D &S AR

C Compilers * Real-Time OS * Simulators * Education * Evaluation Boards

Implementing pVision2 DLL’s for Application Note 145 Rev. 2
Interface to Hardware Debuggers

May 28, 2000, Munich, Germany

Revision History: Feb 24, 2000 Initial Version
May 28, 2000 changed Address Representation for 8x51

by Peter Holzer, Keil Elektronik GmbH support.intl@keil.com ++49 89 456040-0

The uVision2 Debugger supports direct interface to hardware debuggers like monitors or emulators.

This interface is done via an Advanced Generic Debugger Interface called AGDI. The AGDI interface is
independent of the controller architecture is flexible, easy to implement and introduces only minimal
overhead. In performs the interface to all basic debugger features, allows complex breakpoints and can be
expanded with emulator or target specific commands, dialogs or display pages that appear in the same
way as puVision2 dialogs.

To ease the development of a target driver, the AGDI interface and configuration framework is provided
in the SampTarg project. SampTarg, is a synonym for ‘Sample Target Driver’. It ss a ready to run driver
with remote setup and all of the AGDI functions provided as dummies. The driver consists of a Visual-
C++ (6.0) project file and the following source files:

SampTarg.cpp,h: main file, AppWizard created. Provides target setup and startup code
SetupT.cpp,h: code sample for a setup dialog

AGDILH: prototypes for the AGDI functions (rarely modified)

BOM.H: various prototypes and definitions (do not modify !)

ComTyp.H: some type and other definitions (do not modify !)

Collect.h: local driver definitions, for use by target driver programmer.
TestDlg.cpp,h: the model for a modeless extension dialog.

In order to develop a target driver, knowledge about C/C++ programming and the MS Visual-C++ 6.00
Programming Environment is required.

How to use the Sample Target Driver
In order to use the Sample target driver, you must perform the following steps:

e Install pVision2 and the C51 Compiler on your machine.
e C(Create a folder such as D:\Src32\Target\

e Unzip the file SampTarg.zip into the folder. Make sure that the ‘use folder names’
checkbox is checked since SampTarg uses some subfolders.

OCDS Debugging with uVision2 Page 1 of 13

e Add the following line to the file “TOOLS.INI’, section ‘C51°:
TDRVO0=D:\Src32\Target\Debug\SampTarg.DLL (“Sample 8051 Target Driver”)

Note: if TDRVO is already in use, then use the next free digit, for example TDRV1.
e Start Visual-C, select the ‘SampTarg.dsw’ project file.
e Select ‘Build — Set active configuration’, choose the SampTarg Win32 Debug configuration.
e Select ‘Build — Rebuild All’ to create the driver.

o Select ‘Project — Settings’. Click at the ‘Debug’ tab. Browse for the ‘Executable for Debug
session’. You need to select the file Uv2.Exe. It is normally in C:\Keil\Bin but this depends
on where you have installed uVision2. After that, close the dialog.

e Run pVision2 by pressing the F5 key. Select ‘Project — Open Project’, the Select Project
dialog comes up. Select the ‘Measure.uv2’ project. It can be found normally in the folder -
C:\Keil\C51\ExamplesMeasure. Select ‘Rebuild all target files’ to build the project.

e Select ‘Options for Target — Debug’. From the combobox, select “Sample 8051 Target
Driver” which is our sample driver. Make sure that the ‘Use:’ radio button is checked. If
everything is right, then the dialog should look like this:

Options for Target 'Target 1' HE
Target | Output | Listing | C51 | 481 | L51 Locate | L51 Misc Debug |
 Use Simulatar LONVELRIN = =il G051 Target Driver Settings |
¥ Load Application at Startup ¥ Go till main() ¥ Load Application at Startup ™ Go fill maing
Initialization File: Initialization File:
Mdeasure.ini Browse... | I Browse... |
Festore Debug Session Settings Festore Debug Session Settings
v Breakpoints ™ Toolbox v Breakpoints ™ Toolbox
v “Watchpoints & P ¥ ‘Watchpoints
¥ hemary Display ¥ hdemaory Display

e Close the dialog.

e Select ‘Debug — Start/Stop Debug Session’. This will start the pVision2 debugger. It
initializes and loads our SampTarg.DLL. Click the file ‘Measure.c’ in the pVision2’s Files
tab. Scroll to the ‘main()’. You will notice the light and dark gray area to the left of the
window, the dark gray ranges identify lines with executable code. Open the Disassembly
window (View — Disassembly Window). It shows the disassembled instructions of the
Measure application.

