' ' CodeVisionAVR

VERSION 1.0.1.7
HP InfoTech

User Manual

CodeVisionAVR

CodeVisionAVR V1.0.1.7

User Manual

Rev. |

© 1998-2001 HP InfoTech S.R.L.
All rights reserved.

© 1998-2001 HP InfoTech S.R.L. Page 1

CodeVisionAVR

Table of Contents

TADIE OF CONTENTS ..ceiiiiiiiiiiiiieee e 2
L INEEOAUCTION e 7
2. CodeVisionAVR Integrated Development ENVIFONMENTuvuiiiiiiiiiiiiiiiii e 8
2.1 WOIKING WIth FIlES. ...t e e et ettt e e e e e e e ettt e e e e aaaeees 8
2.1.1 Creating @ NEW FilB..... .o et e e e e ea it 8

2.1.2 0pening an EXIStiNG Fileooouuuniiii e 9

A R | =T o 11 (o] YT PPTTRR 9

2 LA EAItING @ FlE ...t e e 10

2.1.5 SAVING 8 FlB ... e e e e 11

2.1.6 RENAMING 8 FilB ...t e et e e e e e eeaaaanas 11

2. 1.7 PrINGNG @ FHlE ...ttt eaaaaa 12

2.1.8 ClOSING @ FlE ...t aaaaa 13

2.1.9 USING the NAVIQALO ... ittt ettt e e e e e e e e bbb e e e e e e eeenenanns 14

2.2 WOrKing WIth PrOJECESttt e e e e e e e e bt eaaaaeeees 15
2.2.1 Creating @ NEW PIOJECLccieiiiiiiei ettt e e e e e et e e e e aeeanenanns 15

2.2.2 Opening an EXiStiNG PrOJECT i eaaaaaaas 17

2.2.3 Adding Notes or Comments t0 the ProjecCt ... 18

2.2.4 Configuring the ProOjJECT.coi e a e e e e 19
2.2.4.1 Adding or removing a File from the Project...........cocooiiiiiiii e 19

2.2.4.2 Setting the C Compiler OPtIONS........cooeiiiiiiiee et aeeeeees 21

2.2.4.3 Transferring the Compiled Program to the AVR Chip after Make.........cc.cccc.oooeeiieee 24

2.2.4.4 Running an User Specified Program after Make..............ccccoiiiiiiiiiiiiiiieeeeees 25

2.2.5 Obtaining an Executable Program ... 27
2.2.5.1 Compiling the PrOjJECT......ccoi et eaeeees 27

2.2.5.2 MaKiNg the PrOJECT..... oot aaaeeees 29

2.2.6 ClOSING 8 PIOJECL ...ttt ettt e e e e e e e eab b e e e e e e eeennnanns 33

2.3 TO0IS ... 34
2.3.1 The AVR Studio DEDUGQETuiieiiieeeee et e e e e e eeeeaanas 34

2.3.2 The AVR Chip Programimer......... oottt e et e e e e eeeeeaanns 35

© 1998-2001 HP InfoTech S.R.L. Page 2

CodeVisionAVR

2.3.3 The Serial Communication TerMINAl..........coooieiiiiii 38
2.3.4 EXECULING USEI PrOgIramIS.ccuuiuiiiieeiieeeiiitie ettt e ettt e e e e e e e abbba e e e e e e e eeennnanns 39
2.3.4.1 Configuring the TOOIS MENUiiiiiiiiiiiii e eeeeees 39

A | B ST 11 Vo [PSSP RURPPPPIIN 41
2.4.1 GENEIAl SEIHINGS ...ceeeiitiiee ettt e e et e e e bbb r e e e e e e e e bbb e e e e e e e eenaraanns 41
2.4.2 Configuring the EdItOr.........coooiiiiii et e e e naeaaaas 42
2.4.3 Configuring the ASSEMDIETuuu e 43
2.4.4 Setting the Debugger Pathoo e 44
2.4.5 AVR Chip Programmer SEIUD. ettt e e ettt e e e e e eatbb e e e e e eeenenanns 45
2.4.6 Serial Communication Terminal SETUP..........oii i a7
2.5 ACCESSING the HEIP ...eeeee ettt e e e e e e et r e e e aaeeees 48
2.6 Transferring the License to another COMPULETuuiiii i 48
2.7 Connecting to HP INfoTech's WeD Site..........ooo e 51
2.8 Contacting HP InfoTech by E-Maliluiiiiii e 51
2.9 Quitting the CodeViSIONAVR IDE ..ot e e e e e aaeeees 51
3. CodeVisioNAVR C Compiler RefEIENCE.coi i 52
T I Tl o (=T o] o o ST Yo PSPPSRI 52
I O] 1 41 0 [=T 11 ST UP PP SPPPPPIPN 58
3.3 RESEIVEU KEYWOITS. ... ettt e e e e et ettt e e e e e e e e et bbb e e e e e e e e eeebban e e aaaaaeenes 59
LA TABNETIEIS .. 60
Rl B L= = R B/ o[TP TOPPPTR 60
I O] 011 1= T o | £ PP PP PTTTPPPPPIP 61
BT VANADIES ... 63
3.7.1 Specifying the SRAM Storage Address for Global Variables.............cccciiiiiiiininnnnn, 65
7.2 BIt VaAITADIES ... 65
3.7.3 Allocation of Variables t0 REQISIEISccuuuuuiiiiiiiiieii e 66
A Y | (1 (o1 (] (ST PPPTPTI 67
BT D UNIONS e 70
376 ENUMEIALIONS ... 72
3.7.7 Global Variables Memory Map File ... e 73

© 1998-2001 HP InfoTech S.R.L. Page 3

CodeVisionAVR

3.8 DEfINING DAL TYPES ... eeiiiiiiiite ettt ettt e e e e et e e ettt e e e e e e e e eetbaa e e e e aeeeesbbaa e e aaaaaeaees 73
R I Y/ o Ofo] 1Y/ T £ (o] £ TP RUPPPPPIIN 74
T O @] oT=] =1 (o] £ I PP TOPPRTR 75
LI FUNCHONS ... 76
L2 POINTEIS ... 77
3.13 ACCESSING the 1/O REQISIEIS ... ettt e e e e e e e eb e e e e aaeeens 79
3.13.1 Bit level access to the I/O REQISIEISuuuuiiiiiiiieeiie e 80
3.14 AccesSsiNg the EEPROMuuuiiiiiiiiiii et e ettt e e e e e e eabba e e e aaaeeens 81
.15 USING INEEITUPLS ..ottt ettt e e e et e e ettt e e e e e e e e eetbba e s e e e aeeeesbbaa e aaaaaaeenes 82
3.16 SRAM MEMOIY OFgaNIZAtION.iieeiiieiiiiiai e e ettt e et e e e e e e eebba s e e e e e e eesbba e e aeaaaeaees 84
3.17 Using an External Startup File.........oooouiui et e e 86
3.18 Including Assembly Language in YOUFr PrOgramcccoeeiuiuuiiieaaiieeeiiiaa e e eeeeeiii e eeaeeens 88
3.18.1 Calling Assembly FUNCHONS from Coouuuiiiiiiiiieiii e 89
3.19 Creating LIDIAIIESttt e et ettt e e e e e e e e ettt e e e e e e e e eebba e e e aaaeeees 90
3.20 Using the AVR StUdIO DEDUGEToeeiiiiiii et e et eaaeeees 93
T I o 101 £ PSSP RURPPPPIIN 94
.22 LIMITALIONS ... 95
4. Library FUNCHIONS REFEIENCEot 96
4.1 Character TYPE FUNCLONS ...ttt e e e e et e e e e e e e e bbb e e e e e e eeenananas 97
4.2 Standard C INPUY/OULPUL FUNCLIONSuuiieiiiiiiiie et e e et e e e e eeeeaanas 98
4.3 Standard Library FUNCHONSoooiiiiiiii et e e ee ittt eaaaeeees 101
4.4 MathematiCal FUNCHONScoiiiiiiiiiiiiiii 102
4.5 SHING FUNCHONS.e ettt e e e e e e e e ettt e e e e e e e e ee ittt e e e eaaaeeee 105
4.6 BCD CONVErSION FUNCLONSccciiiiiiiiiiiiiiiiiiieetee ettt 110
4.7 MeMOrY ACCESS FUNCLIONSuuiiiiiiieiiit ettt e e e e e e ettt a e e e aaaeees 110
4.8 LCD FUNCHONScitiiiiiiiiiiiiiiii ittt 111
4.8.1 LCD Functions for displays with up to 2x40 charactersooovveeiiiiniieeeieeeiiiee e 111
4.8.2 LCD Functions for displays with 4X40 CharacCters...........ccouuuuuiiiiieiiieiiiiie e 114
4.8.3 LCD Functions for displays connected in 8 bit memory mapped mode...........ccccccce...... 116
4.9 12C BUS FUNCHONScvovivieieieceeieee sttt 119

© 1998-2001 HP InfoTech S.R.L. Page 4

CodeVisionAVR

4.9.1 National Semiconductor LM75 Temperature Sensor FUNCHONS.............covveeeiieeiiiinnnennn. 121
4.9.2 Dallas Semiconductor DS1621 Thermometer/Thermostat FUNCtionscccccoeeeeee. 124
4.9.3 Philips PCF8563 Real Time Clock FUNCLIONS..........cooiiiiiiiiiiiiie e 127
4.9.4 Philips PCF8583 Real Time Clock FUNCLIONS..........ooiiiiiiiiiiiiiececeeeii e 130
4.9.4 Dallas Semiconductor DS1307 Real Time Clock FUNCHONSccovvvviiiiiiiiiiiiiiiiee, 133
4.10 Dallas Semiconductor DS1302 Real Time CIock FUNCLONScccvvviiiiiiiiiiiii 135
4.11 1 Wire ProtOCOl FUNCHONScccviiiiiiiiiiiiiiiiiiiieee ettt 137
4.11.1 Dallas Semiconductor DS1820/DS1822 Temperature Sensors Functions................... 140
4.12 SPIFUNCHONS ..cciiiiiiiiiiiiiiiieeeee ettt 144
4.13 Power Management FUNCHIONSc.uuuu ittt e e e ettt e e e e e eeabb e e e aeaeeaes 147
4. 014 DElAY FUNCHONS ... ettt e e e et ettt s e e e e e e e ettt e e e e e aeeeetbbn e e aaaaaeenes 148
5. CodeWizardAVR Automatic Program GeNEIatorooeiiiiiiiiii i eeeeeeiiie e e e e e e e eeees 149
5.1 Setting the AVR Chip OPLIONSuieiiiiieie et e e e e ee e 152
5.2 Setting the EXternal SRAM ... et 153
5.3 Setting the INPU/OULPUL POIS et 155
5.4 Setting the EXternal INTEITUPLS oot e e 156
5.5 Setting the TIMErS/COUNTEIS. it e et e e e e e e abba s 157
5.6 Setting the UART OF USART ...cuiiii ittt e e e e ettt a e e e e e eeabba e as 161
5.7 Setting the ANAlog COMPAIALONcoiiiiiiiie et e et e e e e eeerba s 164
5.8 Setting the Analog-Digital CONVEITENiiieiiie e 165
5.9 Setting the SPIINTEITACEcooeiii e 167
5.10 SEHHNG the 12C BUS........vveeeeieeeeee et e e eete s e et et s ettt et e e et s e en e 168
5.10.1 Setting the LIM75 JEVICESc.uuuuuiiieeiiieeiiii et e et a e e e eeneaanns 169
5.10.2 Setting the DS1621 HEVICESuuiiieiiieiiiiiiei ettt e e e et e e e e e eeaenanns 170
5.10.3 Setting the PCF8563 UEVICESciiiiiieiiiiiiii ettt e et a e e e eeeeaanns 171
5.10.4 Setting the PCF8583 UEVICESoiieiiieiiiiiiii et e e e e eeaeeanas 172
5.10.5 Setting the DS1307 HEVICESuuiiieiiieiiiiiea ettt e e et aeaeeeaeaanns 173
5.11 Setting the 1 WIr BUScooiiiiiiiii ettt e e e et et e e e e e e eetbba e as 175
5.12 Setting the 2 WIr BUScoeiiiiiiiii ittt e e e ettt e e e e eerbba e 177
5.13 SttiNg the LCD ...ttt e e e e e e e ettt e e e e e e e eetbaaa e eaas 178

© 1998-2001 HP InfoTech S.R.L. Page 5

CodeVisionAVR

5.14 Setting Bit-Banged Peripherals ... 179
5.15 Specifying the Project INFOrmMationooii i 180
B. LICENSE AQIEEMIEBINT .ttt e e e et e ettt b e e e e e e e e eatbba e e e e aeeeeeabbn e e e aaaaeeees 181
6.1 SOMWAIE LICEBNSE ... 181
6.2 Liability DISCIAUIMETttt e e e e ettt e e e e e e e entbaa e e as 181
6.3 RESIIICHIONS. ... 181
R @ o=t = 11 o Lol Lol =T o L] T TR 181
6.5 BACK-UP AN TIANSTE ...t e e e e ettt e e e e e e eetbba e e s 182
LI CIN I=T 1 11 S PP P PP 182
6.7 Other RIghts @and RESIHCHONSiiiiiiiiiiiiiie et e e e e e 182
T I=To o T or= VST U o] o 1o] o APPSO TSP 183
8. Contact INfOrMAatioNcoooiiiii 184

© 1998-2001 HP InfoTech S.R.L. Page 6

CodeVisionAVR

1. Introduction

CodeVisionAVR is a C cross-compiler, Integrated Development Environment and Automatic Program
Generator designed for the Atmel AVR family of microcontrollers.
The program is a native 32bit application that runs under the Windows 95, 98, NT 4.0 and 2000
operating systems.
The C cross-compiler implements nearly all the elements of the ANSI C language, as allowed by the
AVR architecture, with some features added to take advantage of specificity of the AVR architecture
and the embedded system needs.
The compiled COFF object files can be C source level debugged, with variable watching, using the
Atmel AVR Studio debugger 3.2 or later.
The Integrated Development Environment (IDE) has built-in AVR Chip In-System Programmer
software that enables the automatical transfer of the program to the microcontroller chip after
successful compilation/assembly. The In-System Programmer software is designed to work in
conjunction with the Atmel STK500, Kanda Systems STK200/300, Dontronics DT006, Vogel Elektronik
VTEC-ISP and MicroTronics' ATCPU, Mega2000 development boards.
For debugging embedded systems, which employ serial communication, the IDE has a built-in
Terminal.
Besides the standard C libraries, the CodeVisionAVR C compiler has libraries for interfacing with:

Alphanumeric LCD modules

Philips I°C bus

National Semiconductor LM75 Temperature Sensor

Philips PCF8563, PCF8583, Dallas Semiconductor DS1302 and DS1307 Real Time Clocks

Dallas Semiconductor 1 Wire protocol

Dallas Semiconductor DS1820/DS1822 Temperature Sensors

Dallas Semiconductor DS1621 Thermometer/Thermostat

SPI

Power management

Delays

CodeVisionAVR also contains the CodeWizardAVR Automatic Program Generator, that allows you to
write, in a matter of minutes, all the code needed for implementing the following functions:

External memory access setup

Chip reset source identification

Input/Output Port initialization

External Interrupts initialization

Timers/Counters initialization

Watchdog Timer initialization

UART initialization and interrupt driven buffered serial communication

Analog Comparator initialization

ADC initialization

SPI Interface initialization

I°C Bus, LM75 Temperature Sensor, DS1621 Thermometer/Thermostat and PCF8563, PCF8583,
DSl302 DS1307 Real Time Clocks initialization

1 Wire Bus and DS1820/DS1822 Temperature Sensors initialization

LCD module initialization.

This product is © Copyright 1998-2001 Pavel Haiduc and HP InfoTech S.R.L., all rights reserved.

The author of the program wishes to thank Mr. Jack Tidwell for his great help in the implementation of
floating point routines and to Mr. Yuri G. Salov for his excellent work in improving the Mathematical
Functions Library and beta testing CodeVisionAVR.

© 1998-2001 HP InfoTech S.R.L. Page 7

CodeVisionAVR

2. CodeVisionAVR Integrated Development Environment

2.1 Working with Files

Using the CodeVisionAVR IDE you can view and edit any text file used or produced by the C compiler
or assembler.

2.1.1 Creating a New File

You can create a new source file using the File|New menu command or by pressing the Create new
file button on the toolbar.
A dialog box appears, in which you must select File Type|Source and press the Ok button.

:lir Create New File |

File Tywpe——

= Source

" Project

A new editor window appears for the newly created file.
The new file has the name untitled.c. You can save this file under a new name using the File|Save

As menu command.

© 1998-2001 HP InfoTech S.R.L. Page 8

CodeVisionAVR

2.1.2 Opening an Existing File

You can open an existing file using the File|Open menu command or by pressing the Open file button

on the toolbar.
An Open dialog window appears.

open _____________________ EE

Loak in: Iﬁ Ds1820 j ﬁl

& Ds1820

File name: IDS'IEEEI

Files of type: IC Compilerfiles (*.c™h) j Cancel

You must select the name and type of file you wish to open.
By pressing the Open button you will open the file in a new editor window.

2.1.3 Files History

The CodeVisionAVR IDE keeps a history of the opened files.
The most recent eight files that where used can be reopened using the File|Reopen menu command.

© 1998-2001 HP InfoTech S.R.L. Page 9

CodeVisionAVR

2.1.4 Editing a File

A previously opened or a newly created file can be edited in the editor window by using the Tab,
Arrows, Backspace and Delete keys.

Pressing the Home key moves the cursor to the start of the current text line.

Pressing the End key moves the cursor to the end of the current text line.

Pressing the Ctrl+Home keys moves the cursor to the start of the file.

Pressing the Ctrl+End keys moves the cursor to the end of the file.

Portions of text can be selected by dragging with the mouse.

You can copy the selected text to the clipboard by using the Edit|Copy menu command, by pressing
the Ctrl+C keys or by pressing the Copy button on the toolbar.

By using the Edit|Cut menu command, by pressing the Ctrl+X keys or by pressing the Cut button on
the toolbar, you can copy the selected text to the clipboard and then delete it from the file.

Text previously saved in the clipboard can be placed at the current cursor position by using the
Edit|Paste menu command, by pressing the Ctrl+V keys or pressing the Paste button on the toolbar.

Clicking in the right margin of the editor window allows selection of a whole line of text.

Selected text can be deleted using the Edit|Delete menu command or pressing the Ctrl+Delete keys.
The Edit|Print Selection menu command allows the printing of the selected text.

Dragging and dropping with the mouse can move portions of text.

Pressing the Ctrl+Y keys deletes the text line where the caret is currently positioned.

Selected portions of text can be indented, respectively unindented, using the Edit|Indent Block,
respectively Edit|Unindent Block, menu commands or by pressing the Ctrl+l, respectively Ctrl+U
keys.

You can find, respectively replace, portions of text in the edited file by using the Edit|Find,
respectively Edit|Replace, menu commands, by pressing the Ctrl+F, respectively Ctrl+R keys, or by
pressing the Find, respectively Replace buttons on the toolbar.

Changes in the edited text can be undone, respectively redone, by using the Edit|Undo, respectively
Edit|Redo, menu commands, by pressing the Ctrl+Z, respectively Shift+Ctrl+Z keys, or by pressing
the Undo, respectively Redo buttons on the toolbar.

You can go to a specific line number in the edited file, by using the Edit|Goto Line menu command or
by pressing the Alt+G keys.

Bookmarks can be inserted or removed, at the line where the cursor is positioned, by using the
Edit|Toggle Bookmark menu command or by pressing the Shift+Ctrl+0...9 keys.

The Edit|JJump to Bookmark menu command or the Ctrl+0...9 keys will position the cursor at the
start of the corresponding bookmarked text line.

If the cursor is positioned on an opening, respectively closing, brace then the Edit|Match Braces
menu command or the Ctrl+M key will position the cursor at the corresponding matching closing,
respectively opening brace.

Clicking with the mouse right button opens a pop-up menu that also gives the user access to the
above mentioned functions.

© 1998-2001 HP InfoTech S.R.L. Page 10

CodeVisionAVR

2.1.5 Saving a File

The currently edited file can be saved by using the File|Save menu command, by pressing the Ctrl+S
keys or by pressing the Save button on the toolbar.
When saving, the Editor will create a backup file with an ~ character appended to the extension.

All currently opened files can be saved using the File|Save All menu command.

2.1.6 Renaming a File

The currently edited file can be saved under a new name by using the File|Save As menu command.
A Save dialog window will open.

Save CACVAVR\BIN\untited.cAs _____H|EH|
Sawe in; Ia Bin j ﬁl

File name: Iteat

oave as type: IC Compiler source file [*.c) j Cancel

You will have the possibility to specify the new name and type of the file, and eventually its new
location.

© 1998-2001 HP InfoTech S.R.L. Page 11

CodeVisionAVR

2.1.7 Printing a File

You can print the current file using the File|Print menu command or by pressing the Print button on

the toolbar.
The contents of the file will be printed to the Windows default printer.

The paper margins used when printing can be set using the File|Page Setup menu command, which
opens the Page Setup dialog window.

& Page Setup |

—Frinting Options —Margins

¥ Page Header Left: |30 Right: |19 |Z|
v Page Numbers Top: 19 Eh:nttn:nm:|19 |2|

¥ Highlight Syntax | | Units: [rmm

Jed

X Cancel

% Erinter

The units used when setting the paper margins are specified using the Units list box.
The printer can be configured by pressing the Printer button in this dialog window.
Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 12

CodeVisionAVR

2.1.8 Closing a File

You can quit editing the current file by using the File|Close menu command.
If the file was modified, and wasn’t saved yet, you will be prompted if you want to do that.

