且進入 Back up 模式

X2: "1" 啓動冷光(EL light)驅動器輸出

X2: "1" 當 X2=1 且 X3 設為 1 時會啟動冷光(EL light)驅動器且解除中止的需求(Halt release request)會輸出,然後進入中止狀態(Halt mode)

X4: "1" 起始(Initial)並啟動(Enable)看門狗時鐘(Watch dog timer).

X6,5 保留沒使用

X7: "1" 啓動 TMR1 重新載入(Re-load)功能

	指 令	功 能
RF	X	清除旗號

<說明>

用 8 位元的直接數值(Direct data)X 來清除旗號。

X0: "1" 設溢位旗號(Carry flag, CF)為 0

X1: "1" 設 Back up flag(BCF) 為 0 並且跳出 Back up 模式

X2: "1" 關閉冷光(EL light)驅動器輸出

X3:保留沒使用

X4: "1"關掉看門狗時鐘(Watch dog timer).

X6,5 保留沒使用

X7: "1" 關掉 TMR1 重新載入(Re-load)功能

	指 令	功 能
SF2	Х	設旗號

<說明>

用 8 位元的直接數值(Direct data)X 來設定旗號。

X0: "1" 啓動 TMR2 重新載入(Re-load)功能

X1:"1" 設 DED 旗號

X2: "1" 關掉 LCD/LED segment 輸出

X3: "1" 啓動中斷腳(INT)下拉電阻(Pull low resistor)

X7~4 保留沒使用

	旨 令	功 能
RF2	Х	設旗號

<說明>

用 8 位元的直接數值(Direct data)X 來設定旗號。

X0:"1" 關掉 TMR2 重新載入(Re-load)功能

X1:"1" 清除 DED 旗號

X2: "1" 啓動 LCD/LED segment 輸出

X3: "1" 關掉中斷腳(INT)下拉電阻(Pull low resistor)

X7~4 保留沒使用

指 令		功 能
PLC	Х	脈波控制(Pulse Control)