Open the Memory window: from the menu, select ‘View — Memory Window’. Enter
‘C:0x0000’ followed by <Enter> in the address entry field of the memory window. You
should see the code memory bytes starting at code address 0x0000.

Note that the Sample driver contains code for the memory interface, the register interface and breakpoint
management. The code for Go and Step provides just dummies, you can’t therefore start execution of a
user program.

Implementing the Driver: Required Steps

In order to connect the SampTarg driver to your hardware, you should perform the following steps:

OCDS Debugging with uVision2 Page 2 of 13

e Setup your target hardware

e Write code to implement the connection between the target driver and your hardware. You
can use the serial port or any other resource. Add the file(s) to the SampTarg project.

o Connect your driver code to the appropriate functions contained in AGDI.CPP. Search for
the following comment in AGDI.CPP:

//--- Interface functions between AGDI and target follow

The comment is followed by a set of functions such as ReadData(). These functions need to
be connected to your communications code. The first set of functions which need to be
completed are InitTarget(), ReInitTarget() and StopTarget(). They are required for proper
startup and shutdown of the driver. Then the memory access functions, register access
functions should be connected.

e The final set of functions required are Step(), GoCmd() and SetClrBp(). These deal with
execution of the user program and breakpoint setup and clear. Note that the GoCmd() should
not return until the execution is stopped, either by reaching a code breakpoint or some other
event.

e Test your driver. If the basic functions are running, switch SampTarg into Release Mode and
rebuild it. If this is complete, test the driver again. Note that the ‘Release’ folder has the

release version of the driver. This requires you to change the TOOLS.INI file:
TDRVO=D:\Src32\Target\Release\SampTarg.DLL (“Sample 8051 Target Driver”)

Watch out for general protection faults. They happen very likely if for example null or
invalid pointers are passed fourth and back.

Example: SampTarg-51 Interface

The DLL Driver Name for external Display DLL’s is stored in the file C:\KEIL\ATOOLS.INI. An new
driver is installed by adding the name and path to the C:\KEILATOOLS.INI file. Each CPU family has
it’s own section in the TOOLS.INI file.

Example for a TOOLS.INI file:

[ov2]
ORGANIZATION="Keil Elektronik GmbH"

[c51]
PATH="C:\Keil\C51"
BOOKO=HLP\RELEASE.TXT ("Release Notes")

TDRVO=SampTarg\SampTarg.DLL ("Sample 8051 Target Driver")

You need to modify the TOOLS.INI file. For example, if you want to add the SampTarg driver to the list
of target drivers, add the line reading TDRVO0=xxx in the [C51] section. If you don’t have TRDV entries,
the start with TDRVO0=xxx (nVision2 accepts up to 40 drivers, TDRVO0... TDRV39).

The line TDRV0=SampTarg\SampTarg.DLL ("Sample 8051 Target Driver") specifies the
SampTarg.DLL in the SampTarg folder which is in C:\Keil\C51 (as specified by PATH). You can
change this folder to suit your needs. The embraced string (“Sample 8051 Target Driver”) is used by
pVision2 to show the driver in the list of drivers in the Options for Target sheet:

OCDS Debugging with uVision2 Page 3 of 13

Options for Target 'Target 1' EE

Taget | Output | Listing| C188 | 4186 | L166 Locate | L166 Mise Debug |
Settings |

" Use Simulatar |G (EI il b onitor-166 Driver
]

Note: the combo shows ‘Keil Monitor-166 Driver’, it should read ‘Sample 8051 Target Driver’

The display DLL’s that should be used during system debugging can be selected in the Options for
Target - Debug page under the Use drop down menu. With the Settings button you may implement a
configuration dialog for the debugger interface. Configuration data may be stored directly in the
uVision2 project file, the registry or a separate INI file. The configuration data in the project file allows
you project specify settings of your debugger. At the time the uVision2 debugger is started, the debugger
DLL is automatically loaded and initialized.

Target Driver System Remote Setup

Once the Target driver is selected, pressing ‘Settings’ in the Options for Target Sheet causes pVision2 to
load the driver DLL. After that, pVision2 calls the function DIIUv3Cap 2 times with the following
function codes:

int _EXPO_ DIIUv3Cap (DWORD nCode, void *p) ;
nCode 2: // first call: match family
nCode 1: // second call: Cpu/Target-DLL Settings

For nCode 2, the return value must be 8051 (0x1F73) in case of an 8051 target or 80167 (0x13927) in
case of a 80166/80167 target. The following sample code shows how the remote setup is performed.
The QDLL structure has been extracted out of ‘Bom.h’ to get an easy overview of the data layout. Note
that at the time DIIUv3Cap() is called, pVision2 is not in debugging mode. Therefore, you can’t access
any debug resources.