Confirm |

@ mave changes to C\CVAVELNEXAMPLES\DS18204ds1820.27

Mo | Cancel |

Pressing Yes will save changes and close the file.
Pressing No will close the file without saving the changes.
Pressing Cancel will disable the file closing process.

All currently opened files can be closed using the File|Close All menu command.

© 1998-2001 HP InfoTech S.R.L. Page 13

CodeVisionAVR

2.1.9 Using the Navigator

The Navigator window allows easy displaying or opening of source files.
By clicking on the file name the appropriate file is maximized or opened.

MNawvigator |
E-%¥ CodevisioniwR
=8 Project Ds1320
..... Maotes
=-[9 de1820.c
=% Global Variables
Coex lcd_buffer
. X rom_code
é---F{} Functions

E Errars
=B Warnings
----- B Other Filas

After a Compile or Make process there is also displayed a list of global variables and functions
declared in each compiled C source file.

By clicking on the variable’s, respective function’s, name the variable, respective function, declaration
is highlighted in the appropriate C source file.

If during compilation there are errors or warnings, these are also displayed in the Navigator window.
By clicking on the error or warning, the corresponding source line is highlighted in the appropriate file.

The Navigator tree branches can be expanded, respectively collapsed, by clicking on the +,
respectively -, buttons.

By right clicking in the Navigator window you can open a pop-up menu with the following choices:
- Open afile

Save the currently edited file

Save All opened files

Close Current File

Close Project

Close All opened files

Toggle expanding the file branches on or off

© 1998-2001 HP InfoTech S.R.L. Page 14

CodeVisionAVR

2.2 Working with Projects

The Project groups the source file(s) and compiler settings that you use for building a particular
program.

2.2.1 Creating a New Project

You can create a new Project using the File|[New menu command or by pressing the Create new file

button on the toolbar.
A dialog box appears, in which you must select File Type|Project and press the OK button.

:lir Create New File |

File Twpe—

¢ Source

&+ Project

A dialog will open asking you to confirm if you would like to use the CodeWizardAVR to create the new
project.

Confirm |

“ou are aboutto create a new project
Do wou want to use the Codebyizard AWRY

“es

If you select No then the Create New Project dialog window will open.

© 1998-2001 HP InfoTech S.R.L. Page 15

CodeVisionAVR

You must specify the new Project file name and its location.

Create NewProject _____________________HH|
Sane in: Ia Examples j ﬁl

C_asm C1Therm?5
Ds1820 (A Thermicd
Eeprom

kevpad

Leddemo

Led

hdax1 241

=pi

File name: Iteat

save as bype: IPrn:ujen:tfiIes {*.arj) j Cancel

The Project file will have the .prj extension.
You can configure the Project by using the Project|Configure menu command.

© 1998-2001 HP InfoTech S.R.L. Page 16

CodeVisionAVR

2.2.2 Opening an Existing Project

You can open an existing Project file using the File|Open menu command or by pressing the Open

file button on the toolbar.
An Open dialog window appears.

open __________________________ HEE

Look in: Iﬁ bultfile j @ f—jﬂ

& Multfile

File name: IMuItﬁIE

Files of type: IPrn:ujen:tfiIes {*.arj) j Cancel

You must select the file name of the Project you wish to open.
By pressing the Open button you will open the Project file and its source file(s).
You can configure the Project by using the Project|Configure menu command.

© 1998-2001 HP InfoTech S.R.L. Page 17

CodeVisionAVR

2.2.3 Adding Notes or Comments to the Project

With every Project the CodeVisionAVR IDE creates a text file where you can place notes and
comments.
You can access this file using the Project|Notes or Windows menu commands.

&4 Project Notes - Multfile_prj

This file can be edited using the standard Editor commands.
The file is automatically saved when you Close the Project or Quit the CodeVisionAVR program.

© 1998-2001 HP InfoTech S.R.L. Page 18

CodeVisionAVR

2.2.4 Configuring the Project

The Project can be configured using the Project|Configure menu command or the Project Configure
toolbar button.

2.2.4.1 Adding or removing a File from the Project

To add or remove a file from the currently opened project you must use the Project|Configure menu

command.
A Configure Project tabbed dialog window will open. You must select the Files tab.

4. Configure Project Multfile_prj

Files i C Cumpileri After bake ;
=09 CACVAYRExamples\MULTFILE \Multile prj .
=-[mainfile.c TP Add
[filel.e
[file2.c =i Bemove
[filede
....... ,/QK o 2 Help

By pressing the Add button you can add a source file to the project.

The first file added to the project is the main project file.

This file will always be Maked.

The rest of the files added to the project will be automatically linked to the main project file on Make.

© 1998-2001 HP InfoTech S.R.L. Page 19

CodeVisionAVR

Multiple files can be added by holding the Ctrl key when selecting in the Add File to Project dialog.

Add File To Project ZIx]|

Lookin: | 3 Mulle - =l @

& rmainfile

File name: I“fileE.I:" HileZ.c" "ile1.c" Open
Files of type: IC Compilerfiles (*c) j Cancel

When the project is Open-ed all project files will be opened in the editor.
By clicking on a file, and then pressing the Remove button, you will remove this file from the project.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 20

CodeVisionAVR

2.2.4.2 Setting the C Compiler Options

To set the C compiler options for the currently opened project you must use the Project|Configure
menu command.
A Configure Project tabbed dialog window will open. You must select the C Compiler tab.

4. Configure Project Multfile_prj

Files C Compiler iﬂxﬂer Make;

~SRAM
Chig: 1ATmega1ES :_i Data Stack size: 2hk bytes

Internal SRAM size: 11 024 bytes
. +

Clnck_idl.DElElDDD L/..ﬁ MHZ e tamal SRAM size: ’—. bytes

-IART T | Extemal EEAN Wiait State

[Initialize Baud Rate -
~Campilation

Baud:]EiEEIIII Bitwariables size: |16 i

W Eromote chartoint W charis unsigned

~Memany Madel——— W Global #define W Enhanced Instr.
© Tiny WV Automatic Begister Allocation
&+ Srmall ™ Use an External Startup Initialization File
¥ Enahble \Warnings
—Optimize far————— [T Stack End Markers
¢ Size File Output Format(s): | COFF. ROM, EEP =]
" Speed I~ Use the Terminal [/0 in AvR Studio

W 0K X Cancel

? Help l

You can select the target AVR microcontroller chip by using the Chip combo box.

You must also specify the CPU Clock Frequency in MHz, which is needed by the Delay Functions, 1
Wire Protocol Functions, Dallas Semiconductor DS1820/DS1822 Temperature Sensors Functions and
for the UART initialization.

If the program uses serial communication, you must check the Initialize UART check box and specify
the Baud rate. The compiler will automatically generate start-up code to initialize the UART's Baud
rate.

The required memory model can be selected by using the Memory Model radio group box.

You must also specify the Data Stack Size.

Eventually you may also specify the External SRAM Size (in case the microcontroller have external
SRAM memory connected).

The External SRAM Wait State option enables the insertion of wait states during access to the
external SRAM. This is useful when using slow memory devices.

© 1998-2001 HP InfoTech S.R.L. Page 21

CodeVisionAVR

If an Atmel AT94K10, AT94K20 or AT94K40 FPSLIC device will be used, than there will be the
possibility to specify the Program SRAM size in Kwords.

4. Configure Project Multfile_prj

Files C Compiler iﬂxﬂer Make;

~SRAR
Chig: iATEi-*-lK :_i Data Stack size: 140?2 bytes
Frograrm SREARM size: 11III *i Kawvords

. +
Clock[4000000 [DAIMHz| bt crand sice: [16285 | bytes

-IUART
[Initialize Baud Rate -
~Campilation

Baud:]EiEEIIII Bitwariables size: |16 h

W Bromote chartoint W charis unsigned

~Memany Madel——— W Global #define W Enhanced Instr.
© Tiny WV Automatic Begister Allocation
&+ Srmall ™ Use an External Startup Initialization File
¥ Enahble \Warnings
—Optimize far————— [T Stack End Markers
¢ Size File Output Format(s): | COFF. ROM, EEP =]
" Speed I~ Use the Terminal [/0 in AvR Studio

W 0K X Cancel

7 Help l

The compiled program can be optimized for minimum size, respectively maximum execution speed,
using the Optimize for|Size, respectively Optimize for|Speed, settings.

The size of the bit variables, which are placed in registers R2 to R15, can be specified using the Bit
Variables size list box.

Checking the Promote char to int check box enables the ANSI promotion of char operands to int.
This option can also be specified using the #pragma promotechar compiler directive.

Promoting char to int leads to increased code size and lower speed for an 8 bit chip microcontroller
like the AVR.

If the char is unsigned check box is checked, the compiler treats by default the char data type as an
unsigned 8 bit in the range 0...255.

If the check box is not checked the char data type is by default a signed 8 bit in the range —128...127.
This option can also be specified using the #pragma uchar compiler directive.

Treating char as unsigned leads to better code size and speed.

© 1998-2001 HP InfoTech S.R.L. Page 22

CodeVisionAVR

Checking the Global #define check box allows #defined macros to be visible in all the project files.

The Enhanced Instructions check box allows enabling or disabling the generation of Enhanced Core
instructions for the ATmegal61, ATmegal63 and AT94K FPSLIC devices.

The rest of the registers in the range R2 to R15, not used for bit variables, can be automatically
allocated to char and int global variables by checking the Compilation|Automatic Register
Allocation check box.

An external startup file can be used by checking the Compilation|Use an External Startup File
check box.

The generation of warning messages during compilation can be enabled or disabled by using the
Compilation|Enable Warnings check box.

For debugging purposes you have the option Stack End Markers. If you select it, the compiler will
place the strings DSTACKEND, respectively HSTACKEND, at the end of the Data Stack, respectively
Hardware Stack areas.

When you debug the program with the AVR Studio debugger you may see if these strings are
overwritten, and consequently modify the Data Stack Size.

When your program runs correctly you may disable the placement of the strings in order to reduce
code size.

Using the File Output Format(s) list box you can select one of the following formats for the files
generated by the compiler:
Intel HEX;
COFF (required by the Atmel AVR Studio debugger), ROM and EEP (required by the In-System
Programmer) ;
Atmel generic OBJ, ROM and EEP (required by the In-System Programmer).

If the COFF file format is selected and the Use the Terminal I/O in AVR Studio check box is
checked, special debugging information is generated in order to use the AVR Studio Terminal /0
window for communication with the simulated AVR chip’s UART.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 23

CodeVisionAVR

2.2.4.3 Transferring the Compiled Program to the AVR Chip after
Make

This option is available if you select the After Make tab in the Project Configure window.

£*.Configure Project c.prj

Files | CCompiler After Make

v Programthe Chip [Execute User's Program

Chip Frogramming Dptions

FLASH Lock Bits Fuse Bit(=)
o+ Mo Protection [CkSELO=0
" FProgramming disabled | JCRSELISO
[CkSELZ2=0
" FProgramming and Yerification disabled CKSEL3=0
Boot Lock Bit 0 Boot Lock Bit 1 I BODEN=0
& BO1=1 BO2-1 & B11=1B12-1 | BODLEVEL=0
" B01=0EB02=1 T Bl11=0B12=1 L JHOOTRST=0
)))) - BOOTSZ0=0
" B01=1 BOZ=0 " B11=1 B12=0 [EESAWE=0

v Check Signature W Check Erasure ¥ FPreserse EEFROM W Verify

oK X Cancel ? Help

If you check the Program the Chip option, then after successful compilation/assembly your program
will be automatically transferred to the AVR chip using the built-in Programmer software.

The following steps are executed automatically:
- Chip erasure
FLASH and EEPROM blank check
FLASH programming and verification
EEPROM programming and verification
Fuse and Lock Bits programming

You can select the type of the chip you wish to program using the Chip combo box.

If the chip you have selected has Fuse Bit(s) that may be programmed, then a supplementary Fuse
Bit(s) check box will appear. Using this check box you can set various chip options, which are
described in the Atmel data sheets.

If you wish to protect your program from copying, you must select the corresponding option using the
FLASH Lock Bits radio box.

© 1998-2001 HP InfoTech S.R.L. Page 24

CodeVisionAVR

If you wish to check the chip's signature before programming you must use the Check Signature
option.

To speed up the programming process you can uncheck the Check Erasure check box.
In this case there will be no verification of the correctness of the FLASH erasure.

The Preserve EEPROM checkbox allows preserving the contents of the EEPROM during chip
erasure.

To speed up the programming process you can uncheck the Verify check box.
In this case there will be no verification of the correctness of the FLASH and EEPROM programming.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

2.2.4.4 Running an User Specified Program after Make

This option is available if you select the After Make tab in the Project Configure window.
If you check the Execute User’s Program option, then a program, that you have previously specified,
will be executed after the compilation/assembly process.

4. Configure Project Multfile_prj

Files | CCompiler After Make

™ Programthe Chip W Execute User's Program 3 Program Settings

oK X Cancel ? Help

© 1998-2001 HP InfoTech S.R.L. Page 25

CodeVisionAVR

Using the Program Settings button you can modify the:

Program Directory and File Name
Program Command Line Parameters
Program Working Directory

awUser Program Settings

FProgram Directary and FileName:

Command Line Parameters:

YWiarking Directory:

B

v

OF.

X Cancel

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L.

Page 26

CodeVisionAVR

2.2.5 Obtaining an Executable Program

Obtaining an executable program requires the following steps:

1. Compiling the Project’s C source file, using the CodeVisionAVR C Compiler, and obtaining an
assembler source file

2. Assembling the assembler source file, using the Atmel AVR assembler AVRASM32.

Compiling a File, executes step 1.
Making, executes step 1 and 2 for the main project file

2.2.5.1 Compiling the Project

To compile the Project you must use the Project|Compile File menu command, press the F9 key or
press the Compile button of the toolbar. The CodeVisionAVR C Compiler will be executed, producing
an assembler source file with the .asm extension.

The assembly source file can be examined and modified by opening it with the Editor.

After the compilation an Information window will open showing the compilation results.

i Information
Compiler |

Chip: AT90S8515

temary model: Small
Optirmize for: Size

Fromate char to int: Mo

charis unsigned: No

Automatic register allocation: On
Llse &R Studio Terminal 1/0: Mo

872 line(s) compiled
Mo errors
Mo warnings

Bitwariahles size: 0 bytels)

Diata Stack area: B0hto OFh
Data Stack size: 128 byte(s)

Global wariables area:; E0h to 165k
Global variables size: 118 byte(s)

Hardware Stack area: 156h to 26Fh
Hardware Stack size: 26b byte(s)

© 1998-2001 HP InfoTech S.R.L. Page 27

CodeVisionAVR

Eventual compilation errors and/or warnings will be listed in the Message window located under the
Editor window, or in the Navigator window.

Warning: CACYANVBAEXAMPLES\DS18204ds1820.c(128): global symbol 'ds1820_set_alarm' declared. but newver used

1| |]

| 310 | | Insert |

By double clicking on the error or warning message, the line with the problem will be highlighted.
The size of the Message window can be modified using the horizontal slider bar placed between it
and the Editor window.

© 1998-2001 HP InfoTech S.R.L. Page 28

CodeVisionAVR

2.2.5.2 Making the Project

To make the Project you must use the Project|Make menu command, press the Shift+F9 keys or
press the Make button of the toolbar. The CodeVisionAVR C Compiler will be executed, producing an
assembler source file with the .asm extension.

The rest of the files added to the project will be automatically linked to the main project file.

Eventual compilation errors and/or warnings will be listed in the Message window located under the
Editor window, or in the Navigator window.

Warning: CACYANVBAEXAMPLES\DS18204ds1820.c(128): global symbol 'ds1820_set_alarm' declared. but newver used

1| |]

| 310 | | Insert |

By double clicking on the error or warning message, the line with the problem will be highlighted.

If no errors were encountered, then the Atmel AVR assembler AVRASM32 will be executed, obtaining
the output file type specified in Project|Configure|C Compiler.

After the make process is completed an Information window will open showing the compilation
results.

© 1998-2001 HP InfoTech S.R.L. Page 29

CodeVisionAVR

Pressing the Compiler tab will display compilation results.

i Information

Compiler |ﬂussembler| Prugrammerl

Chip: AT90S8515

temary model: Small
Optirmize for: Size

Fromate char to int: Mo

charis unsigned: No

Automatic register allocation: On
Llse &R Studio Terminal 1/0: Mo

872 line(s) compiled
Mo errors
Mo warnings

Bitwariahles size: 0 bytels)

Diata Stack area: B0hto OFh
Data Stack size: 128 byte(s)

Global wariables area:; E0h to 165k
Global variables size: 118 byte(s)

Hardware Stack area: 156h to 26Fh
Hardware Stack size: 26b byte(s)

..

% Program | X Cancel

© 1998-2001 HP InfoTech S.R.L. Page 30

CodeVisionAVR

Pressing the Assembler tab will display assembly results.

i Information

Campiler Assembler |Prugrammer|

Creating 'ds1820.eep'
Creating 'ds1820.ram'
Creating 'ds1820.0b)'
Creating 'ds1820.1st!

Assembling 'ds1820.asm'
Including 'ds1820.nc!

Frogram mermony usage:

Code 1070 words
Constants (dw/db): 57 words
Lnused o Dwords
Total 1127 words

Assembly complete with no errors.
Deleting 'ds1820.eep'

..

% Program | X Cancel

© 1998-2001 HP InfoTech S.R.L. Page 31

CodeVisionAVR

Pressing the Programmer tab will display the Chip Programming Counter, which shows how many
times was the AVR chip programmed so far.

i Information

Cumpilerl Assembler

Chip Programming Counter; O

§etCDunter |
% Program X Cancel

Pressing the Set Counter button will open the Set Programming Counter window:

Set Programming Counter |

Mew Counter %alue: IEI EI
X Cancel |

This dialog window allows setting the new Chip Programming Counter value.

Pressing the Program button allows automatic programming of the AVR chip after successful
compilation.

Pressing Cancel will disable automatic programming.

© 1998-2001 HP InfoTech S.R.L. Page 32

CodeVisionAVR

2.2.6 Closing a Project

You can quit working with the current Project by using the File|Close Project menu command.

If the Project files were modified, and weren’t saved yet, you will be prompted if you want to do that.
Confirm I

3r) save changes to T CVAYRE,Examples\MULTFILEY mainfile.c?

Mo | Cancel |

Pressing Yes will save changes and close the project.
Pressing No will close the project without saving the changes.
Pressing Cancel will disable the project closing process.

When saving, the IDE will create a backup file with a .pr~ extension.

© 1998-2001 HP InfoTech S.R.L. Page 33

CodeVisionAVR

2.3 Tools

Using the Tools menu you can execute other programs without exiting the CodeVisionAVR IDE.

2.3.1 The AVR Studio Debugger

The CodeVisionAVR C Compiler is designed to work in conjunction with the Atmel AVR Studio
debugger version 3.2 or later.

Before you can invoke the debugger, you must first specify its location and file name using the
Settings|Debugger menu command.

Debugger Directory and Filename |

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

The debugger is executed by selecting the Tools|Debugger menu command or by pressing the
Debugger button on the toolbar.

© 1998-2001 HP InfoTech S.R.L. Page 34

CodeVisionAVR

2.3.2 The AVR Chip Programmer

The CodeVisionAVR IDE has a built-in In-System AVR Chip Programmer that lets you easily
transfer your compiled program to the microcontroller for testing.

The Programmer is designed to work with the Atmel STK500, Kanda Systems STK200/300,
Dontronics DT006, Vogel Elektronik VTEC-ISP or the MicroTronics ATCPU and Mega2000

development boards, connected to your computer's parallel printer port.

The Programmer is executed by selecting the Tools|Chip Programmer menu command or by
pressing the Chip Programmer button on the toolbar.

“ CodeVisionAYR Chip Programmer - Kanda Systems STK200/300

File Edit Program Bead Compare Help

Chip:[ATmegadea

—FLASH
Start: |0 h

Checksum: CO00R

End: |3FFF h

EEFROR

Startll:l b End: |3FF h

Checksurm: FCO0h

~Chip Frogramming Options

—FLASH Lock Bits
& Mo Protection

" Programming disahbled

" Programming and Yetification disahled

—Boot Lock Bit 0———
= B01=1 BO2=1

i~ BO1=0B02=1
i~ BO1=0B02=0
" BO1=1B02=0

—Boot Lock Bit 1——
= B11=1 B12=1

~ B11=0B12=1
=~ B11=0B12=0
 B11=1B12=0

—Fuse Bit(s)

M CESELO=0
[T CKSEL1=0
[T CKSELZ=0
[T CKSEL3=0
[T BODEM=0
[T BODLEYEL=0
[BOOTRST=0
[BOOTSZ0=0
[BOOTSZ1=0
[EESANWE=0

W Check Signature W Check Erasure W Preserve EEPROM W Yerify

=]|

You can select the type of the chip you wish to program using the Chip combo box.

If the chip you have selected has Fuse Bit(s) that may be programmed, then a supplementary Fuse
Bit(s) check box will appear. Using this check box you can set various chip options, which are

described in the Atmel data sheets.

© 1998-2001 HP InfoTech S.R.L.

Page 35

CodeVisionAVR

If you wish to protect your program from copying, you must select the corresponding option using the
FLASH Lock Bits radio box.
The Programmer has two memory buffers:

The FLASH memory buffer

The EEPROM memory buffer.

You can Load or Save the contents of these buffers using the File menu.
Supported file formats are:

Atmel .rom and .eep

Intel HEX

Binary .bin

After loading a file in the corresponding buffer, the Start and End addresses are updated accordingly.
You may also edit these addresses if you wish.

The contents of the FLASH, respectively EEPROM, buffers can be displayed and edited using the
Edit|FLASH , respectively Edit| EEPROM menu commands.