用 9 位元的直接數值(Direct data)X 來控制。

X0: "1" 清除中止解除需求旗號 0(HRF0)--IOC port 信號變化

X1:"1" 清除中止解除需求旗號 1(HRF1)且停止 TMR1--TMR1 underflow

X2:"1" 清除中止解除需求旗號 2(HRF2)—INT 腳信號變化

X3: "1" 清除中止解除需求旗號 3(HRF3)—預除器 overflow

X4: "1" 清除中止解除需求旗號 4(HRF4)且停止 TMR2—TMR2 underflow

X5: "1" 清除中止解除需求旗號 5(HRF5)—K1~4 被按

X6: "1" 清除中止解除需求旗號 6(HRF6)—RFC 計數器 overflow

X7: 保留沒使用

X8: "1" 清除預除器(Pre-divider)的最後第 5 位元,當執行此指令 時 X3 必須為 1

附錄 TM8712 指令總表

門或 INO/12 拍 T 総衣						
	ruction	Machine Code		Function	Flag/Remark	
NOP		0000 0000 0000 0000				
	Lz,Ry	0000 001Z ZZZZ YYYY		← (7SEG ← Ry)		
LCB	Lz,Ry	0000 010Z ZZZZ YYYY	Lz	← (7SEG ← Ry)	Blank Zero	
LCP	Lz,Ry	0000 011Z ZZZZ YYYY		← Ry & AC		
LCD	Lz,@HL	0000 100Z ZZZZ 0000		← T@HL		
LCT	Lz,@HL	0000 100Z ZZZZ 0001		← (7SEG ← @HL)		
LCB	Lz,@HL	0000 100Z ZZZZ 0010		← (7SEG ← @HL)	Blank Zero	
LCP	Lz,@HL	0000 100Z ZZZZ 0011		← @HL & AC		
OPA	Rx	0000 1010 0XXX XXXX		← Rx		
	Rx,D	0000 1011 DXXX XXXX		← Rx0,Rx1,D,Pulse		
OPB	Rx	0000 1100 0XXX XXXX		← Rx		
OPC	Rx	0000 1101 0XXX XXXX		← Rx		
FRQ	D,Rx	0001 00DD 0XXX XXXX		← Rx & AC		
			D=00	: 1/4 Duty		
			D=01	: 1/3 Duty		
			D=10	: 1/2 Duty		
	D 0111		D=11	: 1/1 Duty		
	D,@HL	0001 01DD 0000 0000		←T@HL		
	D,X	0001 10DD XXXX XXXX		← X		
MVL	Rx	0001 1100 0XXX XXXX		← Rx		
MVH	Rx	0001 1101 0XXX XXXX		← Rx & AC		
ADC	Rx	0010 0000 0XXX XXXX	AC	← Rx + AC + CF	CF	
ADC	@HL	0010 0000 1000 0000	AC	← @HL + AC + CF	CF	
ADC*	Rx	0010 0001 0XXX XXXX	AC,Rx	← Rx + AC + CF	CF	
ADC*	@HL	0010 0001 1000 0000	AC,@HL	← @HL + AC + CF	CF	
SBC	Rx	0010 0010 0XXX XXXX	AC	← Rx + ACB + CF	CF	
SBC	@HL	0010 0010 1000 0000	AC	← @HL + ACB + CF	CF	
SBC*	Rx	0010 0011 0XXX XXXX	AC,Rx	← Rx + ACB + CF	CF	
SBC*	@HL	0010 0011 1000 0000	AC,@HL	← @HL + ACB + CF	CF	
ADD	Rx	0010 0100 0XXX XXXX	AC	← Rx + AC	CF	
ADD	@HL	0010 0100 1000 0000	AC	← @HL + AC	CF	
ADD*	Rx	0010 0101 0XXX XXXX	AC,Rx	← Rx + AC	CF	
ADD*	@HL	0010 0101 1000 0000	AC,@HL	← @HL + AC	CF	
SUB	Rx	0010 0110 0XXX XXXX	AC	← Rx + ACB + 1	CF	
SUB	@HL	0010 0110 1000 0000	AC	← @HL + ACB + 1	CF	
SUB*	Rx	0010 0111 0XXX XXXX	AC,Rx	← Rx + ACB + 1	CF	
SUB*	@HL	0010 0111 1000 0000	AC,@HL	← @HL + ACB + 1	CF	
ADN	Rx	0010 1000 0XXX XXXX	AC	← Rx + AC		
ADN	@HL	0010 1000 1000 0000	AC	← @HL + AC		
ADN*	Rx	0010 1001 0XXX XXXX	AC,Rx	← Rx + AC		

ADN*	@HL	0010 1001 1000 0000	∆റ തല	_	@HL + AC	
AND	Rx	0010 1001 1000 0000			Rx AND AC	
AND	@HL	0010 1010 0222 2222		<u></u>		
AND*	Rx	0010 1010 1000 0000			Rx AND AC	
AND*	@HL	0010 1011 0000 0000		<u>`</u>		
EOR	Rx	0010 1011 1000 0000			Rx EOR AC	
EOR	@HL	0010 1100 0000 0000		←		
EOR*	Rx	0010 1100 1000 0000			Rx EOR AC	
EOR*	@HL	0010 1101 0000 0000		<u>`</u>		
OR	Rx	0010 1101 1000 0000			Rx OR AC	
OR	@HL	0010 1110 0000 0000		<u></u>		
OR*	Rx	0010 1110 1000 0000			Rx OR AC	
OR*	@HL	0010 1111 0000 0000		<u>`</u>		
ADCI	Ry,D	0010 1111 1000 0000 0011 0000 DDDD YYYY			Ry + D + CF	CF
ADCI*	Ry,D	0011 0000 DDDD 1111			Ry + D + CF	CF
SBCI	Ry,D	0011 0001 DDDD 1111			Ry + DB + CF	CF
SBCI*	Ry,D			_	Ry + DB + CF	CF
ADDI	Ry,D	0011 0011 DDDD YYYY 0011 0100 DDDD YYYY			Ry + D	CF
ADDI*	Ry,D	0011 0100 DDDD 1111 0011 0101 DDDD YYYY			Ry + D	CF
SUBI					•	CF
SUBI*	Ry,D	0011 0110 DDDD YYYY			Ry + DB + 1	CF
ADNI	Ry,D	0011 0111 DDDD YYYY		_	Ry + DB + 1	GF.
	Ry,D	0011 1000 DDDD YYYY			Ry + D	
ADNI*	Ry,D	0011 1001 DDDD YYYY			Ry + D	
ANDI*	Ry,D	0011 1010 DDDD YYYY		_	Ry AND D	
ANDI*	Ry,D	0011 1011 DDDD YYYY	_	_	Ry AND D	
EORI*	Ry,D	0011 1100 DDDD YYYY			Ry EOR D	
EORI*	Ry,D	0011 1101 DDDD YYYY	-		Ry EOR D	
ORI	Ry,D	0011 1110 DDDD YYYY			Ry OR D	
ORI*	Ry,D	0011 1111 DDDD YYYY	-		Ry OR D	
INC*	Rx	0100 0000 0XXX XXXX			Rx + 1	
INC*	@HL	0100 0000 1000 0000	_		@HL + 1	
DEC*	Rx	0100 0001 0XXX XXXX			Rx - 1	
DEC*	@HL	0100 0001 1000 0000			@HL - 1	
IPA	Rx	0100 0010 0XXX XXXX		-	Port(A)	
IPB	Rx	0100 0100 0XXX XXXX		_	Port(B)	
IPC	Rx	0100 0111 0XXX XXXX			Port(C)	50.05
MAF	Rx	0100 1010 0XXX XXXX	AC,Rx	←	STS1	B3 : CF B2 : ZERO
						B1 : (No use) B0 : (No use)
MSB	Rx	0100 1011 0XXX XXXX	AC.Rx	←	STS2	B3 : (No use)
			-,		- · 	B2 : SCF2(HRx)
						B1: SCF1(CPT)
						B0 : BCF