For details, refer to the SampTarg.cpp file. This source file contains the sample code for remote setup
and command options parsing. Also provided there is an entry to run a setup dialog. The source code for
the setup dialog is in SetupT.cpp and SetupT.h. The dialog is used to specifiy a com port number and the
baudrate. You may change this dialog to fit your needs.

Note that at the time of remote setup, you can’t access any debug resources of uVision2, because
puVision2 is not in debugging mode. This implies also that none of the AGDI functions are accessed by
uVision2.

AGDI Interface Functions

All functions that start with AG_ need to be defined in the target driver DLL. If a function executes
correctly, the value 0 is returned to pVision2, otherwise an error code should be returned. Note that the
following exported functions must be defined, either fully functional or just as dummies:

AG_Init, AG_MemAtt, AG_BplInfo, AG_BreakFunc, AG_GoStep, AG_Serial, AG_MemAcc,
AG_RegAcc, AG_AllIReg, AG_HistFunc

If this is not the case, pVision2 considers the target driver as invalid and cancels using it.

Start Debugging

When the Debugger is started with Debug - Start/Stop Debug Session an enum function is called.
Depending on the target architecture, the name of the function is as follows:

OCDS Debugging with uVision2 Page 4 of 13

80166/80167: int EnumUv3167 (void *p, DWORD nCode)
8051: int EnumUv351 (void *p, DWORD nCode)
80251: int EnumUv3251 (void *p, DWORD nCode)

pVision2 calls this function first to match the cpu family of the current project with the target driver
family. Then this function is called again with nCode = 2 and the pointer p being a pointer to struct
dbgblk (for more information refer to COMTYP.H).

The code can be found in file SampTarg.cpp.

If the EnumUv3xxx function completes successfully, then pVision2 starts initializing the AGDI interface
by calling the AG_Init several times, each time initializing or requesting a different item.

The code for all of AG_ functions can be found in file AGDI.CPP.

The first call contains the function code nCode = AG_INITFEATURES and requires the target driver to
set the support features:

supp.MemAccR = 0; // memory-access while execting
supp.RegAccR = 0; // register-access while exectuing
supp.hTrace = 0; // trace support

supp.hCover = 0; // code coverage support
supp.hPalyze = 0; // Performance-Analyzer support
supp.hMemMap = 0; // Memory-Map support

The shown values in the sample code are typical for monitors, where resources such as registers or
memory can’t be accessed while a user program is executed. This of course may be different if your
hardware supports such features.

You may consult the SampTarg.cpp file which provides a good starting point.

The next calls to AG_Init with nCode = AG_INITITEM are repeated several times with sub-codes.
These serve the purpose of transferring handles, pointers and other stuff to your driver.

The next series of AG_Init calls have nCode = AG_GETFEATURES with the sub-codes to query the
actual features:

case AG GETFEATURE: // extract some feature

switch (nCode & 0x00FF) {
case AG_F MEMACCR: nE = supp.MemAccR; break;
case AG_F REGACCR: nE = supp.RegAccR; break;
case AG_F TRACE: nE = supp.hTrace; break;
case AG_F COVERAGE: nE = supp.hCover; break;
case AG_F_PALYZE: nE = supp.hPalLyze; break;
case AG_F MEMMAP: nE = supp.hMemMap; break;

}

break;

System Reset

When the pVision2 - Reset Toolbar button is given, AG_Init nCode = AG_EXECITEM | AG_RESET
is called which then in turn calls ResetTarget(), which is an empty function. You should put whatever
code is required in there to reset your target system. pVision2 assumes that after this AG_INIT call the
system is in reset state.

Stop Debugging
When the debugging session stops, uVision2 activates AG_Init with nCode = AG_EXECITEM |
AG_UNINIT. You should close the connection to your target and free any allocated dynamic memory.