When one of these commands is invoked, an Edit window displaying the corresponding buffer
contents will open:

w1l w2 @3 w4 wh wE ¥ #B w8 wA wB wC w0 xE «F =
Q00 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
001= FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
002« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
003=x FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
004x FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
005« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00&x FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
007« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
003=x FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
009« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
004« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
O0Bx FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
O0Cx FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00D« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
O0Ex FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00F= FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
010« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
011« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
012« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
013« FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
014x FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

vi

miC.. rrrC rrrC rerc e reec rerc e e reec rerc e e rrec e e ceer

4 é ; 3]
o

The buffer's contents, at the highlighted address, can be modified by typing in the new value.
The highlighted address can be modified using the arrow, Tab, Shift+Tab, PageUp or PageDown
keys.

© 1998-2001 HP InfoTech S.R.L. Page 36

CodeVisionAVR

The Fill Memory Block window can be opened by right clicking in the Edit window:
[Fill Memory Block |

Start Address: (0

End Address: |FF h

1

Fill v alue: 0

| X Cancel |

This window lets you specify the Start Address, End Address and Fill Value of the memory area to
be filled.

If you wish to check the chip's signature before any operation you must use the Check Signature
option.

To speed up the programming process you can uncheck the Check Erasure check box.
In this case there will be no verification of the correctness of the FLASH erasure.

The Preserve EEPROM checkbox allows preserving the contents of the EEPROM during chip
erasure.

To speed up the programming process you also can uncheck the Verify check box.
In this case there will be no verification of the correctness of the FLASH and EEPROM programming.

For erasing a chip's FLASH and EEPROM you must select the Program|Erase menu command.
After erasure the chip's FLASH and EEPROM are automatically blank checked.

For simple blank checking you must use the Program|Blank Check menu command.

If you wish to program the FLASH with the contents of the FLASH buffer you must use the
Program|FLASH menu command.

For programming the EEPROM you must use the Program|EEPROM menu command.

After programming the FLASH and EEPROM are automatically verified.

To program the Lock, respectively the Fuse Bit(s) you must use the Program|Fuse Bit(s),
respectively Program|Lock Bits menu commands.

The Program|All menu command allows to automatically:
- Erase the chip

FLASH and EEPROM blank check

Program and verify the FLASH

Program and verify the EEPROM

Program the Fuse and Lock Bits.

If you wish to read the contents of the chip's FLASH, respectively EEPROM, you must use the
Read|FLASH, respectively Read|EEPROM menu commands.

For reading the chip's signature you must use the Read|Chip Signature menu command.

To read the Lock, respectively the Fuse Bits you must use the Read|Lock Bits,

respectively Read|Fuse Bits menu commands.

© 1998-2001 HP InfoTech S.R.L. Page 37

CodeVisionAVR

For comparing the contents of the chip's FLASH, respectively EEPROM, with the corresponding
memory buffer, you must use the Compare|FLASH, respectively Compare|EEPROM menu
commands.

For exiting the Programmer and returning to the CodeVisionAVR IDE you must use the File|Close
menu command.

2.3.3 The Serial Communication Terminal

The Terminal is intended for debugging embedded systems, which employ serial communication
(RS232, RS422, RS485).

The Terminal is invoked using the Tools|Terminal menu command or the Terminal button on the
toolbar.

H Terminal M=l B3
HexCode:[Send | FixFile | TxFile | Hex | Clear | ®Reset Chip

. =

Al

| COMZ:9600,8M1 | Mo handsh. |ASCI | TTv |Echoan |

ml_l;

The characters can be displayed in ASCII or hexadecimal format. The display mode can be toggled
using the Hex/ASCII button.
The received characters can be saved to a file using the Rx File button.

Any characters typed in the Terminal window will be transmitted through the PC serial port.

The entered characters can be deleted using the Backspace key.

By pressing the Send button, the Terminal will transmit a character whose hexadecimal ASCII code
value is specified in the Hex Code edit box.

By pressing the Tx File button, the contents of a file can be transmitted through the serial port.

By pressing the Reset button, the AVR chip on the STK200/300, VTEC-ISP, DT006, ATCPU or
Mega2000 development board is reseted.

At the bottom of the Terminal window there is a status bar in which are displayed the:
computer's communication port;
communication parameters;
handshaking mode;
received characters display mode;
type of emulated terminal;
the state of the transmitted characters echo setting.

© 1998-2001 HP InfoTech S.R.L. Page 38

CodeVisionAVR

2.3.4 Executing User Programs

User programs are executed by selecting the corresponding command from the Tools menu.
You must previously add the Program’s name to the menu.

2.3.4.1 Configuring the Tools Menu

You can add or remove User Programs from the Tools menu by using the Tools|Configure menu
command.
A Configure Tools dialog window, with a list of User Programs, will open.

Jy Configure Tools |
=% Tools)
Ly Awrcalc Fi o Add
=i Bemowve
B Settings

X Cancel ? Help

Using the Add button you can add a Program to the Tools menu.
Using the Remove button you can remove a Program from the Tools menu.

© 1998-2001 HP InfoTech S.R.L. Page 39

CodeVisionAVR

Using the Settings button you can modify the:
- Tool Menu Name

Tool Directory and File Name

Command Line Parameters

Working Directory of a selected Program from the list.

4% Tool Settings |

Tool Mame:
IAvrl::aI C

Tool Directory and FileMarne:
IC:HC’VAVF&RBINHAWE&IC.EXE H

Command Line Parameters:

Warking Directory:
|c::xcvwma|m B

X Cancel

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 40

CodeVisionAVR

2.4 IDE Settings
The CodeVisionAVR IDE is configured using the Settings menu.

2.4.1 General Settings

The General Settings can be configured using the Settings|General menu command.

General Settings |

¥ Show Toalbar
¥ Show MNavigator
V¥ Show hMessages

¥ Show Informatian

If the Show Toolbar check box is checked the command buttons toolbar will be displayed.
If the Show Navigator check box is checked the Navigator window is displayed in the left of the main

program window.
If the Show Information check box is checked, there will be an Information window displayed after
Compiling or Making.

The General Settings changes can be saved, respectively canceled, using the OK, respectively
Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 41

CodeVisionAVR

2.4.2 Configuring the Editor

The Editor can be configured using the Settings|Editor menu command.

Editor Settings |
P s T —Colars
v SynitEs Highlighting
Background: |[| Default j
¥ Show Line MNumbers T B Deicul j
W Autoindent CKeywords: |l Default j
Freprocessor: |[l]l Default j
Tab Size:l-ﬂl_ﬂ Storage modif: |l Default j
Strings: B Default j
Font: oy | Comments: B Default j
X Cancel =% Default

By checking or unchecking the Syntax Highlighting check box, you can enable or disable the C
syntax color highlighting of the files displayed in the Editor windows.

By checking or unchecking the Show Line Numbers check box, you can enable or disable the
displaying of the line numbers in the Editor windows.

By checking or unchecking the Autoindent check box, you can enable or disable the autoindenting
during file editing.

The number of blank spaces, inserted when pressing the Tab key, can be specified using the Tab
Size spin edit.

The font, used by the text Editor and the Terminal, can be specified using the Font button.

The different colors, used for displaying the text in the Editor windows and for C syntax highlighting,
can be specified by clicking on the appropriate panels in the Colors group.

The Background and Text color settings are the same for both the EditorEdit File and the
TerminalTerminal.

The Editor configuration changes can be saved, respectively canceled, using the OK, respectively
Cancel buttons.
By pressing the Default button the default Editor settings are restored.

© 1998-2001 HP InfoTech S.R.L. Page 42

CodeVisionAVR

2.4.3 Configuring the Assembler

The Assembler can be configured using the Settings|Assembler menu command.
Assembler Settings |

0n Aszembler Eror————

&~ Openthe listfile

" Openthe asmfile

The On Assembler Error options allow to select which file will be automatically opened by the Editor
in the case of an assembly error.

The Assembler configuration changes can be saved, respectively canceled, using the OK,
respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 43

CodeVisionAVR

2.4.4 Setting the Debugger Path

The CodeVisionAVR C Compiler is designed to work in conjunction with the Atmel AVR Studio
debugger version 3.2 or later.

Before you can invoke the debugger, you must first specify its location and file name using the
Settings|Debugger menu command.

Debugger Directory and Filename |

& Browse

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

Pressing the Browse button opens a dialog window that allows selecting the debugger's directory and
filename.

Debugger Directory and FileName

Loak in: Iﬁﬂw’ﬁstdS j ﬁl

Appnotes W AurStudio
AvrProg

Help

lcez00

[0=etup

oelftest

Upgrade13

avrasmiz

File name: IAvrStudil:l

Files of type: IExecutables *.exe) j Cancel

© 1998-2001 HP InfoTech S.R.L. Page 44

CodeVisionAVR

2.4.5 AVR Chip Programmer Setup

Using the Settings|Programmer menu command, you can select the type of the in-system
programmer that is used, and the computer's port to which the programmer is connected.
The current version of CodeVisionAVR supports the following in-system programmers:

Kanda Systems STK200 and STK300
Atmel STK500

Dontronics DT006

Vogel Elektronik VTEC-ISP
MicroTronics ATCPU and Mega2000

The STK200, STK300, DT006, VTEC-ISP, ATCPU and Mega2000 in-system programmers use the

parallel printer port.
The following choices are available through the Printer Port radio group box:

LPT1, at base address 378h;
LPT2, at base address 278h;
LPT3, at base address 3BCh.

Frogrammer Settings i
A%E Chip Programmer Type:
[Kanda Systems STK200/300 =]

—Frinter Port
& LFT1 (378h)

" LPTZ (278h)
¢« LPT3 (3BChH)

© 1998-2001 HP InfoTech S.R.L. Page 45

CodeVisionAVR

The STK500 in-system programmer is supported through the STK500.EXE command line utility
supplied with AVRStudio 3.22 or later.

In order to use this utility you must specify the directory where it is located.

This is done using the STK500.EXE Directory button.

The STK500 programmer uses the RS232C serial communication port, which can be specified using
the Communication Port list box.

Frogrammer Settings i
A%E Chip Programmer Type:
|Atmel STKS00 =]

f&. STKEOD.EXE Directory l

Communication Port:]CDMZ vl

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 46

CodeVisionAVR

2.4.6 Serial Communication Terminal Setup

The serial communication Terminal is configured using the Settings|Terminal menu command.

Terminal Settings !
_ r-—_l ~Handshaking———
Fort; COkz - & Mone
Biaud rate: IBEIIIIJ vl " Zon/xof
 BTS/CTS
Data hits: iB vl DTR/DSR
_]—_l ~Append LF
Stop bits: 1 | | ¥ OnPReception
Farity: IN':'”E vl ¥ On Transmission
Emulation:]'I_I'Y 'l W Echo
X Cancel 7 Help

In the Terminal Setup window you can select the:
computer's communication port used by the Terminal: COM1 to COME6;
Baud rate used for communication: 110 to 115200;
number of data bits used in reception and transmission: 5 to 8;
number of stop bits used in reception and transmission: 1, 1.5 or 2;
parity used in reception and transmission: None, Odd, Even, Mark or Space;
type of emulated terminal: TTY, VT52 or VT100;
type of handshaking used in communication: None, Hardware (CTS or DTR) or Software
(XON/XOFF);
possibility to append LF characters after CR characters on reception and transmission;
enabling or disabling the echoing of the transmitted characters.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2001 HP InfoTech S.R.L. Page 47

CodeVisionAVR

2.5 Accessing the Help

CodeVisionAVR help system is accessed by invoking the Help|Help menu command or by pressing
the Help toolbar button.

2.6 Transferring the License to another computer

The CodeVisionAVR C compiler features a computer locked licensing system.

This means that, the first time after purchase, you will receive from the author a license file that is
specific to your particular computer.

This prevents you from using the software on another computer, until you will Export the license to
this computer.

After the license Export, the compiler on the first computer will be disabled and you will only be able
to run the compiler on the second one.

You can always Export the license back to the first computer, but the license on the second one will
be disabled after that.

By this procedure only one person can use the compiler at a time.

To Export the license from the computer #1 to the computer #2 you must proceed like this:
install the CodeVisionAVR C compiler on the computer #2
execute the compiler on computer #2, it will display a specific serial number

£l CodeVisionAVR License |

“our Serial Mumber is:

SADS-AFIC-ECD7-E225

To purchase alicense, please send this
Serial Mumberto HF InfoTech S R.L. at
dhptechn{®ir.ro
ar
hpinfotechi@mail. com

It wou allready purchased the program,
then wou must Impaort the license from
awvalid CodeYisionAYF installation

& Irmpart X Cancel

© 1998-2001 HP InfoTech S.R.L. Page 48

CodeVisionAVR

execute the compiler on computer #1 and select the Help|Export menu command, an Export
CodeVisionAVR License dialog window will open
enter the serial number from computer #2 in the Destination Serial Number edit box

& Export CodeVisionAVR License |

Serial # of the destination computer:

IEADE--’-IF?C—ECD?—EEEE

& Export | X Cancel

press the Export button, if you press the Cancel button the Export will be canceled

you will be prompted where to place the new license file for the computer #2, usually you can
chose a diskette in drive A:

Save LicenseFile _____________H|EH|
Sawve in: |r£3-5 Floppy (4 j ﬁl

File name: IIicense

oave as type: ILil::ense files *.datf) j Cancel

press Save. After the new license file is successfully copied to the diskette, the compiler on
computer #1 will cease running

© 1998-2001 HP InfoTech S.R.L. Page 49

CodeVisionAVR

place the diskette with the license file in drive A: of computer #2 and press the Import button.
After that the license transfer is completed and the compiler will run only on computer #2.

£l CodeVisionAVR License |

“our Serial Mumber is:

SADS-AFIC-ECD7-E225

To purchase alicense, please send this
Serial Mumberto HF InfoTech S R.L. at
dhptechn{®ir.ro
ar
hpinfotechi@mail. com

It wou allready purchased the program,
then wou must Impaort the license from
awvalid CodeYisionAYF installation

X Cancel

Please note that after the Export procedure, the serial number of the computer #1 will change.
In this situation when you will try to Import a license back to this computer, you must enter this new
serial number, not the old one.

© 1998-2001 HP InfoTech S.R.L. Page 50

CodeVisionAVR

2.7 Connecting to HP InfoTech's Web Site

The Help|HP InfoTech Web Site menu command opens the default web browser and connects to HP
InfoTech's web site http://infotech.ir.ro
Here you can check for the latest HP InfoTech's products and updates to CodeVisionAVR.

2.8 Contacting HP InfoTech by E-Mail

The Help|E-Mail HP InfoTech menu command opens the default e-mail program and allows you to
send an e-mail to: dhptechn@ir.ro and hpinfotech@mail.com

2.9 Quitting the CodeVisionAVR IDE

To quit working with the CodeVisionAVR IDE you must select the File|Exit menu command.
If some source files were modified and were not saved yet, you will be prompted if you want to do that.

© 1998-2001 HP InfoTech S.R.L. Page 51

CodeVisionAVR

3. CodeVisionAVR C Compiler Reference

This section describes the general syntax rules for the CodeVisionAVR C compiler.

Only specific aspects regarding the implementation of the C language by this compiler are exposed.
This help is not intended to teach you the C language; you can use any good programming book to do
that.

You must also consult the appropriate AVR data sheets from Atmel.

3.1 The Preprocessor

The Preprocessor directives allows you to:

: include text from other files, such as header files containing library and user function prototypes
define macros that reduce programming effort and improve the legibility of the source code
set up conditional compilation for debugging purposes and to improve program portability
issue compiler specific directives

The #include directive may be used to include another file in your source.
You may nest as many as 16 #include files.
Example:

/* File will be |ooked for in the directory where the
conpiler is installed */
#i ncl ude <file_nane>

or

/* File will be |ooked for in the current directory */
#include "fil e_nane”

The #define directive may be used to define a macro.
Example:

#defi ne ALFA Oxff

This statement defines the symbol ‘ALFA’ to the value Oxff.
The C preprocessor will replace 'ALFA’ with Oxff in the source text before compiling.

Macros can also have parameters. The preprocessor will replace the macro with it's expansion and
the formal parameters with the real ones.
Example:

#defi ne SUM a, b) a+b

/* the follow ng code sequence wil |
be replaced with int i=2+3; */

int i=SUM 2, 3);

When defining macros you can use the # operator to convert the macro parameter to a character
string.

© 1998-2001 HP InfoTech S.R.L. Page 52

CodeVisionAVR

Example:
#defi ne PRI NT_MESSAGE(t) printf(#t)

[* oo */
/* the follow ng code sequence wil |

be replaced with printf("Hello"); */
PRI NT_MESSAGE(Hel | 0) ;

Two parameters can be concatenated using the ## operator.

Example:
#define ALFA(a,b) a ## b
/* the follow ng code sequence wil |

be replaced with char xy=1; */
char ALFA(x,y)=1;

A macro definition can be extended to a new line by using \ .

Example:

#defi ne MESSAGE "This is a very \
long text..."

A macro can be undefined using the #undef directive.
Example:

#undef ALFA

The #ifdef, #ifndef, #else and #endif directives may be used for conditional compilation.

The syntax is:

#i f def macro_nane
[set of statements 1]
#el se

[set of statenments 2]
#endi f

If 'alfa’ is a defined macro name, then the #ifdef expression evaluates to true and the set of

statements 1 will be compiled.
Otherwise the set of statements 2 will be compiled.
The #else and set of statements 2 are optional.

If ‘alfa’ is not defined, the #ifndef expression evaluates to true.

The rest of the syntax is the same as that for #ifdef.

© 1998-2001 HP InfoTech S.R.L.

Page 53

CodeVisionAVR

The #if, #elif, #else and #endif directives may be also used for conditional compilation.

#i f expressionl

[set of statements 1]
#el i f expression2
[set of statements 2]
#el se

[set of statements 3]
#endi f

If expressionl evaluates to true, the set of statements 1 will be compiled.
If expression2 evaluates to true, the set of statements 2 will be compiled.
Otherwise the set of statements 3 will be compiled.

The #else and set of statements 3 are optional.

There are the following predefined macros:

__LINE___ the current line number of the compiled file

__FILE__ the current compiled file

__TIME___ the current time in hh:mm:ss format

__DATE__ the current date in mmm dd yyyy format

_MODEL_TINY_ if the program is compiled using the TINY memory model

_MODEL_SMALL__ if the program is compiled using the SMALL memory model

_OPTIMIZE_SIZE_ if the program is compiled with optimization for size

_OPTIMIZE_SPEED _ if the program is compiled with optimization for speed

_UNSIGNED_CHAR__ if the char is unsigned compiler option is enabled or #pragma uchar+ is
used

_GLOBAL_DEFINES if the Global #define compiler option is enabled.

The #line directive can be used to modify the predefined _ LINE__ and __FILE__ macros.
The syntax is:

#line integer_constant ["file_nane"]

Example:

/* This will set _LINE_ to 50 and
__FILE__ to "file2.c" */

#line 50 "file2.c"

/* This will set _LINE__ to 100 */
#1ine 100

There #error directive can be used to stop compilation and display an error message.
The syntax is:

#error error_message
Example:

#error This is an error!

© 1998-2001 HP InfoTech S.R.L. Page 54

CodeVisionAVR

The #pragma directive allows compiler specific directives.
You can use the #pragma warn directive to enable or disable compiler warnings.
Example:

/* \Warnings are disabled */
#pragma war n-

/* Wite sone code here */

/* VWarnings are enabled */
#pragma war n+

The compiler’'s code optimizer can be turned on or off using the #pragma opt directive. This directive
must be placed at the start of the source file.

The default is optimization turned on.

Example:

/* Turn optimzation off, for testing purposes */
#pragma opt -

or

/* Turn optimzation on */
#pragma opt +

If the code optimization is enabled, you can optimize some portions or all the program for size or
speed using the #pragma optsize directive.

The default state is determined by the Project|Configure|C Compiler|Compilation|Optimization
menu setting.

Example:

/* The programwill be optimzed for mninmmsize */
#pragma optsi ze+

/* Place your program functions here */

/* Now the programw || be optimzed for maxi num execution speed */
#pragma opt si ze-

/* Place your program functions here */

© 1998-2001 HP InfoTech S.R.L. Page 55

CodeVisionAVR

The automatic saving and restoring of registers RO, R1, R22, R23, R24, R25, R26, R27, R28, R29,
R30, R31 and SREG, during interrupts can be turned on or off using the #pragma savereg directive.
Example:

/* Turn registers saving off */
#pragma saver eg-

/* interrupt handler */

interrupt [1] void ny_irqg(void) {

/* now save only the registers that are
affected by the routines in the handler,
for exanmple R30, R31 and SREG */

#asm

push r30
push r31
in r 30, SREG
push r30
#endasm

/* place the C code here */

[* ... %]
/* now restore SREG R31 and R30 */
#asm
pop r 30
out SREG r 30
pop r31
pop r30
#endasm
}

/* re-enable register saving for the other interrupts */
#pragma savereg+

The default state is automatic saving of registers during interrupts.

The automatic allocation of global variables to registers can be turned on or off using the #pragma
regalloc directive.

The default state is determined by the Project|Configure|C Compiler|Compilation|Automatic
Register Allocation check box.

Example:

/* the follow ng gl obal variable will be automatically
allocated to a register */

#pragma regal | oc+

unsi gned char alfa;

/* the follow ng global variable will not be automatically
allocated to a register and will be placed in normal SRAM */
#pragma regal | oc-

unsi gned char bet a;

© 1998-2001 HP InfoTech S.R.L. Page 56

CodeVisionAVR

The ANSI char to int operands promotion can be turned on or off using the #pragma promotechar
directive.
Example:

/* turn on the ANSI char to int pronotion */
#pragma pronot echar +

/* turn off the ANSI char to int pronotion */
#pragma pronot echar -

This option can also be specified in the Project|Configure|C Compiler|Promote char to int menu.
Treating char by default as an unsigned 8 bit can be turned on or off using the #pragma uchar
directive.