Jan.27,2000 Rev.0.5

MSC	Rx	0100 1100 0XXX XXXX	AC,Rx	← STS3	B3 : SCF7(PDV)
			,		B2 : PH15 `
					B1 : SCF5(TM1)
					B0 : SCF4(INT)
MCX	Rx	0100 1101 0XXX XXXX	AC,Rx	← STS3X	B3 : SCF9(RFC)
					B2 : (No use)
					B1: SCF6(TM2)
MSD	Rx	0100 1110 0XXX XXXX	AC Ry	← STS4	B0 : SCF8(SKI) B3 : (No use)
IVIOD			7.0,10	0104	B2 : RFOVF
					B1 : WDF
					B0 : CSF
SR0	Rx	0101 0000 0XXX XXXX		← Rx(n+1)	
			AC3, Rx3	← 0	
SR1	Rx	0101 0001 0XXX XXXX		← Rx(n+1)	
			AC3, Rx3	← 1	
SL0	Rx	0101 0010 0XXX XXXX		← Rx(n-1)	
			AC0, Rx0	← 0	
SL1	Rx	0101 0011 0XXX XXXX		← Rx(n-1)	
			AC0, Rx0	← 1	
DAA		0101 0100 0000 0000	AC	← BCD(AC)	
DAA*	Rx	0101 0101 0XXX XXXX	AC,Rx	← BCD(AC)	
DAA*	@HL	0101 0101 1000 0000	AC,@HL	← BCD(AC)	
DAS		0101 0110 0000 0000	AC	← BCD(AC)	
DAS*	Rx	0101 0111 0XXX XXXX	AC,Rx	← BCD(AC)	
DAS*	@HL	0101 0111 1000 0000	AC,@HL	← BCD(AC)	
LDS	Rx,D	0101 1DDD DXXX XXXX	AC,Rx	← D	
LDH	Rx,@HL	0110 0000 0XXX XXXX	AC,Rx	← H(T@HL)	
LDH*	Rx,@HL	0110 0001 0XXX XXXX		← H(T@HL)	
			HL	← HL + 1	
LDL	Rx,@HL	0110 0010 0XXX XXXX	AC,Rx	← L(T@HL)	
LDL*	Rx,@HL	0110 0011 0XXX XXXX	AC,Rx	← L(T@HL)	
			HL	← HL + 1	
MRF1	Rx	0110 0100 0XXX XXXX	AC,Rx	← RFC3-0	
MRF2	Rx	0110 0101 0XXX XXXX	AC,Rx	← RFC7-4	
MRF3	Rx	0110 0110 0XXX XXXX	AC,Rx	← RFC11-8	
MRF4	Rx	0110 0111 0XXX XXXX	AC,Rx	← RFC15-12	
STA	Rx	0110 1000 0XXX XXXX	Rx	← AC	
STA	@HL	0110 1000 1000 0000	@HL	← AC	
LDA	Rx	0110 1100 0XXX XXXX	AC	← Rx	
LDA	@HL	0100 1100 1000 0000	AC	← @HL	
MRA	Rx	0110 1101 0XXX XXXX	CF	← Rx3	
MRW	@HL,Rx	0110 1110 0XXX XXXX	AC,@HL	← Rx	
MWR	Rx,@HL	0110 1111 0XXX XXXX	AC,Rx	← @HL	
MRW	Ry,Rx	0111 OYYY YXXX XXXX	AC,Ry	← Rx	