OCDS Debugging with uVision2 Page 5 of 13

The CPU Register Interface

The Project Window - Regs tab layout is fully defined in the target driver. pVision2 expects that the
Target Driver uses the callback pCbFunc (AG_CB_INITREGYV, &dsc). when AG_Init with nCode =
AG_GETFEATURE is called. The call to pCbFunc(AG CB_INITREGYV, &dsc),; can be given several
times and at any time to change the layout of the Project Window - Regs tab dynamically.

The struct REGDSC defines the register layout (refer to the file AGDI.H for more information).

struct RegDsc {

I32 nGitems; // number of group items

I32 nRitems; // number of register items

RGROUP *GrpArr; // array of group descriptors

RITEM *RegArr; // array of register descriptors

void (*RegGet) (RITEM *vp, int nR); // get RegItem's value

I32 (*RegSet) (RITEM *vp, GVAL *pV); // set RegItem's value
}i
The File AGDI.CPP contains code for the 8051 register layout. The first item is the group definition:
struct rGroup rGroups[] = {

{ 0x00, 0x01, "Regs", }. // Group 0, show expanded

{ ox00, 0x01, "sys", }. // Group 0, show expanded

}:

The group names are shown in the register view, these items act as parent for the child items. The next
definition represents the register items:

struct ritem rItems([] = {

//--desc-nGi-nItem-szReg[] --isPC-cc-iHig- -
{ 0x01, 0, 0x00, "ro", 0, 1, 0, },
{ 0x01, 0, 0x01, "riv, 0, 1, 0, 1},
{ oxo01, o, 0x02, "r2v, o, 1, o, },
{ 0x01, 0, 0x03, "r3v, 0, 1, 0, },
{ 0x01, 0, 0x04, "r4v, 0, 1, 0, 1},
{ 0x01, 0, 0x05, "r5", 0, 1, 0, },
{ 0x01, 0, 0x06, "ré", 0, 1, 0, },
{ 0x01, 0, 0x07, "r7", 0, 1, 0, 1},

The register items shown are assigned to group 0, which is the ‘Regs’ group. The ‘desc’ member must be
initialized to 1. The ‘nltem’ member is a number assigned by you, it should be in range 0x00...0xFF.
The ‘szReg’ member represents the name of register, the ‘isPC’ member must be set if the register
represents the program counter only. The ‘cc’ item means ‘can be changed’. It should be set to 0 to
avoid value changes via the register view. The ‘iHigh’ member is used to force the register view to draw
the name and value highlighted.

{ ox01, 1, o0x10, "a", o, 1, o, 1},
{ ox01, 1, o0x11, "b", o, 1, o, 1},
{ oxo01, 1, o0x12, "sp", o, 1, 0, },
{ o0x01, 1, 0x13, "dptr", o, 1, o, 1},
{ ox01, 1, 0x14, "pCc &, 1, 1, 0, },
{ 0x01, 1, 0x100,"psw", 0, 1, o, 1},

The register items shown before are assigned to group 1, the ‘Sys’ group. Note that the ‘nltem’ numbers
need to be different.

A special case is represented by item ‘psw’, it uses the item number 0x100 (any number which is a
multiple of 0x100 such as 0x200, 0x300, ... is ok too). In this case, uVision2 treats the item as a parent
of children. Such a parent can be collapsed and expanded. The requirement for the children is that their
numbers must be in range ‘parent-number + 1 ... parent-number + OxFF’. The sample code uses the
numbers 0x101 to 0x107 for representing the flag bits of the psw:

{ oxo01, 1, o0x101,"p", 0, 1, 0, }, // child-0 of ‘psw’ item
{ 0x01, 1, 0x102,"f1", 0, 1, 0, }, // child-1 of ‘psw’ item

OCDS Debugging with uVision2 Page 6 of 13

{ 0x01, 1, 0x103,"ov", o, 1, 0, }, // ...
{ 0x01, 1, 0x104,"rs", o, 1, 0, }, // ...
{ ox01, 1, o0x105,"fo", 0, 1, 0, 1},
{ 0x01, 1, 0x106,"ac", 0, 1, 0, 1},
{ 0x01, 1, 0x107,"cy", 0, 1, o, 1},

Note that you can use many items that behave like ‘psw’, as long as each item gets a multiple of 0x100
for it’s item number.

When pVision2 needs to draw the register view, it accesses the RegGet() function to obtain the current
value of a register. At this point, you must fetch the register value out of your target to the descriptor.
You should study the functions RegGet and RegSet() in AGDIL.CPP.