Example:

/* char will be unsigned by default */
#pragma uchar +

/* char will be signed by default */
#pragma uchar -

This option can also be specified in the Project|Configure|C Compiler|char is unsigned menu.

The #pragma library directive is used for specifying the necessity to compile/link a specific library file.
Example:

#pragma library nylib.lib

© 1998-2001 HP InfoTech S.R.L. Page 57

CodeVisionAVR

3.2 Comments

The character string "/*" marks the beginning of a comment.
The end of the comment is marked with "*/".
Example:

/* This is a comment */
/* This is a
multiple line comment */

One-line comments may be also defined by using the string "//".

Example:

// This is also a coment

Nested comments are not allowed.

© 1998-2001 HP InfoTech S.R.L.

Page 58

CodeVisionAVR

3.3 Reserved Keywords

Following is a list of keywords reserved by the compiler.
These can not be used as identifier names.

br eak
bi t

case
char
const
conti nue
defaul t
defi ned
do
doubl e
eeprom
el se
enum
extern
flash

fl oat
for

f uncused
goto

i f
inline

i nt

i nterrupt
| ong
register
return
short

si gned
si zeof
sfrb
sfrw
static
struct
swi tch

t ypedef
uni on
unsi gned
voi d

vol atile
whi | e

© 1998-2001 HP InfoTech S.R.L.

Page 59

CodeVisionAVR

3.4 Identifiers

An identifier is the name you give to a variable, function, label or other object.

An identifier can contain letters (A...Z, a...z) and digits (0...9), as well as the underscore character ().
However an identifier can only start with a letter or an underscore.

Case is significant; i.e. variablel is not the same as Variablel.

Identifiers can have up to 32 characters.

3.5 Data Types

The following table lists all the data types supported by the CodeVisionAVR C compiler, their range of
possible values and their size:

Type Size (Bits) | Range

bit 1 0,1

char 8 -128 to 127

unsigned char 8 0 to 255

signed char 8 -128to 127

int 16 -32768 to 32767

short int 16 -32768 to 32767

unsigned int 16 0 to 65535

signed int 16 -32768 to 32767

long int 32 -2147483648 to 2147483647
unsigned long int 32 0 to 4294967295

signed long int 32 -2147483648 to 2147483647
float 32 +1.175e-38 to +£3.402e38
double 32 +1.175e-38 to +£3.402e38

The bit data type is supported only for global bit variables.
If the Project|Configure|C Compiler|char is unsigned option is checked or #pragma uchar+ is
used, then char has by default the range 0..255.

© 1998-2001 HP InfoTech S.R.L. Page 60

CodeVisionAVR

3.6 Constants

Integer or long integer constants may be written in decimal form (e.g. 1234), in binary form with Ob
prefix (e.g. 0b101001), in hexadecimal form with Ox prefix (e.g. Oxff) or in octal form with O-prefix (e.g.
0777).

Unsigned integer constants may have the suffix U (e.g. 20000U).

Long integer constants may have the suffix L (e.g. 99L).

Unsigned long integer constants may have the suffix UL (e.g. 99UL).

Floating point constants may have the suffix F (e.g. 1.234F).

Character constants must be enclosed in single quotation marks. E.g. 'a'.

String constants must be enclosed in double quotation marks. E.g. "Hello world".

If you place a string between quotes as a function parameter, this string will automatically be
considered as constant and will be placed in FLASH memory.

Example:

/ * this function displays a string located in SRAM */
voi d display_ramchar *s) {

[* oo */

/ * this function displays a string located in FLASH */
voi d display_flash(char flash *s) {

[* ... */

}

void mai n(void) {

/* this will not work !l */

/* because the function addresses the string as */

/* it is located in SRAM but the string "Hello world" */
/* is constant and is placed in FLASH */

di splay_ram"Hello world");

[* this will work I'I'l */
/* the function addresses the string as it is located in FLASH */
di splay_flash("Hello world");

Constant can be grouped in arrays, which can have up to 8 dimensions.
Constants are stored in FLASH memory, to specify this you must use the flash or const keywords.
Constant expressions are automatically evaluated during compilation.

© 1998-2001 HP InfoTech S.R.L. Page 61

CodeVisionAVR

Example:

flash int integer_constant=1234+5;
flash char char_constant=a’;
flash long | ong_i nt_constant 1=99L;
flash | ong | ong_i nt _const ant 2=0x10000000;
flash int integer_arrayl[]={1, 2, 3};
/[* The first two elenents will be 1 and 2,
the rest will be 0 */
flash int integer_array2[10]={1, 2};
flash int multidimarray[2,3]={{1,2,3},{4,5,6}};
flash char string_constantl[]="This is a string constant”;
const char string_constant2[]="This is also a string constant”;

Constants can'’t be declared inside functions.

© 1998-2001 HP InfoTech S.R.L.

Page 62

CodeVisionAVR

3.7 Variables

Program variables can be global (accessible to all the functions in the program) or local (accessible
only inside the function they are declared).

If not specifically initialized, the global variables are automatically set to O at program startup.

The local variables are not automatically initialized on function call.

The syntax is:

[<storage nodifier>] <type definition> <identifier>;
Example:

/* d obal variables declaration */
char a;

int b;

/* and initialization */

long c=1111111;

void mai n(void) {

/* Local variables declaration */
char d;

int e;

/* and initialization */

| ong f=22222222;

}

Variables can be grouped in arrays, which can have up to 8 dimensions.

The first element of the array has always the index O.

If not specifically initialized, the elements of global variable arrays are automatically set to O at
program startup.

Example:

/* Al the elements of the array will be 0 */
int global_arrayl[32];

/* Array is automatically initialized */
int global_array?2[]={1, 2, 3};

int global_array3[4]={1, 2,3, 4};

char global _array4[]="This is a string”;

/* Only the first 3 elenents of the array are
initialized, the rest 29 will be 0 */
int global_array5[32]={1, 2, 3};

/* Multidinensional array */
int multidimarray[2,3]={{1,2,3},{4,5,6}};

void mai n(void) {
/* local array declaration */
int local_arrayl[10];

/* local array declaration and initialization */
int local _array?2[3]={11, 22, 33};

char local _array3[7]="Hello";

}

© 1998-2001 HP InfoTech S.R.L. Page 63

CodeVisionAVR

Local variables that must conserve their values during different calls to a function must be declared as
static.
Example:

int alfa(void) {

/* declare and initialize the static variable */
static int n=1;

return n++;

}

void mai n(void) {
int i;

/* the function will return the value 1 */
i=alfa();

/* the function will return the value 2 */
i=alfa();

}

If not specifically initialized, static variables are automatically set to O at program startup.

Variables that are declared in other files must be preceded by the extern keyword.
Example:

extern int xyz;

/* now include the file which contains
the variable xyz definition */

#i nclude <file_xyz.h>

To instruct the compiler to allocate a variable to registers, the register modifier must be used.
Example:

regi ster int abc;

The compiler may automatically allocate a variable to registers, even if this modifier is not used.
The volatile modifier must be used in order to prevent a variable to be allocated to registers and to
warn the compiler that it may be subject to outside change during evaluation.

Example:

vol atile int abc;

All the global variables, not allocated to registers, are stored in the Global Variables area of SRAM.

All the local variables, not allocated to registers, are stored in dynamically allocated space in the Data
Stack area of SRAM.

© 1998-2001 HP InfoTech S.R.L. Page 64

CodeVisionAVR

3.7.1 Specifying the SRAM Storage Address for Global Variables

Global variables can be stored at specific SRAM locations at design-time using the @ operator.
Example:

/* the integer variable "a" is stored
in SRAM at address 80h */

int a @x80;

/* the structure "alfa" is stored
in SRAM at address 90h */
struct x {
int a;
char c;
} alfa @x90;

3.7.2 Bit Variables

The bit variables are special global variables located in the register R2 to R15 memory space.
These variables are declared using the bit keyword.
The syntax is:

bit <identifier>;
Example:

/* declaration and initialization */
bit alfa=1; /* bit0 of R2 */
bit beta; /* bitl of R2 */

voi d mai n(voi d)

if (alfa) beta=!Dbeta;

Memory allocation for the bit variables is done, in the order of declaration, starting with bit O of R2,
then bit 1 of R2 and so on, in ascending order.

A number of maximum 112 bit variables can be declared.

The size of the bit variables allocated to the program can be specified in the Project|Configure|C
Compiler|[Compilation|Bit Variables Size list box.

This size should be as low as possible, in order to free registers for allocation to other global variables.
If not specifically initialized, the bit global variables are automatically set to O at program startup.

In expression evaluation bit variables are automatically promoted to unsigned char.

© 1998-2001 HP InfoTech S.R.L. Page 65

CodeVisionAVR

3.7.3 Allocation of Variables to Registers

In order to fully take advantage of the AVR architecture and instruction set, the compiler allocates
some of the program variables to chip registers.

The registers from R2 up to R15 can be allocated for bit variables.

You may specify how many registers in this range are allocated using the Project|Configure|C
Compiler|[Compilation|Bit Variables Size list box. This value must be as low as required by the
program.

If the Project|Configure|C Compiler|Compilation|Automatic Register Allocation option is checked
or the #pragma regalloc+ compiler directive is used, the rest of registers in the R2 to R15 range, that
aren’t used for bit variables, are allocated to char and int global variables. The allocation is realized in
order of variable declaration until the R15 register is allocated.

If the automatic register allocation is disabled, you can use the register keyword to specify which
global variable to be allocated to registers.

Example:

/* disable automatic register allocation */

#pragma regal | oc-

/* allocate the variable *alfa’ to a register */

register int alfa;

/* allocate the variable ‘beta’ to the register pair Rl4, R15 */
register int beta @4,

The char and int local variables are automatically allocated, in order of declaration, to registers R16
up to R21.

© 1998-2001 HP InfoTech S.R.L. Page 66

CodeVisionAVR

3.7.4 Structures

Structures are user-defined collections of named members.

The structure members can be any of the supported data types, arrays of these data types or pointers
to them.

Structures are defined using the struct reserved keyword.

The syntax is:

[<storage nodifier>] struct [<structure tag-name>] {
[<type> <vari abl e-nane[, variabl e-nane, ...]>];
[<type> <vari abl e-nane[, variable-nane, ...]>];

} [<structure variabl es>];

Example:

/* dobal structure located in SRAM */
struct ramstructure {

char a, b;

int c;

char d[30], e[10];

char *pp;

} sr;

/* dobal constant structure |ocated in FLASH */
flash struct flash_structure {

int a;

char b[30], c[10];

} sf;

/* dobal structure |ocated in EEPROM */
eeprom struct eepromstructure {

char a;

int b;

char c[15];

} se;

void mai n(void) {
/* Local structure */
struct |ocal _structure {
char a;
int b;
| ong c;
} sl;

The space allocated to the structure in memory is equal to sum of the sizes of all the members.

There are some restrictions that apply to the structures stored in FLASH and EEPROM.
Due to the fact that pointers must be always located in SRAM, they can't be used in these structures.

© 1998-2001 HP InfoTech S.R.L. Page 67

CodeVisionAVR

Because with the Atmel AVRASM32 Assembler single bytes defined with .DB in FLASH occupy in
reality 2 bytes, the CodeVisionAVR C compiler will replace the char members of structures stored in
FLASH with int.

Also it will extend the size of the char arrays, members of such structures, to an even value.

Structures can be grouped in unidimensional arrays.
Example how to initialize and access an global structure array stored in EEPROM:

/* d obal

structure array |located i n EEPROM */
eeprom struct eepromstructure {
char a;
int b;
char c[15];

} se[2]={{"a,25,"Hello"},
{'b",50,"world"}};

void mai n(void) {

char

k1, k2, k3, k4;

int i1, i2;

/* define a pointer to the structure */

struct eepromstructure eeprom *ep;

/* direct access to structure nenbers */
kl=se[0]. a
i 1=se[0] . b;
k2=se[0].c[2];
k3=se[1] . a
i 2=se[1].b

kd=se[1].c[2];

/* sane access to structure nmenbers using a pointer */
ep=&se; /* initialize the pointer with the structure address */
k1l=ep-
i 1=ep-
k2=ep-

++ep;

k3=ep-
i 2=ep-
kd=ep-

}

>a;
>b;
>c[2];
/* increnent the pointer */
>a;
>b;
>c[2] ;

© 1998-2001 HP InfoTech S.R.L.

Page 68

CodeVisionAVR

Because some AVR devices have a small amount of SRAM, in order to keep the size of the Data
Stack small, structures can't be passed directly as function parameters.

Structures can be passed as function parameters or returned by functions only by using pointers.
Example:

struct al pha {
int a, b, c;
} s={2,3};

/* define the function */

struct al pha *sum struct(struct al pha *sp) {
/* menber c=nmenber a + menber b */
Sp->c=sp->a + sp->b;

/* return a pointer to the structure */

return sp;

}

void mai n(void) {
int i;

/* s->c=s->a + s->b */
[* i=s->c */
i =sum struct (&s) - >c;

}

Bitfields in structures are not implemented. For bit level storage use bit variables.

© 1998-2001 HP InfoTech S.R.L. Page 69

CodeVisionAVR

3.7.5 Unions

Unions are user-defined collections of named members that share the same memory space.

The union members can be any of the supported data types, arrays of these data types or pointers to

them.
Unions are defined using the union reserved keyword.
The syntax is:

[<storage nodifier>] union [<union tag-nane>] {
[<type> <vari abl e-nane[, variable-nane, ...]>];
[<type> <vari abl e-nane[, variabl e-nane, ...]>];

} [<union variabl es>];

Unions are always stored in SRAM.

The space allocated to the union in memory is equal to the size of the largest member.

Union members can be accessed in the same way as structure members.
Example:

/* union declaration */

uni on al pha {
unsi gned char | sb;
unsi gned int word;
} data;

void mai n(void) {
unsi gned char k;

/* define a pointer to the union */
uni on al pha *dp;

/* direct access to union nenbers */
dat a. wor d=0x1234;
k=data.lsb; /* get the LSB of 0x1234 */

/* sane access to union nenbers using a pointer */

dp=&data; /* initialize the pointer with the union address */
dp- >wor d=0x1234;

k=dp->lsb; /* get the LSB of 0x1234 */

}

© 1998-2001 HP InfoTech S.R.L.

Page 70

CodeVisionAVR

Because some AVR devices have a small amount of SRAM, in order to keep the size of the Data
Stack small, unions can't be passed directly as function parameters.

Unions can be passed as function parameters or returned by functions only by using pointers.
Example:

#include <stdio.h> /* printf */

uni on al pha {
unsi gned char | sb;
unsi gned int word;
} data;

/* define the function */

unsi gned char | owuni on al pha *up) {
/* return the LSB of word */

return up->|sb;

}
voi d mai n(void) {

dat a. wor d=0x1234;
printf("the LSB of % is %x", data.word, | owm &lata));

}

© 1998-2001 HP InfoTech S.R.L. Page 71

CodeVisionAVR

3.7.6 Enumerations

The enumeration data type can be used in order to provide mnemonic identifiers for a set of int
values.

The enum keyword is used for this purpose.

The syntax is:

<storage nodifier>] enum [<enum t ag- nane>

t g di f t ag
[<constant - nane[[=constant-initializer], constant-nane, ...]>]}
[<enum vari abl es>] ;

Example:

/* The enuneration constants will be initialized as foll ows:
sunday=0 , nonday=1 , tuesday=2 ,..., saturday=6 */
enum days {
sunday, nonday, tuesday, wednesday,
t hursday, friday, saturday} days_of week

/* The enuneration constants will be initialized as foll ows:
january=1 , february=2 , march=3 ,..., decenber=12 */
enum nmont hs {
january=1, february, march, april, my, june,
july, august, septenber, october, novenber, decenber}
nmont hs_of _year;

void main {

/* the variable days_of _week is initialized with
the integer value 6 */

days_of week=sat ur day;

}

Enumerations can be stored in SRAM or EEPROM.
To specify the storage in EEPROM, the eeprom keyword must be used.
Example:

eeprom enum days {
sunday, nonday, tuesday, wednesday,
t hursday, friday, saturday} days_of week

© 1998-2001 HP InfoTech S.R.L. Page 72

CodeVisionAVR

3.7.7 Global Variables Memory Map File

During compilation the C compiler generates a Global Variables Memory Map File, in which are
specified the SRAM address location, register allocation and size of the global variables used by the
program.

This file has the .map extension and can be viewed using the menu File|Open command or by
pressing the Open button on the toolbar.

Structure and union members are listed individually along with their corresponding address and size.
This file is useful during program debugging using the AVR Studio debugger.

3.8 Defining Data Types

User defined data types are declared using the typedef reserved keyword.
The syntax is:

typedef [<storage nodifier>] <type definition> <identifier>;

The symbol name <identifier> is assigned to <type definition>.
Examples:

/* type definitions */
t ypedef unsi gned char byte;
typedef eeprom struct ({
int a,
char Db[5];
} eeprom struct_type;

/* variabl e declaration */
byte alfa;
eeprom eeprom struct _type structl1;

© 1998-2001 HP InfoTech S.R.L. Page 73

CodeVisionAVR

3.9 Type Conversions

In an expression, if the two operands of a binary operator are of different types, then the compiler will
convert one of the operands into the type of the other.
The compiler uses the following rules:

If either of the operands is of type float then the other operand is converted to the same type.

If either of the operands is of type long int or unsigned long int then the other operand is converted
to the same type.

Otherwise, if either of the operands is of type int or unsigned int then the other operand is converted
to the same type.

Thus char type or unsigned char type gets the lowest priority.

Using casting you can change these rules.
Example:

void mai n(void) {

int a, c;

| ong b;

/* The long integer variable b will be treated here as an integer */
c=a+(int) b;

}

It is important to note that if the Project|Configure|C Compiler|Promote char to int option isn't
checked or the #pragma promotechar+ isn't used, the char, respectively unsigned char, type
operands are not automatically promoted to int , respectively unsigned int, as in compilers targeted
for 16 or 32 bit CPUs.

This helps writing more size and speed efficient code for an 8 bit CPU like the AVR.

To prevent overflow on 8 bit addition or multiplication, casting may be required.

The compiler issues warnings in these situations.

Example:

void mai n(void) {
unsi gned char a=30;
unsi gned char b=128;
unsi gned int c;

/* This will generate an incorrect result, because the nultiplication
is done on 8 bits producing an 8 bit result, which overflows.
Only after the nmultiplication, the 8 bit result is pronmpted to
unsi gned int */

c=a*b;

/* Here casting forces the multiplication to be done on 16 bits,
producing an 16 bit result, w thout overflow */
c=(unsigned int) a*b;

© 1998-2001 HP InfoTech S.R.L. Page 74

CodeVisionAVR

The compiler behaves differently for the following operators:
+=

* =
/| =
%
&=

|:
N=
<<=

>>=

For these operators, the result is to be written back onto the left-hand side operand (which must be a
variable). So the compiler will always convert the right hand side operand into the type of left-hand
side operand.

3.10 Operators

The compiler supports the following operators:

+ -

* /

% ++
| | =
< >

<= >=
& &&
Y

<< >>
.= +=
= %
= * =
N= =
>>= <<=

© 1998-2001 HP InfoTech S.R.L. Page 75

CodeVisionAVR

3.11 Functions

You may use function prototypes to declare a function.

These declarations include information about the function parameters.

Example:
int alfa(char parl, int par2, |long par3);
The actual function definition may be written somewhere else as:

int alfa(char parl, int par2, long par3) {
/* Wite sone statenents here */

}

The old Kernighan & Ritchie style of writing function definitions is not supported.

Function parameters are passed through the Data Stack

Function values are returned in registers R30, R31, R22 and R23 (from LSB to MSB).

© 1998-2001 HP InfoTech S.R.L.

Page 76

CodeVisionAVR

3.12 Pointers

Due to the Harvard architecture of the AVR microcontroller, with separate address spaces for data
(SRAM), program (FLASH) and EEPROM memory, the compiler implements three types of pointers.
Variables placed in SRAM are accessed using normal pointers.

For accessing constants placed in FLASH memory, the flash or const keywords are used.

For accessing variables placed in EEPROM, the eeprom keyword is used.

Although the pointers may point to different memory areas, they are always stored in SRAM.
Example:

/* Pointer to the string placed in SRAM */
char *ptr_to_ram="This string is placed in SRAM ;

/* Pointer to the string placed in FLASH */
char flash *ptr_to_flash="This string is placed in FLASH;

/* Pointer to the string placed in EEPROM */
char eeprom *ptr_to_eepron="This string is placed i n EEPROV;

For improving the code efficiency two memory models are implemented.

The TINY memory model uses 8 bits for storing pointers to the variables placed in SRAM. In this
memory model you can only have access to the first 256 bytes of SRAM.

The SMALL memory model uses 16 bits for storing pointers the variables placed in SRAM. In this
memory model you can have access to 65536 bytes of SRAM.

For improving program speed and size, you must always try to use the TINY memory model.
Pointers to the FLASH and EEPROM memory areas always use 16 bits.