MWR	Rx,Ry	0111 1YYY YXXX XXXX	AC,Rx	← Ry	
JB0	X	1000 0XXX XXXX XXXX		✓ X	if AC0 = 1
JB1	X	1000 1XXX XXXX XXXX		← X	if AC1 = 1
JB2	X	1001 OXXX XXXX XXXX		← X	if AC2 = 1
JB3	X	1001 1XXX XXXX XXXX		← X	if AC3 = 1
JNZ	Χ	1010 OXXX XXXX XXXX		← X	if AC \neq 0
JNC	X	1010 1XXX XXXX XXXX		<- X	if CF = 0
JZ	Χ	1011 OXXX XXXX XXXX		← X	if AC = 0
JC	Х	1011 1XXX XXXX XXXX	PC	← X	if CF = 1
CALL	X	1100 OXXX XXXX XXXX	STACK	← PC + 1	
			PC	← X	
JMP	X	1101 OXXX XXXX XXXX	PC	← X	
RTS		1101 1000 0000 0000	PC	← STACK	CALL Return
SCC	X	1101 1001 0X00 0XXX	X6 = 1	: Cfq = BCLK	
			X6 = 0	: Cfq = PH0	
				: Cch = PH10	
				: Cch = PH8	
SCA	X	1101 1010 000X 0000		: Cch = PH6 : Enable SEF4	C1-4
SPA	X	1101 1010 000X 0000		: Set A4-1 Pull-Low	01-4
01 7	^	1101 1100 0000 0000	X3~0	: Set A4-1 I/O	
SPB	X	1101 1101 000X XXXX		: Set B4-1 Pull-Low	
			X3~0	: Set B4-1 I/O	
SPC	X	1101 1110 000X XXXX	X4	: Set C4-1 Pull-Low	
				/ Low-Level-Hold	
TNAC	Б	1110 0000 01111 11111	X3-0	: Set C4-1 I/O	
TMS	Rx	1110 0000 0XXX XXXX		← Rx & AC	
TMS	@HL	1110 0001 0000 0000		← T@HL	
TMSX	X	1110 0010 XXXX XXXX		: Ctm = FREQ : Ctm = PH15	
			X7,6 = 10 X7,6 = 01	: Ctm = PH3	
			X7,6 = 00	: Ctm = PH9	
			X5~0	: Set Timer1 Value	
SPK	X	1110 0011 0XXX XXXX	X6=1	: KEY_S release by	
			VO 0	scanning cycle	
			X6=0	: KEY_S release by normal key scanning	
			X5 =1	: Set all Hi-z	
			X4 =1	: Set all = 1	IOC=normal
			X3~0	: Set n of 16	IOC=KEY SCAN
TM2	Rx	1110 0100 0XXX XXXX	Timer2	← Rx & AC	IOC=KEY SCAN
TM2	@HL	1110 0100 0333 3333		← T@HL	
TM2X	X	1110 0101 0000 0000			
11112/				: Ctm = PH11	
				: Ctm = PH7	
				: Ctm = PH5	