It should be noted that pVision2 gives an announcement to RegGet() before fetching the individual
register items:

switch (nR & 0xF0000000) {
case UPR _NORMAL: // Setup Normal Regs
// read all registers out of your target here

//

The announcement gives you the chance to read all the registers in one junk, repetitive accesses to the
target can be avoided. Once again, take a look at the implementation of RegGet/RegSet in AGDI.CPP.

The register interface is registered in pVision2 by setting up a REGDSC structure and by using the
AG_CB_INITREGYV callback as shown in the InitRegs() function:

static void InitRegs (void) {
REGDSC dsc;

dsc.nGitems sizeof (rGroups) / sizeof (rGroups[0]); // number of group-items

dsc.nRitems = sizeof (rItems) / sizeof (rItems([0]); // number of reg-items
dsc.GrpArr = rGroups; // &rGroups[0]

dsc.RegArr = rltems; // &rItems[O0[

dsc.RegGet = RegGet; // register get function

dsc.RegSet = RegSet; // register set function

pCbFunc (AG CB_INITREGV, &dsc); // Install RegView in uVision2

}

If you want to change the register view layout dynamically, simply setup a REGDSC structure with
another set of rltems and rGroups before using the AG_CB_INITREGYV callback again.

puVision2 uses the AG_AllReg() function to fetch or store the registers as defined by the RG51 typedef in
AGDLH:

U32 _EXPO_ AG_AllReg (Ul6é nCode, void *vp); // load or store all register values.

The AG_RegAcc() function is used to access individual register item values. This happens most likely
when the name of a register is part of an expression in the command line of pVision2, for example:
‘DPTR = 0x1200 | R7’:

U32 _EXPO_ AG_RegAcc (Ul6é nCode, U32 nReg, GVAL *pV); // load/store individual register value

Address Representation

The representation of the addresses depends on the architecture. When using the 80166/80167
architecture, pVision2 converts all addresses regardless of their type such as near, far, huge or otherwise
DPPn based into a linear value. This means that for example the address 0x20000 needs to access the
physical memory address 0x20000 of your target.

In the 8051 world, things are different: addresses are actually 8, 16 or 24 bit offsets, depending on the
memory space to access. The AGDI interface as well as pVision2 use a 32-bit address value, where the

OCDS Debugging with uVision2 Page 7 of 13

lower 8 or 16 bit represent the offset into the given memory space, and the most significant byte of the
address represents a memory space selector value, as defined in AGDILH:

#define amNONE 0x0000 // not spaced

#define amIDATA O0x00F3 // IDATA

#define amDATA 0x00F0 // DATA

#define amXDATA 0x0001 // XDATA

#define amBIT 0x00F1 // BIT

#define amPDATA O0xO0O0FE // PDATA (maps to XDATA)
#define amCODE 0x00FF // CODE

The code address C:0x1234 is represented as ‘(amCODE << 24) | 0x1234° which yields 0xFF001234.
The data address D:0x72 is represented as ‘(amDATA << 24) | 0x0072 which yields 0xF0000072. The
external data address X:0x5678 is represented as ‘(amXDATA << 24) | 0x5678” which yields
0x01005678. If a target supports more than 64K of xdata, then the address uses a three bye offset where
the third byte represents the segment such as ‘(amXDATA << 24) | 0x12AAEE’. This applies also for
targets which support more than 64K of code: ‘(amCODE << 24) | 0x035555’ is an example where the
code address 0x5555 in segment 0x03 is specified. The advantage is that the memory space selector, the
segment and the offset are combined into a single value.

Take a look at the ReadMem() and WriteMem() functions in AGDI.CPP. Both of them are driven by
AG_MemAcc() and show how to spread the different memory spaces of the 8051 architecture.

The Memory Interface
The AGDI interface uses the function AG_MemAcc to access the target memory:

U32 EXPO AG MemAcc (Ul6é nCode, UC8 *pB, GADR *pA, UL32 nMany) ;

The parameter ‘nCode’ specifies the function sub-code:
AG_READ: read memory
AG_WRITE: write memory
AG_WROPC: write code memory (used while loading a user program)
AG_RDOPC: read code memory (used for disassembly)

Although both AG. WROPC and AG_RDOPC seem to duplicate AG_ WRITE and AG_READ, they
allow you to distinguish between code and non-code accesses. The sample code in AGDI.CPP contains
both a code and data cache to provide fast access to memory when the target is not accessible. This is
very important since for example the disassembly window makes many accesses to code memory
especially if you hit the PageUp key.