Pointers can be grouped in arrays, which can have up to 8 dimensions.
Example:

/* Declare and initialize a global array of pointers to strings
pl aced in SRAM */
char *strings[3]={"One", " Two", "Three"};

/* Declare and initialize a global array of pointers to strings
pl aced in FLASH
You must note that although the strings are located in FLASH, the
pointer array itself is |located in SRAM */

char flash *nessages[3] ={"Message 1", "Message 2", "Message 3"};

/* Declare sone strings in EEPROM */
eeprom char ni[]="aaaa";
eeprom char n2[]="bbbb";

© 1998-2001 HP InfoTech S.R.L. Page 77

CodeVisionAVR

void mai n(void) {

/* Declare a local array of pointers to the strings placed i n EEPROM
You must note that although the strings are |located in EEPROM the
pointer array itself is |ocated in SRAM */

char eeprom *pp[2] ;

/* and initialize the array */
pp[O] =nl;
?p[1]=n2;

Pointers to functions are always 16 bits wide because they are used to access the FLASH memory
area. There is no need to use the flash or const keywords for these types of pointers.
Example:

/* Declare a function */
int sum(int a, int b) {
return atb;

}

/* Declare and initialize a global pointer to the function sum */
int (*sumptr) (int a, int b)=sum

void mai n(void) {
int i;

/* Call the function sumusing the pointer */
i =(*sumptr) (1,2);

© 1998-2001 HP InfoTech S.R.L. Page 78

CodeVisionAVR

3.13 Accessing the I/0O Registers

The compiler uses the sfrb and sfrw keywords to access the AVR microcontroller’s 1/0O Registers,

using the IN and OUT assembly instructions.
Example:

/* Define the SFRs */
sfrb PINA=0x19; /* 8 bit access to the SFR */
sfrw TCNT1=0x2c; /* 16 bit access to the SFR */

void mai n(void) {

unsi gned char a;

a=Pl NA; /* Read PORTA input pins */
TCNT1=0x1111; /* Wite to TCNT1L & TCNT1H regi sters */
}

The addresses of I/O registers are predefined in the following header files, located in the ..\INC

subdirectory:

tiny22.h
90s2313
90s2323
90s2333
9052343
90s4414.
9054433
90s4434.
90s8515.
90s8534.
90s8535.
mega603.
megal03.
megal6l.
megal63.
nmega32. h
94k. h

jun i pien pen Hn e Hlan Blan Blan Hn B e B Bl 3

You may #include the corresponding file, for the processor that you use, at the beginning of your

program.

© 1998-2001 HP InfoTech S.R.L.

Page 79

CodeVisionAVR

3.13.1 Bit level access to the I/O Registers

The bit level access to the 1/O registers is accomplished using bit selectors appended after the name
of the 1/O register.

Because bit level access to 1/O registers is done using the CBI, SBI, SBIC and SBIS instructions, the
register address must be in the 0 to 1Fh range for sfrb and in the 0 to 1Eh range for sfrw.

Example:

sfrb PORTA=0x1b;
sfrb DDRA=0x18;
sfrb Pl NA=0x19;

void mai n(void) {
/* set bit 0 of Port A as output */
DDRA. 0=1;

/* set bit 1 of Port A as input */
DDRA. 1=0;

/* set bit 0 of Port A output */
PORTA. 0=1;

/* test bit 1 input of Port A */
if (PINA.1) { /* place sone code here */ };

To improve the readability of the program you may wish to #define symbolic names to the bits in 1/O
registers:

sfrb Pl NA=0x19;
#defi ne al arm.i nput PINA 2

voi d mai n(voi d)

{

/* test bit 2 input of Port A */

if (alarminput) { /* place sonme code here */ };

© 1998-2001 HP InfoTech S.R.L. Page 80

CodeVisionAVR

3.14 Accessing the EEPROM

Accessing the AVR internal EEPROM is accomplished using global variables, preceded by the
keyword eeprom.
Example:

/* The value 1 is stored in the EEPROM during chip programrng */
eepromint alfa=1;

eeprom char bet a;
eeprom |l ong arrayl[5];

/* The string is stored in the EEPROM during chip programm ng */
eeprom char string[]="Hello”;

voi d mai n(void) {
int i;

/* Pointer to EEPROM */
int eeprom *ptr_to_eeprom

/* Wite directly the value 0x55 to the EEPROM */
al f a=0x55;

/* or indirectly by using a pointer */
ptr_to_eepronr&al f a;

*ptr_to_eepronr0x55;

/* Read directly the value fromthe EEPROM */
i =al f a;

/* or indirectly by using a pointer */

i =*ptr_to_eeprom

}

Pointers to the EEPROM always use 16 bits.

© 1998-2001 HP InfoTech S.R.L. Page 81

CodeVisionAVR

3.15 Using Interrupts

The access to the AVR interrupt system is implemented with the interrupt keyword.
Example:

/* Vector nunbers are for the AT90S8515 */

/* Called automatically on external interrupt */
interrupt [2] void external _intO(void) ({
/* Place your code here */

}

/* Called automatically on TIMERO overfl ow */
interrupt [8] void timerO_overflow(void) {
/* Place your code here */

}

Interrupt vector numbers start with 1.

The compiler will automatically save all the used registers when calling the interrupt functions and
restore them back on exit.

A RETI assembly instruction is placed at the end of the interrupt function.

Interrupt functions can’t return a value nor have parameters.

You must also set the corresponding bits in the peripheral control registers to configure the interrupt
system and enable the interrupts.

The automatic saving and restoring of registers RO, R1, R22, R23, R24, R25, R26, R27, R28, R29,
R30, R31 and SREG, during interrupts can be turned on or off using the #pragma savereg directive.
Example:

/* Turn registers saving off */
#pragma saver eg-

/* interrupt handler */

interrupt [1] void ny_irqg(void) {

/* now save only the registers that are
affected by the routines in the handler,
for exanmple R30, R31 and SREG */

#asm

push r30
push r31
in r 30, SREG
push r30
#endasm

/* place the C code here */
[* ... %

© 1998-2001 HP InfoTech S.R.L. Page 82

CodeVisionAVR

/* now restore SREG R31 and R30 */
#asm

pop r 30

out SREG r 30

pop r31

pop r30
#endasm

/* re-enable register saving for the other interrupts */
#pragma saver eg+

The default state is automatic saving of registers during interrupts.

© 1998-2001 HP InfoTech S.R.L. Page 83

CodeVisionAVR

3.16 SRAM Memory Organization

A compiled program has the following memory map:

0
Working Registers
20h
I/O Registers
60h
DSTACKEND
Data Stack

60h+Data Stack Size

Global Variables

60h+Data Stack Size+
Global Var. Size HSTACKEND

Hardware Stack

SRAM End

The Working Registers area contains 32x8 bit general purpose working registers.

The compiler uses the following registers: RO, R1, R22, R23, R24, R25, R26, R27, R28, R29, R30 and
R31.

Also some of the registers from R2 to R15 may be allocated by the compiler for global bit variables.
The rest of unused registers, in this range, are allocated for global char and int variables.

Registers R16 to R21 are allocated for local char and int variables.

© 1998-2001 HP InfoTech S.R.L. Page 84

CodeVisionAVR

The 1/0 Registers area contains 64 addresses for the CPU peripheral functions as Port Control
Registers, Timer/Counters and other I/O functions. You may freely use these registers in your
assembly programs.

The Data Stack area is used to dynamically store local variables, passing function parameters and
saving registers RO, R1, R22, R23, R24, R25, R26, R27, R30, R31 and SREG during interrupt routine
servicing.

The Data Stack Pointer is implemented using the Y register.

At start-up the Data Stack Pointer is initialized with the value 5Fh+Data Stack Size.

When saving a value in the Data Stack, the Data Stack Pointer decrements.

When the value is retrieved, the Data Stack Pointer in incremented back.

When configuring the compiler, in the Project|Configure|C Compiler menu, you must specify a
sufficient Data Stack Size, so it will not overlap the I/O Register area during program execution.

The Global Variables area is used to statically store the global variables during program execution.
The size of this area can be computed by summing the size of all the declared global variables.

The Hardware Stack area is used for storing the functions return addresses.

The SP register is used as a stack pointer and is initialized at start-up with value of last SRAM
address.

During the program execution the Hardware Stack grows downwards to the Global Variables area.

When configuring the compiler you have the option to place the strings DSTACKEND, respectively
HSTACKEND, at the end of the Data Stack, respectively Hardware Stack areas.

When you debug the program with AVR Studio you may see if these strings are overwritten, and
consequently modify the Data Stack Size using the Project|Configure|C Compiler menu command.
When your program runs correctly, you may disable the placement of the strings in order to reduce
code size.

© 1998-2001 HP InfoTech S.R.L. Page 85

CodeVisionAVR

3.17 Using an External Startup File

In every program the CodeVisionAVR C compiler automatically generates a code sequence to make
the following initializations immediately after the AVR chip reset:
1. interrupt vector jump table

global interrupt disable

EEPROM access disable

Watchdog Timer disable

external SRAM access and wait state enable if necessary
clear registers R2 ... R15

clear the SRAM

initialize the global variables located in SRAM

initialize the Data Stack Pointer register Y

10 initialize the Stack Pointer register SP

11. initialize the UBRR register if necessary

COoNT WD

The automatic generation of code sequences 2 to 8 can be disabled by checking the
Compilation|Use an External Startup Initialization File check box in the Project|Configure|C
Compiler dialog window. The C compiler will then include, in the generated .asm file, the code
sequences from an external file that must be named STARTUP.ASM . This file must be located in the
directory where your main C source file resides.

You can write your own STARTUP.ASM file to customize or add some features to your program. The
code sequences from this file will be immediately executed after the chip reset.

A basic STARTUP.ASM file is supplied with the compiler distribution and is located in the ..\BIN
directory.

Here's the content of this file:

; CodeVi si onAVR C Conpi | er
; (© 1998-2001 Pavel Haiduc, HP InfoTech S.R L.

; EXAMPLE STARTUP FI LE

. EQU __ CLEAR START=0X60 ; START ADDRESS OF SRAM AREA TO CLEAR
. EQU __ CLEAR SI ZE=256 ; SI ZE OF SRAM AREA TO CLEAR | N BYTES

CLI ; DI SABLE | NTERRUPTS
CLR R30
QUT EECR, R30 ; DI SABLE EEPROM ACCESS

; DI SABLE WATCHDOG
LDl R31, 0x18
QUT WDTCR, R31
LDl R31, 0x10
QUT WDTCR, R31

QJT MCUCR, R30 ; MCUCR=0, NO EXTERNAL SRAM ACCESS

© 1998-2001 HP InfoTech S.R.L. Page 86

CodeVisionAVR

- CLEAR R2- R15

LDl R4, 14

LDl R26,2

CLR R27
__CLEAR REG

ST X+, R30

DEC R4

BRNE _ CLEAR REG

- CLEAR SRAM
LDl R24, LON__CLEAR SI ZE)
LDl R25, H GH(__CLEAR SI ZE)
LDl R26, CLEAR START
__CLEAR_SRAM
ST X+, R30
SBI W R24, 1
BRNE _ CLEAR_SRAM

- GLOBAL VARI ABLES | NI TI ALI ZATI ON
LDl R30, LON__GLOBAL_I NI _TBL*2)
LDl R31, H GH__GLOBAL_I NI _TBL*2)
__GLOBAL_I NI _NEXT:
LPM
MOV R1, RO
ADI W R30, 1
LPM
ADI W R30, 1
MOV R22, R30
MOV R23, R31
MOV R31, RO
MOV R30, Rl
SBI W R30, 0
BREQ _ GLOBAL_I NI _END
LPM
MOV R26, RO
ADI W R30, 1
LPM
MV R27, RO
ADI W R30, 1
LPM
MV R4, RO
ADI W R30, 1
LPM
MOV R25, RO
ADI W R30, 1
__GLOBAL_I NI _LCOOP:
LPM
ST X+ RO
ADI W R30, 1
SBI W R24, 1
BRNE _ GLOBAL_INI_LOOP
MOV R30, R22
MOV R31, R23
RIMP __ GLOBAL_I NI _NEXT
__GLOBAL_I NI _END:

© 1998-2001 HP InfoTech S.R.L. Page 87

CodeVisionAVR

The _ CLEAR_START and __CLEAR_SIZE constants can be changed to specify which area of
SRAM to clear at program initialization.

The _ GLOBAL_INI_TBL label must be located at the start of a table containing the information
necessary to initialize the global variables located in SRAM. This table is automatically generated by
the compiler.

3.18 Including Assembly Language in Your Program

You can include assembly language anywhere in your program using the #asm and #endasm
directives.
Example:

voi d del ay(unsi gned char i) {
while (i--) {
/* Assenbly | anguage code sequence */
#asm
nop
nop
#endasm
I
}

Inline assembly may also be used.
Example:

#asn("sei") /* enable interrupts */

The registers RO, R1, R22, R23, R24, R25, R26, R27, R30 and R31 can be freely used in assembly
routines.

However when using them in an interrupt service routine the programmer must save, respectively
restore, them on entry, respectively on exit, of this routine.

© 1998-2001 HP InfoTech S.R.L. Page 88

CodeVisionAVR

3.18.1 Calling Assembly Functions from C

The following example shows how to access functions written in assembly language from a C
program:

/1 function in assenbl er declaration
/1 this function will return a+b+c
#pragma warn- // this will prevent warnings
int sumabc(int a, int b, unsigned char c) {
#asm
| dd r30,y+3 ; R30=LSB a
| dd r31,y+4 ; R31=MsB a
| dd r26,y+1 ; RR6=LSB b
| dd r27,y+2 ; RR7=NsB b
add r30,r26 ; (R31, R30) =a+b
adc r31,r27
I d r26,y ; R26=c
clr r27 ; pronote unsigned char ¢ to int
add r30,r26 ; (R31, R30) =(R31, R30) +c
adc r31,r27
#endasm

}

#pragma warn+ // enabl e warni ngs

void mai n(void) {

int r;

/!l now we call the function and store the result inr
r=sum abc(2, 4, 6);

}

The compiler passes function parameters using the Data Stack.

First it pushes the integer parameter a, then b, and finally the unsigned char parameter c.

On every push the Y register pair decrements by the size of the parameter (4 for long int, 2 for int, 1
for char).

For multiple byte parameters the MSB is pushed first.

As it is seen the Data Stack grows downward.

After all the functions parameters were pushed on the Data Stack, the Y register points to the last
parameter c, so the function can read its value in R26 using the instruction: Id r26,y.

The b parameter was pushed before ¢, so it is at a higher address in the Data Stack.

The function will read it using: Idd r27,y+2 (MSB) and Idd r26,y+1 (LSB).

The MSB was pushed first, so it is at a higher address.

The a parameter was pushed before b, so it is at a higher address in the Data Stack.

The function will read it using: Idd r31,y+4 (MSB) and Idd r30,y+3 (LSB).

The functions return their values in the registers (from LSB to MSB):
R30 for char and unsigned char
R30, R31 for int and unsigned int
R30, R31, R22, R23 for long and unsigned long.

So our function must return its result in the R30, R31 registers.

After the return from the function the compiler automatically generates code to reclaim the Data Stack
space used by the function parameters.

© 1998-2001 HP InfoTech S.R.L. Page 89

CodeVisionAVR

The #pragma warn- compiler directive will prevent the compiler from generating a warning that the
function does not return a value.

This is needed because the compiler does not know what it is done in the assembler portion of the
function.

3.19 Creating Libraries
In order to create your own libraries, the following steps must be followed:
1. Create a header .h file with the prototypes of the library functions.

Select the File|New menu command or press the New toolbar button.
The following dialog window will open:

:lir Create New File

File Twpe—

& Source

" Project

Select Source and press the OK button.

A new editor window will be opened for the untitled.c source file.
Type in the prototype for your function.

Example:

/1 this #pragma directive will prevent the conpiler
/1 fromgenerating a warning that the function was
/1 declared, but not used in the program

#pragma used+

/1 library function prototypes
int sum(int a, int b);
int mul(int a, int b);

#pragma used-
/1 this #pragma directive will tell the conpiler to

/1 conpile/link the functions fromthe nylib.lib library
#pragma library nylib.lib

© 1998-2001 HP InfoTech S.R.L. Page 90

CodeVisionAVR

Save the file, under a new name, in the .\INC directory using the File|Save As menu command, for
example mylib.h :

Save C:\Delphi5\AVRC\untitled.c As ZIx]|

Savsin [e EIEC ==
] Twire] 9054434] Delay] Lm 75] 5
] 908534 [#] 9058515 =] Ds1302 (=#] b ath] 5
] 9052313 8] 9058535] D=1307] begalld] 5
] 9052323] 94k10 =] D=1820] Megalbl] 5
l#] 9052333] 94k20 = = l#]| Megalh3] 5
] 9052343] 94k40] L] Megaki3 =T
] 9054414 =] Bcd =] Lo 4x40] berm

=] 9054433] Ctype] Ledsth] Pcfiba3

1] |]
File name: Imylib

oave as type: ICCDmpiIerheaderfile *.h) j Cancel |

2. Create the library file.
Select the File|New menu command or press the New toolbar button.
The following dialog window will open:

:lir Create New File

File Tywpe——

& Source

" Project

Select Source and press the OK button.

A new editor window will be opened for the untitled.c source file.
Type in the declarations for your functions.

Example:

#if funcused sum
int sum(int a, int b) {
return atb;

}
#endi f

#i f funcused nul
int mul(int a, int b) {
return a*b;

}
#endi f

© 1998-2001 HP InfoTech S.R.L. Page 91

CodeVisionAVR

The #if funcused and #endif preprocessor directives allow the functions to be compiled/linked only in
case they are effectively used in the program.

Save the file, under a new name, for example mylib.c , in any directory using the File|Save As menu
command:

Save C:\DelphiS\AVRC\untitled.cAs ________HEH|
Sawe in; Iﬁwurk j ﬁl

File name: Imylib

oave as type: IC Compiler source file [*.c) j Cancel

Finally use the File|Convert to Library menu command, to save the currently opened file under the
name mylib.lib in the .\LIB directory:

Mew Library Name |

Jrmylib lib

X Cancel

In order to use the newly created mylib.lib library, just #include the mylib.h header file in the
beginning of your program.

Example:

#i ncl ude <nylib. h>

All library files must reside in the ..\LIB directory.

© 1998-2001 HP InfoTech S.R.L. Page 92

CodeVisionAVR

3.20 Using the AVR Studio Debugger

CodeVisionAVR is designed to work in conjunction with Atmel AVR Studio 3.2 debugger version 3.2 or
later.

In order to be able to do C source level debugging using AVR Studio, you must select the COFF
output file format in the Project|Configure|Assembler menu option.

The AVR Studio Debugger is invoked using the Tools|Debugger menu command or the Debugger
toolbar button.

After AVR Studio is executed, the user must select File|Open in order to load the COFF file to be
debugged.

Once the program is loaded, it can be launched in execution using the Debug|Go menu command, by
pressing the F5 key or by pressing the Execute program toolbar button.

Program execution can be stopped at any time using the Debug|Break menu command, by pressing
Ctrl+F5 keys or by pressing the Break toolbar button.

To single step the program, the Debug|Trace Into (F11 key), Debug|Step (F10 key), Debug|Step
Out menu commands or the corresponding toolbar buttons should be used.

In order to stop the program execution at a specific source line, the Breakpoints|Toggle Breakpoint
menu command, the F9 key or the corresponding toolbar button should be used.

In order to watch program variables, the user must select Watch|Add Watch menu command or
press the Add Watch toolbar button, and specify the name of the variable in the Watch column.

The AVR chip registers can be viewed using the View|Registers menu command or by pressing the
Alt+0 keys.

The AVR chip PC, SP, X, Y, Z registers and status flags can be viewed using the View|Processor
menu command or by pressing the Alt+3 keys.

The contents of the FLASH, SRAM and EEPROM memories can be viewed using the View|New
Memory View menu command or by pressing the Alt+4 keys.

The 1/O registers can be viewed using the View|New IO View menu command or by pressing the
Alt+5 keys.

In order to use the Terminal I/O window, invoked with the View|Terminal 1/O menu command, for
communication with the simulated AVR chip’s UART, the COFF file format must be selected and the
Use the Terminal I/O in AVR Studio check box must be checked in the Project|Configure|C
Compiler dialog.

To obtain more information about using AVR Studio please consult it's Help system.

© 1998-2001 HP InfoTech S.R.L. Page 93

CodeVisionAVR

3.21 Hints

In order to decrease code size and improve the execution speed, you must apply the following rules:

If possible use unsigned variables;

Use the smallest data type possible, i.e. bit and unsigned char;

The size of the bit variables, allocated to the program in the Project|Configure|C
Compiler|[Compilation|Bit Variables Size list box, should be as low as possible, in order to free
registers for allocation to other global variables;

If possible use the TINY memory model;

Always store constant strings in FLASH by using the flash keyword,

After finishing debugging your program, compile it again with the Stack End Markers option

disabled.

© 1998-2001 HP InfoTech S.R.L. Page 94

CodeVisionAVR

3.22 Limitations

This version of the CodeVisionAVR C compiler has the following limitations:
- pointers to pointers are not allowed;
arrays of structures or unions can have only one dimension;
because some AVR devices have a small amount of SRAM, in order to keep the size of the Data
Stack small, structures or unions can't be passed as function parameters. Pointers to structures or
unions must be used for this purpose, leading to very efficient SRAM usage;
bitfields in structures are not implemented. For bit level storage use bit variables.

© 1998-2001 HP InfoTech S.R.L. Page 95

CodeVisionAVR

4. Library Functions Reference

You must #include the appropriate header files for the library functions that you use in your program.
Example:

/* Header files are included before using the functions */
#i ncl ude <math.h> // for abs
#i nclude <stdio.h> // for putsf

void mai n(void) {

int a,b;
=-99;
/* Here you actually use the functions */
b=abs(a);
putsf(“Hello world”);
}

© 1998-2001 HP InfoTech S.R.L. Page 96

CodeVisionAVR

4.1 Character Type Functions

The prototypes for these functions are placed in the file ctype.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

unsigned char isalnum(char c)

returns 1 if ¢ is alphanumeric.
unsigned char isalpha(char c)

returns 1 if c is alphabetic.
unsigned char isascii(char c)

returns 1 if ¢ is an ASCII character (0..127).
unsigned char iscntrl(char c)

returns 1 if c is a control character (0..31 or 127).
unsigned char isdigit(char c)

returns 1 if c is a decimal digit.
unsigned char islower(char c)

returns 1 if c is a lower case alphabetic character.
unsigned char isprint(char c)

returns 1 if c is a printable character (32..127).
unsigned char ispunct(char c)

returns 1 if ¢ is a punctuation character (all but control and alphanumeric).
unsigned char isspace(char c)

returns 1 c is a white-space character (space, CR, HT).
unsigned char isupper(char c)

returns 1 if ¢ is an upper-case alphabetic character.
unsigned char isxdigit(char c)

returns 1 if ¢ is a hexadecimal digit.
char toascii(char c)

returns the ASCII equivalent of character c.