			V0.7.6-011	· Ctm = EDEO	
				: Ctm = FREQ	
				: Ctm = PH15	
				: Ctm = PH3	
				: Ctm = PH9	
OLIE	V	1110 1000 0100 1000	X5~0	: Set Timer2 Value	DEC
SHE	X	1110 1000 0XXX XXX0		: Enable HEF6	RFC
			X5	: Enable HEF5	KEY_S TMR2
			X4	: Enable HEF4	· · · · · · -
			X3	: Enable HEF3	PDV
			X2	: Enable HEF2	INT
015*	V	1110 1001 0177 1777	X1	: Enable HEF1	TMR1
SIE*	X	1110 1001 0XXX XXXX		: Enable IEF6	RFC
			X5	: Enable IEF5	KEY_S
			X4	: Enable IEF4	TMR2
			X3	: Enable IEF3	PDV
			X2	: Enable IEF2	INT
			X1	: Enable IEF1	TMR1
DI O			X0	: Enable IEF0	CPT
PLC	X	1110 101X 0XXX XXXX		: Reset PH15~11	
ODE	\ <u>'</u>	1110 1100 00177 17777	X6-0	: Reset HRF6-0	
SRF	X	1110 1100 00XX XXXX		: Enable Cx Control	
			X4	: Enable TM2 Control	
			X3	: Enable Counter	ENX
			X2	: Enable RH Output	EHM
			X1	: Enable RT Output	ETP
			X0	: Enable RR Output	ERR
SRE	Χ	1110 1101 X0XX 0000		: Enable SRF7	SRF7(KEY_S)
			X5	: Enable SRF5	SRF5 (INT)
			X4	: Enable SRF4	SRF4 (C Port)
FAST		1110 1110 0000 0000		: High Speed Clock	
SLOW		1110 1111 0000 0000	SCLK	: Low Speed Clock	
SF	Χ	1111 0000 X00X XXXX	X7	: Reload 1 Set	RL1
			X4	: WDT Enable	WDF
			X3	: HALT after EL	
			X2	: EL LIGHT On	
			X1	: BCF Set	BCF
			X0	: CF Set	CF
RF	Χ	1111 0100 X00X 0XXX	X7	:Reload 1 Reset	RL1
			X4	: WDT Reset	WDF
			X2	: EL LIGHT Off	
			X1	: BCF Reset	BCF
			X0	: CF Reset	CF
SF2	X	1111 1000 0000 XXXX			INTPL
-				Pull-low	
			X2	: Close all Segments	RSOFF
			X1	: Dis-ENX Set	DED
			X0	: Reload 2 Set	RL2
RF2	X	1111 1001 0000 XXXX		: Disable INT	INTPL
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1111 1001 0000 7777		powerful Pull-low	
L		l		POWCHAIT AII-IOW	

			X2	: Release Segments	RSOFF
			X1	: Dis-ENX Reset	DED
			X0	: Reload 2 Reset	RL2
ALM	X	1111 101X XXXX XXXX			IXLZ
ALIVI	^		X8,7,6=111		
			X8,7,6=100 X8,7,6=011		
			, ,		
			X8,7,6=010		
			X8,7,6=001		
			X8,7,6=000		
			X5~0	← PH15~10	_
ELC	X	1111 110X XXXX XXXX		BCLKX	ELP - CLK
			X8=0	PH0	
			,	BCLK/8	BCLKX
			,	BCLK/4	
			X7,6=01	BCLK/2	
			X7,6=00	BCLK	
			X5,4=11	1/1	ELP - DUTY
			X5,4=10	1/2	LLI - DOTT
			X5,4=01	2/3	
			X5,4=00	3/4	
			,	PH5	
			X3,2=10	PH6	ELC - CLK
			X3,2=01	PH7	
			X3,2=00	PH8	
			X1,0=11	1/1	
			X1,0=10	1/2	ELC - DUTY
			X1,0=01	1/3	
			X1,0=00	1/4	
HALT		1111 1110 0000 0000	Halt Operati	on	
STOP		1111 1111 0000 0000			

Symbol Description

Symbol L	Description		
AC	: Accumulator	D	: Immediate Data
ACn	: Accumulator bit n	PC	: Program Counter
X	: Address	CF	: Carry Flag
Rx	: Memory of address X	ZERO	: Zero Flag
Rxn	: Memory bit n of address X	WDF	: Watch-Dog Timer Enable Flag
Ry	: Memory of working register Y	HL	: Index Register
BCF	: Back-up Flag	BCLK	: System clock stop only in STOP
condition			
@HL	: Address of Index	IEFn	: Interrupt Enable Flag
HRFn	: HALT Release Flag	SRFn	: STOP Release Enable Flag
HEFn	: HALT Release Enable Flag	SCFn	: Start Condition Flag
TMR	: Timer Overflow Release Flag	Cch	: Clock Source of Chattering Detector
Ctm	: Clock Source of Timer	Cfq	: Clock Source of Frequency Generator
PDV	: Pre-Divider	SEFn	: Switch Enable Flag
Lz	: LCD Latch	FREQ	: Frequency Generator setting Value
T@HL	: Address of Index ROM	CSF	: Clock Source Flag
@L	: Low address of Index	@H	: High address of Index
RFOVF	: RFC Overflow Flag	H(T@HL)	: High Nibble of Index ROM
L(T@HL)	:Low Nibble of Index ROM (): Conter	nt of Regist	er

70 Jan.27,2000 Rev.0.5