The Parameter ‘pB’ is a pointer to buffer which is at least ‘nMany’ bytes in size. ‘GADR’ gives the
memory address to access, as described under the section ‘Address Representation’. Note that both
members ‘mSpace’ and ‘nLen’ are not used. The ‘nMany’ parameter specifies the number of bytes to be
transferred.

The AGDI memory interface uses one more function to speed up pVision2 accesses to memory
attributes:

U32 EXPO_ AG MemAtt (Ul6 nCode, UL32 nAttr, GADR *pa);

The story behind AG_MemAtt is that pVision2 requires fast access to memory attributes such as:
location at address contains ‘executable code’ or has ‘an enabled or disabled breakpoint’ set on it and so
on. This type of information is displayed in the gutter area (the gray colored section to the left) of all
uVision2’s editor windows or the disassembly window and is heavily accessed. Fast access to the
attributes is a very important issue here, otherwise it would take considerably time to redraw the content

OCDS Debugging with uVision2 Page 8 of 13

of an editor window which in fact could cause the editor or disassembly window to become almost
unusable.

The important sub-code is AG GETMEMATT, where uVision2 requests the attribute segment. The
sample code contains a code and data cache. It holds the memory values and the attributes of each
memory location:

#define _MSGM (65536 + 4) // memory required for a single 64k segment
#define ASGM _MSGM * 2 // attributes per memory location are 16 bits wide !

struct MMM {
ucs *mem; // Pointer to Memory Image
Ulé6 *atr; // Memory Attributes Segment

}:

extern struct MMM mslots [3]; // [0]l=data/idata, [l]l=xdata/pdata, [2]=code

The SlotNo() function in AGDI.CPP maps addresses to one of the 3 cache slots.
Here are the possible attributes as defined in AGDIL.H:

#define AG ATR EXEC 0x01 // location is 'executable'

#define AG_ATR READ 0x02 // location is 'readable'

#define AG ATR WRITE 0x04 // location is 'writable'

#define AG ATR BREAK 0x08 // location has an 'Execution-Break' on it
#define AG ATR EXECD 0x10 // location has been 'Executed'

#define AG ATR WATCH 0x20 // Location has a Watch

#define AG ATR BPDIS 0x40 // 'disabled Exec-Break' Attribute

#define AG ATR PAP 0x80 // Location has a Perf.-Analyzer point

#define AG ATR WRBRK 0x100 // Loc has a write-access break
#define AG ATR RDBRK 0x200 // Loc has a read-access break
#define AG_ATR EXTR 0x400 // 166/167: within range of an EXTR sequence

#define AG ATR JTAKEN 0x4000 // Jump at location was true executed

Note that not all of the given attributes need to be implemented. For a target driver, the attributes
AG_ATR EXEC, AG_ATR BREAK and AG_ATRBPDIS are important as this information is reflected
in the editor views and the disassembly window.

Note: Do not change the attribute definitions in AGDI H in order to avoid collisions with the attribute
values used in uVision2 !

The AG_ATR_EXEC attribute can be set for each location while an AG_MemAcc with nCode
AG_WROPC is executed.

The AGDI.CPP source file contains the complete memory interface where all the read and write
operations are spread into different functions such as ReadCode(), ReadXdata(), WriteData(),
WriteSFR() and so on. The places where you should add your specific code are marked with “//---
TODO:".

The attribute AG_ ATR JTAKEN and AG_ ATR_EXECD mark the current execution state of the
instruction and is used to display the CODE COVERAGE information in the uVision2 Debugger. The
following colors are displayed depending on the bits:

AG ATR EXECD =0, AG ATR JTAKEN =0; color gray, instruction not executed at all

AG ATR EXECD =1, AG ATR JTAKEN =0; color orange, conditional jmp to address never taken
AG ATR EXECD =0, AG ATR JTAKEN =1; color cyan, conditional jmp to address always taken
AG ATR EXECD =1, AG ATR JTAKEN =1; color green, instruction (cont. jmp) fully executed

Note: Only conditional jump instructions set AG ATR EXECD and AG_ATR _JTAKEN individually.
All other instructions set always both bits AG_ATR_EXECD and AG_ATR _JTAKEN.

OCDS Debugging with uVision2 Page 9 of 13

Execute Program Code

uVision2 controls program execution with the AG_GoStep function. AG_GoStep gets the following
nCode values:

nCode = AG_STOPRUN // Stop Go/Step.

nCode = AG_NSTEP // execute 'nSteps' instruction steps
nCode = AG_GOTILADR // run til 'pA->Adr' or some Bp,

nCode = AG GOFORBRK // run forever or till some Bp reached.