© 1998-2001 HP InfoTech S.R.L. Page 97

CodeVisionAVR

unsigned char toint(char c)

interprets ¢ as a hexadecimal digit and returns an usigned char from 0 to 15.
char tolower(char c)

returns the lower case of c if c is an upper case character, else c.
char toupper(char c)

returns the upper case of c if c is a lower case character, else c.

4.2 Standard C Input/Output Functions

The prototypes for these functions are placed in the file stdio.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The standard C language I/O functions were adapted to work on embedded microcontrollers with
limited resources.

The lowest level Input/Output functions are:
char getchar(void)

returns a character received by the UART, using polling.
void putchar(char c)

transmits the character c using the UART, using polling.

Prior to using these functions you must:
initialize the UART's Baud rate
enable the UART transmitter
enable the UART receiver.

Example:

#i ncl ude <90s8515. h>
#i ncl ude <stdi o. h>

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#defi ne baud 9600

void mai n(void) {
char k;

/* initialize the UART's baud rate */
UBRR=xt al / 16/ baud- 1;

© 1998-2001 HP InfoTech S.R.L. Page 98

CodeVisionAVR

/* initialize the UART control register
RX & TX enabled, no interrupts, 8 data bits */
UCR=0x18;

while (1) {
/* receive the character */
k=get char () ;
/* and echo it back */
put char (k) ;
}s
}

You can alternatively initialize the UART's Baud rate using the Project|Configure|C Compiler menu.
If you intend to use other peripherals for Input/Output, you must modify accordingly the getchar and
putchar functions. The source code for these functions is available in the

file stdio.h .

All the high level Input/Output functions use getchar and putchar.
void puts(char *str)

outputs, using putchar, the null terminated character string str, located in SRAM, followed by a
new line character.

void putsf(char flash *str)

outputs, using putchar, the null terminated character string str, located in FLASH, followed by a
new line character.

void printf(char flash *fmtstr [, argl, arg2, ...])

outputs formatted text, using putchar, according to the format specifiers in the fmtstr string.
The format specifier string fmtstr is constant and must be located in FLASH memory.
The implementation of printf is a reduced version of the standard C function.
This was necessary due to the specific needs of an embedded system and because the full
implementation would require a large amount of memory space.
The following format specifiers are available:
%c outputs the next argument as an ASCII character
%d outputs the next argument as a decimal integer
%i outputs the next argument as a decimal integer
%u outputs the next argument as an unsigned decimal integer
%x outputs the next argument as an unsigned hexadecimal integer using lower case letters
%X outputs the next argument as an unsigned hexadecimal integer using upper case letters
%s outputs the next argument as a null terminated character string, located in SRAM
%% outputs the % character

All numeric values are right aligned and left padded with spaces.

If a O character is inserted between the % and d, i, u, x or X then the number will be left padded with
O’s.

If a - character is inserted between the % and d, i, u, x or X then the number will be left aligned.

A width specifier between 1 and 9 can be inserted between the % and d, i, u, x or X to specify the
minimum width of the displayed number.

© 1998-2001 HP InfoTech S.R.L. Page 99

CodeVisionAVR

The displayed number will be right aligned. Placing a - character before the width specifier will left
align the number.

void sprintf(char *str, char flash *fmtstr [, argl, arg2, ...])

this function is identical to printf except that the formatted text is placed in the null terminated
character string str.

char *gets(char *str, unsigned char len)

inputs, using getchar, the character string str terminated by the new line character.
The new line character will be replaced with O.
The maximum length of the string is len. If len characters were read without encountering the new line
character, then the string is terminated with 0 and the function ends.
The function returns a pointer to str.

signed char scanf(char flash *fmtstr [, argl address, arg2 address, ...])

formatted text input, using getchar, according to the format specifiers in the fmtstr string.
The format specifier string fmtstr is constant and must be located in FLASH memory.
The implementation of scanf is a reduced version of the standard C function.
This was necessary due to the specific needs of an embedded system and because the full
implementation would require a large amount of memory space.
The following format specifiers are available:

%c inputs the next argument as an ASCII character

%d inputs the next argument as a decimal integer

%i inputs the next argument as a decimal integer

%u inputs the next argument as an unsigned decimal integer

%x inputs the next argument as an unsigned hexadecimal integer

%s inputs the next argument as a null terminated character string

The function returns the number of successful entries, or -1 on error.
signed char sscanf(char *str, char flash *fmtstr [, argl address, arg2 address, ...])

this function is identical to scanf except that the formatted text is inputted from the null terminated
character string str, located in SRAM.

© 1998-2001 HP InfoTech S.R.L. Page 100

CodeVisionAVR

4.3 Standard Library Functions

The prototypes for these functions are placed in the file stdlib.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

int atoi(char *str)

converts the string str to integer.
long int atol(char *str)

converts the string str to long integer.
void itoa(int n, char *str)

converts the integer n to characters in string str.
void Itoa(long int n, char *str)

converts the long integer n to characters in string str.
void ftoa(float n, unsigned char decimals, char *str)

converts the floating point number n to characters in string str.
The number is represented with a specified number of decimals.

void ftoe(float n, unsigned char decimals, char *str)
converts the floating point number n to characters in string str.
The number is represented as a mantissa with a specified number of decimals and an integer power
of 10 exponent (e.g. 12.35e-5).
float atof(char *str)
converts the characters from string str to floating point.
int rand (void)
generates a pseudo-random number between 0 and 32767.

void srand(int seed)

sets the starting value seed used by the pseudo-random number generator in the rand function.

© 1998-2001 HP InfoTech S.R.L. Page 101

CodeVisionAVR

4.4 Mathematical Functions

The prototypes for these functions are placed in the file math.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

unsigned char cabs(signed char x)

returns the absolute value of the byte x.
unsigned int abs(int x)

returns the absolute value of the integer x.
unsigned long labs(long int x)

returns the absolute value of the long integer x.
float fabs(float x)

returns the absolute value of the floating point number x.
signed char cmax(signed char a, signed char b)

returns the maximum value of bytes a and b.
int max(int a, int b)

returns the maximum value of integers a and b.
long int Imax(long int a, long int b)

returns the maximum value of long integers a and b.
float fmax(float a, float b)

returns the maximum value of floating point numbers a and b.
signed char cmin(signed char a, signed char b)

returns the minimum value of bytes a and b.
int min(int a, int b)

returns the minimum value of integers a and b.
long int Imin(long int a, long int b)

returns the minimum value of long integers a and b.
float fmin(float a, float b)

returns the minimum value of floating point numbers a and b.

© 1998-2001 HP InfoTech S.R.L. Page 102

CodeVisionAVR

signed char csign(signed char x)
returns -1, 0 or 1 if the byte x is negative, zero or positive.
signed char sign(int x)
returns -1, 0 or 1 if the integer x is negative, zero or positive
signed char Isign(long int x)
returns -1, 0 or 1 if the long integer x is negative, zero or positive.
signed char fsign(float x)
returns -1, 0 or 1 if the floating point number x is negative, zero or positive.
unsigned char isqrt(unsigned int x)
returns the square root of the unsigned integer x.
unsigned int Isgrt(unsigned long x)
returns the square root of the unsigned long integer x.
float sqgrt(float x)
returns the square root of the positive floating point number x.
float floor(float x)
returns the smallest integer value of the floating point number x.
float ceil(float x)
returns the largest integer value of the floating point number x.
float fmod(float x, float y)
returns the remainder of x divided by y.
float modf(float x, float *ipart)
splits the floating point number x into integer and fractional components.
The fractional part of x is returned as a signed floating point number.
The integer part is stored as floating point number at ipart.
float Idexp(float x, int expn)
returns x * 25",

float frexp(float x, int *expn)

returns the mantisa and exponent of the floating point number x.

© 1998-2001 HP InfoTech S.R.L. Page 103

CodeVisionAVR

float exp(float x)

returns e”.
float log(float x)

returns the natural logarithm of the floating point number x.
float log10(float x)

returns the base 10 logarithm of the floating point number x.
float pow(float x, float y)

returns x’ .
float sin(float x)

returns the sine of the floating point number x, where the angle is expressed in radians.
float cos(float x)

returns the cosine of the floating point number x, where the angle is expressed in radians.
float tan(float x)

returns the tangent of the floating point number x, where the angle is expressed in radians.
float sinh(float x)

returns the hyperbolic sine of the floating point number x, where the angle is expressed in radians.
float cosh(float x)

returns the hyperbolic cosine of the floating point number x, where the angle is expressed in
radians.

float tanh(float x)

returns the hyperbolic tangent of the floating point number x, where the angle is expressed in
radians.

float asin(float x)

returns the arc sine of the floating point number x (in the range -PI/2 to PI/2).
X must be in the range -1 to 1.

float acos(float x)

returns the arc cosine of the floating point number x (in the range 0 to PI).
X must be in the range -1 to 1.

float atan(float x)

returns the arc tangent of the floating point number x (in the range -PI/2 to PI/2).

© 1998-2001 HP InfoTech S.R.L. Page 104

CodeVisionAVR

float atan2(float y, float x)

returns the arc tangent of the floating point numbers y/x (in the range -PI to PI).

4.5 String Functions

The prototypes for these functions are placed in the file string.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The string manipulation functions were extended to handle strings located both in SRAM and FLASH
memories.

char *strcat(char *strl, char *str2)

concatenate the string str2 to the end of the string strl.
char *strcatf(char *strl, char flash *str2)

concatenate the string str2, located in FLASH, to the end of the string strl.
char *strncat(char *strl, char *str2, unsigned char n)

concatenate maximum n characters of the string str2 to the end of the string strl.
Returns a pointer to the string strl.

char *strncatf(char *strl, char flash *str2, unsigned char n)

concatenate maximum n characters of the string str2, located in FLASH, to the end of the string
strl.
Returns a pointer to the string strl.
char *strchr(char *str, char c)

returns a pointer to the first occurrence of the character c in the string str, else a NULL pointer.
char *strrchr(char *str, char c)

returns a pointer to the last occurrence of the character c in the string str, else a NULL pointer.
signed char strpos(char *str, char c)

returns the index to first occurrence of the character c in the string str, else -1.
signed char strrpos(char *str, char c)

returns the index to the last occurrence of the character c in the string str, else -1.

signed char strcmp(char *strl, char *str2)

compares the string strl with the string str2.
Returns <0, 0, >0 according to stri<str2, strl=str2, str1>str2.

signed char strcmpf(char *strl, char flash *str2)

compares the string strl, located in SRAM, with the string str2, located in FLASH.

© 1998-2001 HP InfoTech S.R.L. Page 105

CodeVisionAVR

Returns <0, 0, >0 according to strl<str2, strl=str2, str1>str2.

signed char strncmp(char *strl, char *str2, unsigned char n)

compares at most n characters of the string strl with the string str2.
Returns <0, 0, >0 according to stri<str2, strl=str2, str1>str2.

signed char strncmpf(char *strl, char flash *str2, unsigned char n)
compares at most n characters of the string strl, located in SRAM, with the string str2, located in
FLASH.
Returns <0, 0, >0 according to stri<str2, strl=str2, str1>str2.
char *strcpy(char *dest, char *src)
copies the string src to the string dest.

char *strcpyf(char *dest, char flash *src)

copies the string src, located in FLASH, to the string dest, located in SRAM.
Returns a pointer to the string dest.

char *strncpy(char *dest, char *src, unsigned char n)

copies at most n characters from the string src to the string dest (null padding).
Returns a pointer to the string dest.

char *strncpyf(char *dest, char flash *src, unsigned char n)
copies at most n characters from the string src, located in FLASH, to the string dest, located in
SRAM (null padding).
Returns a pointer to the string dest.
unsigned char strspn(char *str, char *set)
returns the index of the first character, from the string str, that doesn't match a character from the
string set.
If all characters from set are in str returns the length of str.
unsigned char strspnf(char *str, char flash *set)
returns the index of the first character, from the string str, located in SRAM, that doesn't match a
character from the string set, located in FLASH.
If all characters from set are in str returns the length of str.
unsigned char strcspn(char *str, char *set)
searches the string str for the first occurrence of a character from the string set.

If there is a match returns, the index of the character in str.
If there are no matching characters, returns the length of str.

© 1998-2001 HP InfoTech S.R.L. Page 106

CodeVisionAVR

unsigned char strcspnf(char *str, char flash *set)

searches the string str for the first occurrence of a character from the string set, located in FLASH.
located
If there is a match, returns the index of the character in str.
If there are no matching characters, returns the length of str.

char *strpbrk(char *str, char *set)
searches the string str for the first occurrence of a char from the string set.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.
char *strpbrkf(char *str, char flash *set)
searches the string str, located in SRAM, for the first occurrence of a char from the string set,
located in FLASH.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.
char *strrpbrk(char *str, char *set)
searches the string str for the last occurrence of a character from the string set.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.
char *strrpbrkf(char *str, char flash *set)
searches the string str, located in SRAM, for the last occurrence of a character from the string set,
located in FLASH.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.
char *strstr(char *strl, char *str2)
searches the string strl for the first occurrence of the string str2.
If there is a match, returns a pointer to the character in strl where str2 begins.
If there is no match, returns a NULL pointer.
char *strstrf(char *strl, char flash *str2)
searches the string strl, located in SRAM, for the first occurrence of the string str2, located in
FLASH.
If there is a match, returns a pointer to the character in strl where str2 begins.
If there is no match, returns a NULL pointer.
unsigned char strlen(char *str)
returns the length of the string str.

unsigned int strlenf(char flash *str)

returns the length of the string str located in FLASH.

© 1998-2001 HP InfoTech S.R.L. Page 107

CodeVisionAVR

void *memcpy(void *dest,void *src, unsigned char n)
for the TINY memory model.

void *memcpy(void *dest,void *src, unsigned int n)
for the SMALL memory model.

Copies n bytes from src to dest. dest must not overlap src, else use memmove.
Returns a pointer to dest.

void *memcpyf(void *dest,void flash *src, unsigned char n)
for the TINY memory model.
void *memcpyf(void *dest,void flash *src, unsigned int n)
for the SMALL memory model.
Copies n bytes from src, located in FLASH, to dest. Returns a pointer to dest.
void *memccpy(void *dest,void *src, char ¢, unsigned char n)
for the TINY memory model.
void *memccpy(void *dest,void *src, char ¢, unsigned int n)
for the SMALL memory model.

Copies at most n bytes from src to dest, until the character c is copied.
dest must not overlap src.

Returns a NULL pointer if the last copied character was c or a pointer to dest+n+1.

void *memmove(void *dest,void *src, unsigned char n)
for the TINY memory model.

void *memmove(void *dest,void *src, unsigned int n)
for the SMALL memory model.

Copies n bytes from src to dest. dest may overlap src.
Returns a pointer to dest.

void *memchr(void *buf, unsigned char c, unsigned char n)
for the TINY memory model.

void *memchr(void *buf, unsigned char c, unsigned int n)
for the SMALL memory model.

Scans n bytes from buf for byte c.
Returns a pointer to c if found or a NULL pointer if not found.

© 1998-2001 HP InfoTech S.R.L.

Page 108

CodeVisionAVR

signed char memcmp(void *bufl,void *buf2, unsigned char n)
for the TINY memory model.

signed char memcmp(void *bufl,void *buf2, unsigned int n)
for the SMALL memory model.

Compares at most n bytes of bufl with buf2.
Returns <0, 0, >0 according to bufl<buf2, bufl=buf2, bufl1>buf2.

signed char memcmpf(void *bufl,void flash *buf2, unsigned char n)
for the TINY memory model.
signed char memcmpf(void *bufl,void flash *buf2, unsigned int n)

for the SMALL memory model.

Compares at most n bytes of bufl, located in SRAM, with buf2, located in FLASH.

Returns <0, 0, >0 according to bufl<buf2, bufl=buf2, bufl1>buf2.

void *memset(void *buf, unsigned char c, unsigned char n)
for the TINY memory model.

void *memset(void *buf, unsigned char c, unsigned int n)
for the SMALL memory model.

Sets n bytes from buf with byte c. Returns a pointer to buf.

© 1998-2001 HP InfoTech S.R.L.

Page 109

CodeVisionAVR

4.6 BCD Conversion Functions

The prototypes for these functions are placed in the file bcd.h, located in the ..\INC subdirectory. This
file must be #include -ed before using the functions.

unsigned char bcd2bin(unsigned char n)
Converts the number n from BCD representation to it's binary equivalent.
unsigned char bin2bcd(unsigned char n)

Converts the number n from binary representation to it's BCD equivalent.
The number n values must be from 0 to 99.

4.7 Memory Access Functions

The prototypes for these functions are placed in the file mem.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

void pokeb(unsigned int addr, unsigned char data)
this function writes the byte data to SRAM at address addr.
void pokew(unsigned int addr, unsigned int data)

this function writes the word data to SRAM at address addr.
The LSB is written at address addr and the MSB is written at address addr+1.

unsigned char peekb(unsigned int addr)
this function reads a byte located in SRAM at address addr.
unsigned int peekw (unsigned int addr)

this function reads a word located in SRAM at address addr.
The LSB is read from address addr and the MSB is read from address addr+1.

© 1998-2001 HP InfoTech S.R.L. Page 110

CodeVisionAVR

4.8 LCD Functions
4.8.1 LCD Functions for displays with up to 2x40 characters

The LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules built with the Hitachi HD44780 chip or equivalent.

The prototypes for these functions are placed in the file Icd.h, located in the .\INC subdirectory. This
file must be #include -ed before using the functions.

Prior to #include -ing the lcd.h file, you must declare which microcontroller port is used for
communication with the LCD module.

The following LCD formats are supported in Icd.h: 1x8, 2x12, 3x12, 1x16, 2x16, 2x20, 4x20, 2x24 and
2x40 characters.

Example:

/* the LCD nodule is connected to PORTC */
#asm

.equ __lcd_port=0x15
#endasm

/* now you can include the LCD Functions */
#i ncl ude <l cd. h>

The LCD module must be connected to the port bits as follows:

[LCD] [AVR Port]
RS (pin4) ------ bit O
RD (pin 5) ------ bit 1
EN (pin 6) ------ bit 2
DB4 (pin 11) --- bit 4
DB5 (pin 12) --- bit 5
DB6 (pin 13) --- bit 6
DB7 (pin 14) --- bit 7

You must also connect the LCD power supply and contrast control voltage, according to the data
sheet.

The low level LCD Functions are:
void _lcd_ready(void)

waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the _Icd_write_data function.

void _lcd_write_data(unsigned char data)

writes the byte data to the LCD instruction register.
This function may be used for modifying the LCD configuration.
Example:

/* enabl es the displaying of the cursor */
_lcd_ready();
_lcd_write_data(Oxe);

© 1998-2001 HP InfoTech S.R.L. Page 111

CodeVisionAVR

void lcd_write_byte(unsigned char addr, unsigned char data);

writes a byte to the LCD character generator or display RAM.
Example:
/* LCD user defined characters

Chi p: AT90S8515

Menory Mbdel : SMALL

Data Stack Size: 128 bytes

Use an 2x16 al phanumeric LCD connected
to the STK200 PORTC header as foll ows:

[LCD] [STK200 PORTC HEADER]

1 G\D 9 G\D

2 +5Vv- 10 VvCC

3 VLG LCD HEADER Vo
4 RS- 1 PQ

5RD- 2 PC1

6 EN - 3 PC2

11 D4 - 5 PG4

12 D5 - 6 PGS

13 D6 - 7 PC6

14 Dr - 8 PCr */

/* the LCD is connected to PORTC outputs */
#asm

.equ __lcd_port=0x15 ; PORTC

#endasm

/* include the LCD driver routines */
#i ncl ude <l cd. h>

t ypedef unsi gned char byte;

/* table for the user defined character
arrow that points to the top right corner */

flash byte charO[8] ={

0b0000000,

0b0001111,

0b0000011,

0b0000101,

0b0001001,

0b0010000,

0b0100000,

0b1000000} ;

/* function used to define user characters */
voi d define_char(byte flash *pc, byte char_code)
{

byte i, a;

a=(char _code<<3) | 0x40;

for (i=0; i<8; i++) lcd wite_byte(a++, *pc++);

}

© 1998-2001 HP InfoTech S.R.L.

Page 112

CodeVisionAVR

voi d mai n(voi d)

{

/* initialize the LCD for 2 lines & 16 colums */
lcd_init(16);

/* define user character 0 */
define_char(char0, 0);

/* switch to witing in Display RAM */
| cd_got oxy(0, 0);
| cd_putsf("User char 0:");

/* display used defined char 0 */
| cd_put char (0);

while (1); /* |l oop forever */

unsigned char lcd_read_byte(unsigned char addr);
reads a byte from the LCD character generator or display RAM.

The high level LCD Functions are:
void lcd_init(unsigned char lcd_columns)
initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0. The numbers of columns of the LCD must be specified (e.g. 16).
No cursor is displayed.
This is the first function that must be called before using the other high level LCD Functions.
void lcd_clear(void)
clears the LCD and sets the printing character position at row 0 and column O.

void Icd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from 0.

void lcd_putchar(char c)

displays the character c at the current display position.
void lcd_puts(char *str)

displays at the current display position the string str, located in SRAM.
void lcd_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

© 1998-2001 HP InfoTech S.R.L. Page 113

CodeVisionAVR

4.8.2 LCD Functions for displays with 4x40 characters

The LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules with 4x40 characters, built with the Hitachi HD44780 chip or equivalent.