AG_GoStep runs in a separate tread and does not return until execution stops. Before AG_GoStep is
entered pVision2 enables the Stop toolbar button. When AG_GoStep returns the Stop button is disabled.
When execution should be stopped (with the Stop toolbar button) AG_GoStep is called again with
nCode = AG_STOPRUN. The sample implementation in AGDI.CPP sets up the address breakpoints
before starting to execute the user program in the AG_ GOTILADR or AG_ GOFORBRK cases. After the
execution stops, the breakpoints are removed.

You need to fill out the SetClrBp() function in AGDIL.CPP to set and clear the address breakpoints. The
details here depend on your target hardware. There are two more functions which you need to fill out,
Step() and GoCmd(). Step() should perform a single instruction step. GoCmd() should start execution
the user program until an address breakpoint is encountered or some stop criteria is detected.

When the Stop button on the toolbar is pressed, AG_GoStep() is activated with the AG_STOPRUN sub-
code. At this point, you should stop execution of the user program.

Breakpoints
When the user defines or modifies Breakpoints, pVision2 calls the Target Driver function AG_BplInfo:

U32 _EXPO_ AG _BpInfo (Ul6é nCode, void *vp);

This function does not set the breakpoint in the hardware, but allows the pVision2 editor to query and
change the current active breakpoints and to kill or disable all of them. The breakpoint information is
stored using attribute segments, as described in the Memory Interface section. The AG_Bplnfo sub-
codes are shown in the following list:

#define AG BPQUERY 0x01 // Same as AG BPEXQUERY

#define AG BPTOGGLE 0x02 // Not used with target driver

#define AG BPINSREM 0x03 // Not used with target driver

#define AG BPACTIVATE 0x04 // Not used with target driver

#define AG BPDISALL 0x05 // Notification: all address breaks need to be disabled
#define AG BPKILLALL 0x06 // Notification: all address breaks need to killed
#define AG BPEXQUERY 0x07 // Get attributes: AG ATR BREAK, AG_ATR BPDIS, AG ATR_EXECD
#define AG BPENABLE 0x08 // Notification: Enable Breakpoint at address

#define AG BPDISABLE 0x09 // Notification: Disable Breakpoint at address

#define AG BPKILL 0x0A // Notification: Kill Breakpoint at address

#define AG BPSET 0x0B // Notification: Set Breakpoint at address

Take a look at the AG_BplInfo() function in file AGDI.CPP for details.
Another function is the function AG_BreakFunc which is very similar to AG_Bplnfo:

EXPO AG BP *AG BreakFunc (Ulé nCode, Ulé nl, GADR *pA, AG BP *pBp);
The differences are the sub-codes and in that it receives a pointer to a breakpoint definition, an AG_BP
structure. The function codes are:

0x01: a new breakpoint is linked

0x02: the breakpoint is unlinked, attribute should be updated

0x04: a breakpoint changes it’s enabled/disabled attribute

OCDS Debugging with uVision2 Page 10 of 13

0x05: is breakpoint acceptable by your target hardware

The list of breakpoints is maintained by pVision2. It should be noted that both functions AG_BplInfo()
and AG_BreakFunc() should deal with the attributes only. The actual breakpoints should be setup in the
target hardware just before the execution is started via AG_GoStep AG_GOTILADR or
AG_GOFORBRK.

Extension Menus

By using AGDI, you can add your own menu entries to pVision2’s Peripherals menu. This is required if
you want to have dialogs within the target driver.

You need to setup an array of ‘DYMENU’ structures. The AGDIL.CPP file contains sample code for 2
menu entries, the first is the configuration dialog, the second one is for a modeless dialog:

static DYMENU Menul[] = {

{ 1, "Target Settings", ConfDisp, 0, O, }, // modal dialog

{ 1, "Modeless Dialog", Mdshow, 0, 0, &ModDlg }, // modeless dialog
{ -1, /* End of menu list */ }.

}i

Each menu entry consists of a delimiter code (1,2,-2,-1), the menu item title and the address of a function
which shows or hides the dialog. For modeless dialogs, the menu entry has an additional descriptor
called ‘DIAD’ structure which addresses a update and a kill dialog function.

The menu structure is registered in the AG_Init() function, AG_INITITEM with sub-code
AG _INITMENU. The sub-code AG_INITEXTDLGUPD expects the address of the general dialog
update function:

case AG INITITEM: // init item
switch (nCode & 0x00FF) {
case AG INITMENU: // init extension menu

* ((DYMENU **) vp) = (DYMENU *) Menu;

break;
case AG_ INITEXTDLGUPD: // init modeless extesion dlg update function
*((Uc8 **) vp) = (UC8 *) DlgUpdate;

break;

After a Singe Step has been executed or a Go has been stopped, uVision2 notifies all relevant windows
and dialogs to update themselves to reflect the current values. In case of the target dialogs, it calls the
DlgUpdate() function, as registered above.

Note that you also need a ‘CloseAllDIg’ function to close all currently open dialogs before the driver is
shut down. The AGDI.CPP sample code contains all the required functions and data for the extensions.

When creating your own modeless dialogs, you should use the template code in TestDlg.cpp,h as a
reference. This is important since these dialogs must use a different constructor and destructor code.

Note: When creating your own dialog resources for a modeless dialog, make sure that the ‘Visible’ style
is set, otherwise the dialog frame will always be invisible. Modeless dialogs are different in this aspect
from modal dialogs.

Serial I/0

uVision2 supports two serial windows to simulate the serial input and output. The serial windows can be
accessed by the target driver as well. If you want to display data in the serial window #1, the appropriate
call would be:

OCDS Debugging with uVision2 Page 11 of 13

char szSerTxt[] = “this should appear in serial window #1”;

AG_Serial (AG_SERBOUT, 0, sizeof (szSerTxt) - 1, (void *) szSerTxt);

When the user presses a key in serial window #1 for example, then pVision2 calls the AG_Serial()
function with nCode=AG_SERXIN, nSerNo=0, nMany=1 and vp pointing to the character.

AGDI Callbacks

AGDI can borrow some of the functionality from uVision2. This can be done by using the ‘pCbFunc’
callback pointer, a function code and the appropriate parameters. Note that only the most important
callback functions are described here. The additional ones can be found in AGDI.H near the end of the
file.

Execute a pVision2 debug command

Almost any command except ‘Exit’ can be executed.

Exanqﬂe: pCbFunc (AG CB_EXECCMD, "dir public"); // execute dir public symbols command
Force pVision2 to update all Windows

Causes an update of all currently open debug windows and dialogs. The function returns when the
updates are completed.

Example: pcbrunc (AG_CB_FORCEUPDATE, NULL)

Change pVision2’s Statusbar message string

EXﬂInplCZpCbFunc (AG_CB_MSGSTRING, "Running..."); // up to 20 characters

Disassemble Opcode, Assemble a single Instruction

AG _CB_DISASM can be used to disassemble the given opcodes or to assemble the given instruction.

Example for code disassembly:

DAAS parms;

parms.Adr = (amCODE << 24) | 0x1000; // disassemble address C:0x1000
parms.Opc[0] = 0x90; // MOV DPTR,

parms.Opc[l] = 0x12;

parms.Opc [2] = 0x34; // #0x1234
parms.Opc[3] = 0;

pCbFunc (AG CB _DISASM, (void *) &parms); // disassemble...

//--- on return: parms.Opclen := length of opcode in bytes

//--- parms.szB|[] = disassembled instruction in ascii

//--- Note: parms.Adr is used for ascii-address and relative branches only.
//--- parms.Result := always 0.

Example for inline Assemble:

DAAS parms;

OCDS Debugging with uVision2 Page 12 of 13

parms.Adr = (amCODE << 24) | 0x1000; // assemble address C:0x1000
strcpy (parms.szB, "MOV DPTR, #0x1234"); // instruction to assemble

pCbFunc (AG _CB_INLASM, (void *) &parms); // assemble...

//--- on return:

//--- parms.Result = 0 if successful, otherwise != 0
//--- parms.OpcLen := length of opcode in bytes

[/--- parms.Opc [] = 'parms.OpcLen' Opcode bytes

OCDS Debugging with uVision2 Page 13 of 13

	How to use the Sample Target Driver
	Implementing the Driver: Required Steps
	Example: SampTarg-51 Interface
	Target Driver System Remote Setup
	AGDI Interface Functions
	Start Debugging
	System Reset
	Stop Debugging
	The CPU Register Interface
	Address Representation
	The Memory Interface
	Execute Program Code
	Breakpoints
	Extension Menus
	Serial I/O
	AGDI Callbacks