The prototypes for these functions are placed in the file lcd4x40.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

Prior to #include -ing the lcd4x40.h file, you must declare which microcontroller port is used for
communication with the LCD module.
Example:

/* the LCD nodule is connected to PORTC */
#asm

.equ __|lcd_port=0x15
#endasm

/* now you can include the LCD Functions */
#i ncl ude <l cd4x40. h>

The LCD module must be connected to the port bits as follows:

[LCD] [AVR Port]
RS (pin 11) --- bit 0
RD (pin 10) --- bit 1
EN1 (pin 9) ---- bit 2
EN2 (pin 15) -- bit 3
DB4 (pin 4) ---- bit 4
DB5 (pin 3) ---- bit5
DB6 (pin 2) ---- bit 6
DB7 (pin 1) ---- bit 7

You must also connect the LCD power supply and contrast control voltage, according to the data
sheet.

The low level LCD Functions are:
void _lcd_ready(void)

waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the _Icd_write_data function.

void _lcd_write_data(unsigned char data)

writes the byte data to the LCD instruction register.
This function may be used for modifying the LCD configuration.

Prior calling the low level functions _Icd_ready and _lcd_write_data, the global variable _en1_msk
must be set to LCD_EN1, respectively LCD_ENZ2, to select the upper, respectively lower half, LCD
controller.

© 1998-2001 HP InfoTech S.R.L. Page 114

CodeVisionAVR

Example:

/* enabl es the displaying of the cursor on the upper half
of the LCD */

_enl nmsk=LCD ENI;

_lcd_ready();

_lcd_write_data(Oxe);

void lcd_write_byte(unsigned char addr, unsigned char data);
writes a byte to the LCD character generator or display RAM.
unsigned char lcd_read_byte(unsigned char addr);

reads a byte from the LCD character generator or display RAM.
The high level LCD Functions are:
void lcd_init(void)
initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0.
No cursor is displayed.
This is the first function that must be called before using the other high level LCD Functions.
void lcd_clear(void)
clears the LCD and sets the printing character position at row 0 and column O.

void Icd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from 0.

void lcd_putchar(char c)

displays the character c at the current display position.
void lcd_puts(char *str)

displays at the current display position the string str, located in SRAM.
void lcd_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

© 1998-2001 HP InfoTech S.R.L. Page 115

CodeVisionAVR

4.8.3 LCD Functions for displays connected in 8 bit memory
mapped mode

These LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules built with the Hitachi HD44780 chip or equivalent.

The LCD is connected to the AVR external data and address buses as an 8 bit peripheral.

This type of connection is used in the Kanda Systems STK200 and STK300 development boards. For
the LCD connection, please consult the documentation that came with your development board.
These function can be used only with AVR chips that allow using external memory devices:
AT90S4414, AT90S8515, ATmega603, ATmegal03 and ATmegal61l.

The prototypes for these functions are placed in the file Icdstk.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.
The following LCD formats are supported in Icdstk.h: 1x8, 2x12, 3x12, 1x16, 2x16, 2x20, 4x20, 2x24
and 2x40 characters.
The LCD Functions are:
void _lcd_ready(void)
waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the LCD_RSO and _LCD_RS1
macros.
Example:
/* enabl es the displaying of the cursor */
_lcd_ready();
_LCD RS0=0xe;

The _LCD_RSO, respectively _LCD_RS1, macros are used for accessing the LCD Instruction
Register with RS=0, respectively RS=1.

void lcd_write_byte(unsigned char addr, unsigned char data);

writes a byte to the LCD character generator or display RAM.
Example:
/* LCD user defined characters

Chi p: AT90S8515

Menory Mbdel : SMALL

Data Stack Size: 128 bytes

Use an 2x16 al phanumeric LCD connected
to the STK200 LCD connector */

/* include the LCD driver routines */
#i ncl ude <l cdstk. h>

t ypedef unsi gned char byte;

© 1998-2001 HP InfoTech S.R.L. Page 116

CodeVisionAVR

/* table for the user defined character
arrow that points to the top right corner */

flash byte charO[8] ={

0b0000000,

0b0001111,

0b0000011,

0b0000101,

0b0001001,

0b0010000,

0b0100000,

0b1000000} ;

/* function used to define user characters */
voi d define_char(byte flash *pc, byte char_code)
{

byte i, a;

a=(char _code<<3) | 0x40;

for (i=0; i<8; i++) lcd wite_byte(a++, *pc++);

}

voi d mai n(voi d)

{

/* initialize the LCD for 2 lines & 16 colums */
lcd_init(16);

/* define user character 0 */
define_char(char0, 0);

/* switch to witing in Display RAM */
| cd_got oxy(0, 0);
| cd_putsf("User char 0:");

/* display used defined char 0 */
| cd_put char (0);

while (1); /* |l oop forever */
}

unsigned char lcd_read_byte(unsigned char addr);

reads a byte from the LCD character generator or display RAM.
void lcd_init(unsigned char lcd_columns)
initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0. The numbers of columns of the LCD must be specified (e.g. 16).
No cursor is displayed.
This is the first function that must be called before using the other high level LCD Functions.

void lcd_clear(void)

clears the LCD and sets the printing character position at row 0 and column O.

© 1998-2001 HP InfoTech S.R.L. Page 117

CodeVisionAVR

void lcd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from 0.

void lcd_putchar(char c)

displays the character c at the current display position.
void lcd_puts(char *str)

displays at the current display position the string str, located in SRAM.
void lcd_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

© 1998-2001 HP InfoTech S.R.L. Page 118

CodeVisionAVR

4.9 1°C Bus Functions

The I°C Functions are intended for easy interfacing between C programs and various peripherals
using the Philips 1°C bus.

These functions treat the microcontroller as a bus master and the peripherals as slaves.

The prototypes for these functions are placed in the file i2c.h, located in the .\INC subdirectory. This
file must be #include -ed before using the functions.

Prior to #include -ing the i2c.h file, you must declare which microcontroller port and port bits are used
for communication through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */

#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the 12C Functions */
#i ncl ude <i 2c. h>

The I°C Functions are:
void i2c_init(void)

this function initializes the I1°C bus.
This is the first function that must be called prior to using the other I°C Functions.

unsigned char i2c_start(void)

issues a START condition.
Returns 1 if bus is free or 0 if the I°C bus is busy.

void i2c_stop(void)
issues a STOP condition.
unsigned char i2c_read(unsigned char ack)
reads a byte from the bus.
The ack parameter specifies if an acknowledgement is to be issued after the byte was read.
Set ack to 0 for no acknowledgement or 1 for acknowledgement.

unsigned char i2c_write(unsigned char data)

writes the byte data to the bus.
Returns 1 if the slave acknowledges or O if not.

© 1998-2001 HP InfoTech S.R.L. Page 119

CodeVisionAVR

Example how to access an Atmel 24C02 256 byte I°C EEPROM:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the 12C Functions */
#i ncl ude <i 2c. h>

/* function declaration for delay_ns */
#i ncl ude <del ay. h>

#defi ne EEPROM BUS_ADDRESS 0xa0

/* read a byte fromthe EEPROM */
unsi gned char eepromread(unsi gned char address) {
unsi gned char dat a;

i 2c_start();

i 2c_wri t e(EEPROM BUS_ADDRESS) ;

i 2c_write(address);

i 2c_start();

i 2c_write(EEPROM BUS _ADDRESS | 1);
dat a=i 2c_read(0);

i 2c_stop();

return data

}

/* wite a byte to the EEPROM */

void eeprom wite(unsigned char address, unsigned char data) ({
i 2c_start();

i 2c_wri t e(EEPROM BUS_ADDRESS) ;

i 2c_write(address);

i2c_wite(data);

i 2c_stop();

/* 10ns delay to conplete the wite operation */

del ay_ns(10);

}

void mai n(void) {

unsi gned char i;

/* initialize the |°C bus */

i2c_init();

/* wite the byte 55h at address AAh */
eeprom write(0Oxaa, 0x55);

/* read the byte from address AAh */

i =eeprom r ead(Oxaa) ;

while (1); /* loop forever */

}

© 1998-2001 HP InfoTech S.R.L. Page 120

CodeVisionAVR

4.9.1 National Semiconductor LM75 Temperature Sensor Functions

These functions are intended for easy interfacing between C programs and the LM75 I°C bus
temperature sensor.

The prototypes for these functions are placed in the file Im75.h, located in the ..\INC subdirectory. This
file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the Im75.h.

Prior to #include -ing the Im75.h file, you must declare which microcontroller port and port bits are
used for communication with the LM75 through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the LM/5 Functions */
#i ncl ude <I nr5. h>

The LM75 Functions are:

void Im75_init(unsigned char chip,signed char thyst,signed char tos, unsigned char pol)

this function initializes the LM75 sensor chip.
Before calling this function the I°C bus must be initialized by calling the i2c_init function.
This is the first function that must be called prior to using the other LM75 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 8 LM75 chips can be connected to the I°C bus, their chip address can be from 0 to 7.
The LM75 is configured in comparator mode, where it functions like a thermostat.
The O.S. output becomes active when the temperature exceeds the tos limit, and leaves the active
state when the temperature drops below the thyst limit.
Both thyst and tos are expressed in °C.
pol represents the polarity of the LM75 O.S. output in active state.
If pol is O, the output is active low and if pol is 1, the output is active high.
Refer to the LM75 data sheet for more information.

int Im75_temperature_10(unsigned char chip)

this function returns the temperature of the LM75 sensor with the address chip.
The temperature is in °C and is multiplied by 10.

© 1998-2001 HP InfoTech S.R.L. Page 121

CodeVisionAVR

Example how to display the temperature of two LM75 sensors with addresses 0 and 1:

/* the LM/5 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* include the LM/5 Functions */
#i ncl ude <I n¥5. h>

/* the LCD nodule is connected to PORTC */
#asm

.equ __lcd_port=0x15
#endasm

/* include the LCD Functions */
#i ncl ude <l cd. h>

/* include the prototype for sprintf */
#i ncl ude <stdio. h>

/* include the prototype for abs */
#i ncl ude <mat h. h>

char display_buffer[33];

void mai n(void) {
int t0,t1;

/[* initialize the LCD, 2 rows by 16 columms */
[cd_init(16);

/* initialize the 12C bus */
i2c_init();

/* initialize the LM/5 sensor with address 0 */
/* thyst=20°C t0s=25°C */
I n¥5_init (0, 20, 25, 0);

/* initialize the LM/5 sensor with address 1 */
/* thyst=30°C t0s=35°C */
I nv5_init(1, 30, 35,0);

© 1998-2001 HP InfoTech S.R.L.

Page 122

CodeVisionAVR

/* tenperature display |oop */

while (1)
{
/* read the tenperature of sensor #0 *10°C */
t 0=l n¥5_t enperature_10(0);

/* read the tenperature of sensor #1 *10°C */
t 1=l n¥5_t enperature_10(1);

/* prepare the displayed tenperatures */

/* in the display_buffer */
sprintf(display_buffer,

"t0=%i.% u%Cntl1=%i.%u%C',

t 0/ 10, abs(t 0940), Oxdf,t 1/ 10, abs(t 194.0), Oxdf) ;

/* display the tenperatures */
I cd_clear();
| cd_put s(display_buffer);

}s

© 1998-2001 HP InfoTech S.R.L. Page 123

CodeVisionAVR

4.9.2 Dallas Semiconductor DS1621 Thermometer/Thermostat
Functions

These functions are intended for easy interfacing between C programs and the DS1621 I°C bus
thermometer/thermostat.

The prototypes for these functions are placed in the file ds1621.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the ds1621.h.

Prior to #include -ing the ds1621.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1621 through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the DS1621 Functions */
#i ncl ude <ds1621. h>

The DS1621 Functions are:
void ds1621_init(unsigned char chip,signed char tlow,signed char thigh, unsigned char pol)

this function initializes the DS1621 chip.
Before calling this function the I°C bus must be initialized by calling the i2c_init function.
This is the first function that must be called prior to using the other DS1621 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 8 DS1621 chips can be connected to the I°C bus, their chip address can be from 0 to 7.
Besides measuring temperature, the DS1621 functions also like a thermostat.
The Tout output becomes active when the temperature exceeds the thigh limit, and leaves the active
state when the temperature drops below the tlow limit.
Both tlow and thigh are expressed in °C.
pol represents the polarity of the DS1621 Tout output in active state.
If pol is O, the output is active low and if pol is 1, the output is active high.
Refer to the DS1621 data sheet for more information.

unsigned char ds1621_get_status(unsigned char chip)
_ this function reads the contents of the configuration/status register of the DS1621 with address
;Zlfzr to the DS1621 data sheet for more information about this register.
void ds1621_set_status(unsigned char chip, unsigned char data)
this function sets the contents of the configuration/status register of the DS1621 with address

chip.
Refer to the DS1621 data sheet for more information about this register.

© 1998-2001 HP InfoTech S.R.L. Page 124

CodeVisionAVR

void ds1621_start(unsigned char chip)

this functions exits the DS1621, with address chip, from the power-down mode and starts the
temperature measurements and the thermostat.

void ds1621_stop(unsigned char chip)

this functions enters the DS1621, with address chip, in power-down mode and stops the
temperature measurements and the thermostat.

int ds1621_temperature_10(unsigned char chip)

this function returns the temperature of the DS1621 sensor with the address chip.
The temperature is in °C and is multiplied by 10.

Example how to display the temperature of two DS1621 sensors with addresses 0 and 1:
/* the DS1621 12C bus is connected to PORTB */

/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */

#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* include the DS1621 Functions */
#i ncl ude <ds1621. h>

/* the LCD nodule is connected to PORTC */
#asm

.equ __ |l cd_port=0x15
#endasm

/* include the LCD Functions */
#i ncl ude <l cd. h>

/* include the prototype for sprintf */
#i ncl ude <stdio. h>

/* include the prototype for abs */
#i ncl ude <mat h. h>

char display_buffer[33];

void mai n(void) {
int t0,t1;

/[* initialize the LCD, 2 rows by 16 columms */
[cd_init(16);

/* initialize the 12C bus */
i2c_init();

© 1998-2001 HP InfoTech S.R.L. Page 125

CodeVisionAVR

/* initialize the DS1621 sensor with address 0 */
/* tlow=20°C thi gh=25°C */
ds1621 init (0, 20, 25,0);

/* initialize the DS1621 sensor with address 1 */
/* tlow=30°C thigh=35°C */
ds1621 init(1, 30, 35,0);

/* tenperature display |oop */

while (1)
{
/* read the tenperature of DS1621 #0 *10°C */
t 0=ds1621_t enperature_10(0);

/* read the tenperature of DS1621 #1 *10°C */
t 1=ds1621 tenperature_10(1);

/* prepare the displayed tenperatures */

/* in the display_buffer */
sprintf(display_buffer,

"t0=%i.% u%Cntl1=%i.%u%C',

t 0/ 10, abs(t 0940), Oxdf,t 1/ 10, abs(t 194.0), Oxdf);

/* display the tenperatures */
I cd_clear();
| cd_put s(display_buffer);

}s

© 1998-2001 HP InfoTech S.R.L.

Page 126

CodeVisionAVR
4.9.3 Philips PCF8563 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the PCF8563 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file pcf8563.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the pcf8563.h.

Prior to #include -ing the pcf8563.h file, you must declare which microcontroller port and port bits are
used for communication with the PCF8563 through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */

#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the PCF8563 Functions */
#i ncl ude <pcf 8563. h>

The PCF8563 Functions are:
void rtc_init(unsigned char ctrl2, unsigned char clkout, unsigned char timer_ctrl)

this function initializes the PCF8563 chip.
Before calling this function the I°C bus must be initialized by calling the i2c_init function.
This is the first function that must be called prior to using the other PCF8563 Functions.
Only one PCF8583 chip can be connected to the I°C bus.

The ctrl2 parameter specifies the initialization value for the PCF8563 Control/Status 2 register.
The pcf8563.h header file defines the following macros which allow the easy setting of the ctrl2
parameter:

RTC_TIE_ON sets the Control/Status 2 register bit TIE to 1

RTC_AIE_ON sets the Control/Status 2 register bit AIE to 1

RTC_TP_ON sets the Control/Status 2 register bit TI/TP to 1
These macros can be combined using the | operator in order to set more bits to 1.

The clkout parameter specifies the initialization value for the PCF8563 CLKOUT Frequency register.
The pcf8563.h header file defines the following macros which allow the easy setting of the clkout
parameter:
- RTC_CLKOUT_OFF disables the generation of pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_1 generates 1Hz pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_32 generates 32Hz pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_1024 generates 1024Hz pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_32768 generates 32768Hz pulses on the PCF8563 CLKOUT output.

© 1998-2001 HP InfoTech S.R.L. Page 127

CodeVisionAVR

The timer_ctrl parameter specifies the initialization value for the PCF8563 Timer Control register.
The pcf8563.h header file defines the following macros which allow the easy setting of the timer_ctrl
parameter:
- RTC_TIMER_OFF disables the PCF8563 Timer countdown
RTC_TIMER_CLK_1_60 sets the PCF8563 Timer countdown clock frequency to 1/60Hz
RTC_TIMER_CLK_1 sets the PCF8563 Timer countdown clock frequency to 1Hz
RTC_TIMER_CLK_64 sets the PCF8563 Timer countdown clock frequency to 64Hz
RTC_TIMER_CLK_4096 sets the PCF8563 Timer countdown clock frequency to 4096Hz.

Refer to the PCF8563 data sheet for more information.
unsigned char rtc_read(unsigned char address)
this function reads the byte stored in a PCF8563 register at address.
void rtc_write(unsigned char address, unsigned char data)
this function stores the byte data in the PCF8583 register at address.
unsigned char rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC .
The *hour, *min and *sec pointers must point to the variables that must receive the values of hour,
minutes and seconds.
The function return the value 1 if the read values are correct.
If the function returns 0 then the chip supply voltage has dropped below the Viow value and the time
values are incorrect.
Example:

#asm
.equ __i2c_port=0x18
.equ __sda _bit=3
.equ __scl_bit=4
#endasm

#i ncl ude <pcf 8563. h>

void mai n(void) {
unsi gned char ok, h, ms;

/* initialize the 12C bus */
i2c_init();

/* initialize the RTC
Timer interrupt enabl ed,
Al arminterrupt enabl ed,
CLKQUT frequency=1Hz
Ti mer cl ock frequency=1Hz */
rtc_init(RTC_TIE.ON| RTC A E ON RTC CLKOUT_1, RTC Tl MER_CLK 1);

/* read time fromthe RTC */
ok=rtc_get _time(&h, &m &s);

© 1998-2001 HP InfoTech S.R.L. Page 128

CodeVisionAVR

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC .
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned *year)
this function returns the current date measured by the RTC .
The *date, *month and *year pointers must point to the variables that must receive the values of day,
month and year.
void rtc_set_date(unsigned char date, unsigned char month, unsigned year)
this function sets the current date of the RTC .
void rtc_alarm_off(void)
this function disables the RTC alarm function.
void rtc_alarm_on(void)
this function enables the RTC alarm function.
void rtc_get_alarm(unsigned char *date, unsigned char *hour, unsigned char *min)
this function returns the alarm time and date of the RTC.
The *date, *hour and *min pointers must point to the variables that must receive the values of date,
hour and minutes.
void rtc_set_alarm(unsigned char date, unsigned char hour, unsigned char min)
this function sets the alarm time and date of the RTC.
The date, hour and min parameters represent the values of date, hours and minutes.
If date is set to O, then this parameter will be ignored.
After calling this function the alarm will be turned off. It must be enabled using the rtc_alarm_on
function.

void rtc_set_timer(unsigned char val)

this function sets the countdown value of the PCF8563 Timer.

© 1998-2001 HP InfoTech S.R.L. Page 129

CodeVisionAVR

4.9.4 Philips PCF8583 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the PCF8583 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file pcf8583.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the pcf8583.h.

Prior to #include -ing the pcf8583.h file, you must declare which microcontroller port and port bits are
used for communication with the PCF8583 through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the PCF8583 Functions */
#i ncl ude <pcf 8583. h>

The PCF8583 Functions are:
void rtc_init(unsigned char chip, unsigned char dated_alarm)

this function initializes the PCF8583 chip.
Before calling this function the I°C bus must be initialized by calling the i2c_init function.
This is the first function that must be called prior to using the other PCF8583 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 2 PCF8583 chips can be connected to the I°C bus, their chip address can be 0 or 1.
The dated_alarm parameter specifies if the RTC alarm takes in account both the time and date
(dated_alarm=1), or only the time (dated_alarm=0).
Refer to the PCF8583 data sheet for more information.
After calling this function the RTC alarm is disabled.

unsigned char rtc_read(unsigned char chip, unsigned char address)
this function reads the byte stored in the PCF8583 SRAM.

void rtc_write(unsigned char chip, unsigned char address, unsigned char data)
this function stores the byte data in the PCF8583 SRAM.

When writing to the SRAM the user must take in account that locations at addresses 10h and 11h are
used for storing the current year value.

© 1998-2001 HP InfoTech S.R.L. Page 130

CodeVisionAVR

unsigned char rtc_get_status(unsigned char chip)

this function returns the value of the PCF8583 control/status register.
By calling this function the global variables __ rtc_status and __rtc_alarm are automatically updated.
The __rtc_status variable holds the value of the PCF8583 control/status register.
The __rtc_alarm variable takes the value 1 if an RTC alarm occurred.

void rtc_get_time(unsigned char chip, unsigned char *hour, unsigned char *min, unsigned char
*sec, unsigned char *hsec)

this function returns the current time measured by the RTC.
The *hour, *min, *sec and *hsec pointers must point to the variables that must receive the values of
hour, minutes, seconds and hundreds of a second.
Example:

#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

#i ncl ude <pcf 8583. h>

void mai n(void) {
unsi gned char h, ms, hs;

/* initialize the 12C bus */
i2c_init();

/* initialize the RTC 0O,
no dated alarm */
rtc_init(0,0);

/* read tinme fromRTC 0*/
rtc_get_tine(0, &, &m &s, &hs);

void rtc_set_time(unsigned char chip, unsigned char hour, unsigned char min, unsigned char
sec, unsigned char hsec)

this function sets the current time of the RTC.
The hour, min, sec and hsec parameters represent the values of hour, minutes, seconds and
hundreds of a second.

void rtc_get_date(unsigned char chip, unsigned char *date, unsigned char *month, unsigned

*year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of day,
month and year.

© 1998-2001 HP InfoTech S.R.L. Page 131

CodeVisionAVR

void rtc_set_date(unsigned char chip, unsigned char date, unsigned char month, unsigned
year)

this function sets the current date of the RTC.
void rtc_alarm_off(unsigned char chip)

this function disables the RTC alarm function.
void rtc_alarm_on(unsigned char chip)

this function enables the RTC alarm function.

void rtc_get_alarm_time(unsigned char chip, unsigned char *hour, unsigned char *min,
unsigned char *sec, unsigned char *hsec)

this function returns the alarm time of the RTC.
The *hour, *min, *sec and *hsec pointers must point to the variables that must receive the values of
hours, minutes, seconds and hundreds of a second.

void rtc_set_alarm_time(unsigned char chip, unsigned char hour, unsigned char min, unsigned
char sec, unsigned char hsec)

this function sets the alarm time of the RTC.
The hour, min, sec and hsec parameters represent the values of hours, minutes, seconds and
hundreds of a second.
void rtc_get_alarm_date(unsigned char chip, unsigned char *date, unsigned char *month)
this function returns the alarm date of the RTC.
The *day and *month pointers must point to the variables that must receive the values of date and
month.

void rtc_set_alarm_date(unsigned char chip, unsigned char date, unsigned char month)

this function sets the alarm date of the RTC.

© 1998-2001 HP InfoTech S.R.L. Page 132

CodeVisionAVR

4.9.4 Dallas Semiconductor DS1307 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the DS1307 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file ds1307.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The I1°C bus functions prototypes are automatically #include -ed with the ds1307.h.

Prior to #include -ing the ds1307.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1307 through the I°C bus.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */

#asm
.equ __i2c_port=0x18
.equ __sda bit=3
.equ __scl_bit=4
#endasm

/* now you can include the DS1307 Functions */
#i ncl ude <ds1307. h>

The DS1307 Functions are:
void rtc_init(unsigned char rs, unsigned char sqwe, unsigned char out)

this function initializes the DS1307 chip.
Before calling this function the I°C bus must be initialized by calling the i2c_init function.
This is the first function that must be called prior to using the other DS1307 Functions.
The rs parameter specifies the value of the square wave output frequency on the SQW/OUT pin:
0 for 1Hz
1 for 4096Hz
2 for 8192Hz
3 for 32768Hz.
If the sqwe parameter is set to 1 then the square wave output on the SQW/OUT pin is enabled.
The out parameter specifies the logic level on the SQW/OUT pin when the square wave output is
disabled (sqwe=0).
Refer to the DS1307 data sheet for more information.

© 1998-2001 HP InfoTech S.R.L. Page 133

CodeVisionAVR

void rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC.
The *hour, *min and *sec pointers must point to the variables that must receive the values of hours,
minutes and seconds.
Example:

/* the 12C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __i2c_port=0x18
.equ __sda _bit=3
.equ __scl_bit=4
#endasm

#i ncl ude <ds1307. h>

void mai n(void) {
unsi gned char h, ms;

/* initialize the 12C bus */
i2c_init();

/* initialize the DS1307 RTC */
rtc_init(0,0,0);

/* read tinme fromthe DS1307 RTC */
rtc_get_tine(&h, &n &s);

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC.
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned char *year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of date,
month and year.

void rtc_set_date(unsigned char date, unsigned char month, unsigned char year)

this function sets the current date of the RTC.

© 1998-2001 HP InfoTech S.R.L. Page 134

CodeVisionAVR

4.10 Dallas Semiconductor DS1302 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the DS1302 real time
clock (RTC).

The prototypes for these functions are placed in the file ds1302.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

Prior to #include -ing the ds1302.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1302.
Example:

/* the DS1302 is connected to PORTB */
/* the 1O signal is bit 3 */
/* the SCLK signal is bit 4 */
/* the RST signal is bit 5 */
#asm
.equ __ds1302_port=0x18
.equ __ds1302_i0=3
.equ _ ds1302_scl k=4
.equ _ ds1302_rst=5
#endasm

/* now you can include the DS1302 Functions */
#i ncl ude <ds1302. h>

The DS1302 Functions are:
void rtc_init(unsigned char tc_on, unsigned char diodes, unsigned char res)

this function initializes the DS1302 chip.
This is the first function that must be called prior to using the other DS1302 Functions.
If the tc_on parameter is set to 1 then the DS1302’s trickle charge function is enabled.
The diodes parameter specifies the number of diodes used when the trickle charge function is
enabled. This parameter can take the value 1 or 2.
The res parameter specifies the value of the trickle charge resistor:

0 for no resistor

1 for a 2kWresistor

2 for a 4kW resistor

3 for a 8kWresistor.
Refer to the DS1302 data sheet for more information.

unsigned char ds1302_read(unsigned char addr)
this function reads a byte stored at address addr in the DS1302 registers or SRAM.
void ds1302_write(unsigned char addr, unsigned char data)

this function stores the byte data at address addr in the DS1302 registers or SRAM.

© 1998-2001 HP InfoTech S.R.L. Page 135

CodeVisionAVR

void rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC.
The *hour, *min and *sec pointers must point to the variables that must receive the values of hours,
minutes and seconds.
Example:

#asm
.equ _ ds1302_port=0x18
.equ __ds1302_io0=3
.equ _ ds1302_scl k=4
.equ _ ds1302_rst=5
#endasm

#i ncl ude <ds1302. h>

void mai n(void) {
unsi gned char h, ms;
/* initialize the DS1302 RTC:
use trickle charge,
with 1 diode and 8K resistor */
rtc_init(1,1,3);

/* read tinme fromthe DS1302 RTC */
rtc_get_tine(&h, &n &s);

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC.
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned char *year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of date,
month and year.

void rtc_set_date(unsigned char date, unsigned char month, unsigned char year)

this function sets the current date of the RTC.

© 1998-2001 HP InfoTech S.R.L. Page 136

CodeVisionAVR

4.11 1 Wire Protocol Functions

The 1 Wire Functions are intended for easy interfacing between C programs and various peripherals
using the Dallas Semiconductor 1 Wire protocol.

These functions treat the microcontroller as a bus master and the peripherals as slaves.

The prototypes for these functions are placed in the file 1wire.h, located in the ..\INC subdirectory.
This file must be #include -ed before using the functions.

Prior to #include -ing the 1wire.h file, you must declare which microcontroller port and port bit is used
for communication through the 1 Wire protocol.
Example:

/* the 1 Wre bus is connected to PORTB */
/* the data signal is bit 2 */
#asm
.equ __wl _port=0x18
.equ __ wl bit=2
#endasm

/* now you can include the 1 Wre Functions */
#i ncl ude <lwire. h>

Because the 1 Wire Functions require precision time delays for correct operation, the interrupts must
be disabled during their execution.

Also it is very important to specify the correct AVR chip clock frequency in the Project|Configure|C
Compiler menu.

The 1 Wire Functions are:

unsigned char wl_init(void)

this function initializes the 1 Wire devices on the bus.
It returns 1 if there were devices present or 0O if not.

unsigned char wl_read(void)
this function reads a byte from the 1 Wire bus.
unsigned char wl_write(unsigned char data)

this function writes the byte data to the 1 Wire bus.
It returns 1 if the write process completed normally or O if not.

unsigned char wl_search(unsigned char cmd,void *p)

this function returns the number of devices connected to the 1 Wire bus.
If no devices were detected then it returns 0.
The byte cmd represents the Search ROM (FOh), Alarm Search (ECh) for the DS1820/DS1822, or
other similar commands, sent to the 1 Wire device.

© 1998-2001 HP InfoTech S.R.L. Page 137

CodeVisionAVR

The pointer p points to an area of SRAM where are stored the 8 bytes ROM codes returned by the
device. After the eighth byte, the function places a ninth status byte which contains a status bit
returned by some 1 Wire devices (e.g. DS2405).

Thus the user must allocate 9 bytes of SRAM for each device present on the 1 Wire bus.

If there is more then one device connected to the 1 Wire bus, than the user must first call the
w1l_search function to identify the ROM codes of the devices and to be able to address them at a
later stage in the program.

Example:

#i ncl ude <90s8515. h>

/* specify the port and bit used for the 1 Wre bus */
#asm

.equ __wl _port=0x18 ; PORTB

.equ __ wl bit=2
#endasm

/* include the 1 Wre bus functions prototypes */
#i ncl ude <lwire. h>

/* include the printf function prototype */
#i ncl ude <stdio. h>

/* specify the maxi mum nunber of devi ces connected
to the 1 Wre bus */
#defi ne MAX_DEVI CES 8

/* allocate SRAM space for the ROM codes & status bit */
unsi gned char rom codes[MAX_DEVI CES, 9] ;

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#defi ne baud 9600

void mai n(void) {
unsi gned char i,j, devices;

/* initialize the UART's baud rate */
UBRR=xt al / 16/ baud- 1;

/* initialize the UART control register
TX enabl ed, no interrupts, 8 data bits */
UCR=8;

/* detect how many DS1820/DS1822 devi ces

are connected to the bus and

store their ROM codes in the romcodes array */
devi ces=wl_sear ch(0xf 0, rom codes);

© 1998-2001 HP InfoTech S.R.L. Page 138

CodeVisionAVR

/* display the ROM codes for each detected device */
printf("%u DEVI CE(S) DETECTED\n\r", devi ces);
if (devices) {
for (i=0;i<devices;i++) {
printf("DEVICE #%u ROM CODE | S: ", i+1);

for (j=0;j<8;j++) printf("%X ",romcodes[i,]j]);

printf("\n\r");
i
i

while (1); /* loop forever */
}

unsigned char wl_crc8(void *p, unsigned char n)

this function returns the 8 bit DOW CRC for a block of bytes with the length n, starting from

address p.

© 1998-2001 HP InfoTech S.R.L.

Page 139

CodeVisionAVR

4.11.1 Dallas Semiconductor DS1820/DS1822 Temperature Sensors
Functions

These functions are intended for easy interfacing between C programs and the DS1820/DS1822

1 Wire bus temperature sensors.

The prototypes for these functions are placed in the file ds1820.h, located in the .\INC subdirectory.
This file must be #include -ed before using the functions.

The 1 Wire bus functions prototypes are automatically #include -ed with the ds1820.h.

Prior to #include -ing the ds1820.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1820/DS1822 through the 1 Wire bus.
Example:

/* specify the port and bit used for the 1 Wre bus */

#asm
.equ __wl _port=0x18 ; PORTB
.equ _ wl bit=2

#endasm

/* include the DS1820/ DS1822 functions prototypes */
#i ncl ude <ds1820. h>

The DS1820/DS1822 functions are:
int ds1820_temperature_10(unsigned char *addr)

this function returns the temperature of the DS1820/DS1822 sensor with the ROM code stored in
an array of 8 bytes located at address addr.
The temperature is in °C and is multiplied by 10. In case of error the function returns the value -9999.
If only one DS1820/DS1822 sensor is used, no ROM code array is necessary and the pointer addr
must be NULL (0).
If more then one sensor is used, then the program must first identify the ROM codes for all the
sensors. Only after that the ds1820_temperature_10 function may be used, with the addr pointer
pointing to the array which holds the ROM code for the needed device.
Example:

#i ncl ude <90s8515. h>

/* specify the port and bit used for the 1 Wre bus */
#asm

.equ __wl _port=0x18 ; PORTB

.equ _ wl bit=2
#endasm

/* include the DS1820/ DS1822 functions prototypes */
#i ncl ude <ds1820. h>

/* include the printf function prototype */
#i ncl ude <stdio. h>

/* include the abs function prototype */
#i ncl ude <mat h. h>

© 1998-2001 HP InfoTech S.R.L. Page 140

CodeVisionAVR

/* maxi mum nunber of DS1820/ DS1822 connected to the bus

#defi ne MAX_DEVI CES 8

/* DS1820/ DS1822 devi ces ROM code storage area
9 bytes are used for each device
(see the wl_search function description),
but only the first 8 bytes contain the ROM code
and CRC */
unsi gned char rom codes[MAX_DEVI CES, 9] ;

mai n()

unsi gned char i,j, devices;
int tenp;

/* initialize the UART's baud rate */
UBRR=xt al / 16/ baud- 1;

/* initialize the UART control register
TX enabl ed, no interrupts, 8 data bits */
UCR=8;

/* detect how many DS1820/DS1822 devi ces

are connected to the bus and

store their ROM codes in the romcodes array */
devi ces=wl_sear ch(0xf 0, rom codes);

/* display the nunber */
printf("%u DEVI CE(S) DETECTED\n\r", devi ces)

/* if no devices were detected then halt */
if (devices==0) while (1); /* loop forever */

/* measure and display the tenperature(s) */
while (1)
{

for (i=0;i<devices;)

{

t enp=ds1820_t enperature_10(& om codes[i, 0]);
printf("t%u=%i.%u\xf8C n\r", ++i ,tenp/ 10
abs(tenp?%0));

*/

© 1998-2001 HP InfoTech S.R.L.

Page 141

CodeVisionAVR

unsigned char ds1820_set_alarm(unsigned char *addr,signed char temp_low,
signed char temp_high)

this function sets the low (temp_low) and high (temp_high) temperature alarms of the
DS1820/DS1822.
In case of success the function returns the value 1, else it returns O.
The alarm temperatures are stored in both the DS1820/DS1822's scratchpad SRAM and its EEPROM.
The ROM code needed to address the device is stored in an array of 8 bytes located at address addr.
If only one DS1820/DS1822 sensor is used, no ROM code array is necessary and the pointer addr
must be NULL (0).

The alarm status for all the DS1820/DS1822 devices on the 1 Wire bus can be determined by calling
the wl_search function with the Alarm Search (ECh) command.
Example:

#i ncl ude <90s8515. h>

/* specify the port and bit used for the 1 Wre bus */
#asm

.equ __wl _port=0x18 ; PORTB

.equ _ wl bit=2
#endasm

/* include the DS1820/ DS1822 functions prototypes */
#i ncl ude <ds1820. h>

/* include the printf function prototype */
#i ncl ude <stdio. h>

/* include the abs function prototype */
#i ncl ude <mat h. h>

/* maxi num nunber of DS1820/ DS1822 connected to the bus */
#defi ne MAX DEVI CES 8

/* DS1820/ DS1822 devi ces ROM code storage area,
9 bytes are used for each device
(see the wl_search function description),
but only the first 8 bytes contain the ROM code
and CRC */
unsi gned char rom codes[MAX_DEVI CES, 9] ;

/* allocate space for ROM codes of the devices
whi ch generate an alarm */
unsi gned char al armrom codes[MAX_DEVI CES, 9] ;

mai n()

{

unsi gned char i,j, devices;
int tenp;

/* initialize the UART's baud rate */
UBRR=xt al / 16/ baud- 1;

© 1998-2001 HP InfoTech S.R.L. Page 142

CodeVisionAVR

/* initialize the UART control register

TX enabl ed, no interrupts, 8 data bits */

UCR=8;

/* detect how many DS1820/DS1822 devi ces

are connected to the bus and
store their ROM codes in the romcodes array */

devi ces=wl_sear ch(0xf 0, rom codes);

/* display the nunber */
printf("%u DEVI CE(S) DETECTED\n\r", devi ces);

/* if no devices were detected then halt */
if (devices==0) while (1); /* loop forever */

/* set the tenperature alarns for all the devices

for

tenmp_l| ow=25°C t enp_hi gh=35°C */
(1 =0;i<devices;i+t)

{

printf ("IN TIALIZI NG DEVICE #%u ", i+1);

if (ds1820_set _al arm(& om codes[i, 0], 25, 35))
put sf("OK"); else putsf("ERROR');

i

while (1)

}

{

/* measure and display the tenperature */
for (i=0;i<devices;)

{

t enp=ds1820_t enperature_10(& om codes[i, 0]);
printf("t%u=%i.%u\xf8CQ n\r", ++i ,tenp/ 10,
abs(tenp?%0));

/* display the nunber of devices which
generated an alarm*/

printf("ALARM GENERATED BY % u DEVICE(S)\n\r",

wl_sear ch(Oxec, al arm rom codes));

b

Refer to the DS1820/DS1822 data sheet for more information.

© 1998-2001 HP InfoTech S.R.L.

Page 143

CodeVisionAVR

4.12 SPI Functions

The SPI Functions are intended for easy interfacing between C programs and various peripherals
using the SPI bus.

The prototypes for these functions are placed in the file spi.h, located in the .\INC subdirectory. This
file must be #include -ed before using the functions.

The SPI functions are:

unsigned char spi(unsigned char data)
this function sends the byte data, simultaneously receiving a byte.

Prior to using the spi function, you must configure the SPI Control Register SPCR according to the
Atmel Data Sheets.

Because the spi function uses polling for SPI communication, there is no need to set the SPI Interrupt
Enable Bit SPIE.

Example of using the spi function for interfacing to an AD7896 ADC:

/*
Digital voltneter using an
Anal og Devi ces AD7896 ADC
connected to an AT90S8515
using the SPI bus

Chi p: AT90S8515

Menory Mbdel : SMALL

Data Stack Size: 128 bytes
O ock frequency: 4MHz

AD7896 connections to the AT90S8515

[AD7896] [AT9S8515 DI P40]
Vin

Vr ef =5V

AGND - 20 G\D

SCLK - 8 SCK

SDATA - 7 M SO

DG\D - 20 G\D

CONVST- 2 PB1

BUSY - 1 PBO

O~NOOUOITA WN P

© 1998-2001 HP InfoTech S.R.L. Page 144

CodeVisionAVR

Use an 2x16 al phanumeric LCD connected
to PORTC as foll ows:

[LCD] [AT90S8515 DI P40]
G\D- 20 G\D
+5V- 40 VCC
VLC

RS - 21 PCO
RD - 22 PC1
EN - 23 PC2
11 D4 - 25 PCA
12 D5 - 26 PC5
13 D6 - 27 PCB
14 D7 - 28 PCT */

OO WNBE

#asm
.equ __lcd_port=0x15
#endasm

#i nclude <lcd. h> // LCD driver routines
#i nclude <spi.h>// SPI driver routine
#i ncl ude <90s8515. h>

#i ncl ude <stdi o. h>

#i ncl ude <del ay. h>

/1 AD7896 reference voltage [nV]
#defi ne VREF 5000L

/1 AD7896 control signals PORTB bit allocation
#defi ne ADC_BUSY PI NB. 0
#defi ne NCONVST PORTB. 1

/1 LCD display buffer
char |cd_buffer[33];

unsi gned read_adc(voi d)

{

unsi gned result;

/1 start conversion in node 1

/1 (high sanpling perfornmance)

NCONVST=0;

NCONVST=1;

/1 wait for the conversion to conplete

whi | e (ADC_BUSY) ;

/1 read the MSB using SPI

resul t =(unsi gned) spi (0)<<8;

/1 read the LSB using SPI and conbine with MSB
resul t|=spi(0);

/1 calculate the voltage in [nV]
resul t =(unsi gned) (((unsigned |ong) result*VREF)/4096L);
/1 return the nmeasured voltage

return result;

}

© 1998-2001 HP InfoTech S.R.L.

Page 145

CodeVisionAVR

voi d mai n(voi d)

{

// initialize PORTB

/1 PB.0 input from AD7896 BUSY
/1 PB.1 output to AD7896 / CONVST
/1l PB.2 & PB.3 inputs

/1 PB.4 output (SPI /SS pin)

/1 PB.5 input

/1 PB.6 input (SPI M SO

/1 PB.7 output to AD7896 SCLK
DDRB=0x92;

// initialize the SPI in naster

/1 no interrupts, MSB first, clock phase negative
/1 SCK | ow when idle,

[l SCK=fxtal/4
SPCR=0x54;

/1 the ADr896 wil |

/1 (high sanpling perfornmance)
/1 | CONVST=1, SCLK=0

PORTB=2;

/1

| cd_put sf (" AD7896 SPI

initialize the LCD
lcd_init(16);

del ay_ns(2000);
I cd_clear();

/1

read and display the ADC i nput voltage

while (1)

{

sprintf(lcd_buffer,"Uadc=%lumv/", read_adc());

I cd_clear();
| cd_puts(lcd_buffer);
del ay_ns(100);

cl ock phase=0

work in node 1

bus\nVol tnmeter");

© 1998-2001 HP InfoTech S.R.L.

Page 146

CodeVisionAVR

4.13 Power Management Functions

The Power Management Functions are intended for putting the AVR chip in one of its low power
consumption modes.

The prototypes for these functions are placed in the file sleep.h, located in the ..\INC subdirectory.
This file must be #include -ed before using the functions.

The Power Management Functions are:

void sleep_enable(void)
this function enables the entering in low power consumption modes.
void sleep_disable(void)

this function disables the entering in low power consumption mode.
It is used to disable accidental entering in low power consumption modes.

void idle(void)

this function puts the AVR chip in the idle mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering in low power
consumption modes.
In this mode the CPU is stopped, but the Timers/Counters, Watchdog and interrupt system continue
operating.
The CPU can wake up from external triggered interrupts as well as internal ones.

void powerdown(void)

this function puts the AVR chip in the powerdown mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering in low power
consumption modes.
In this mode the external oscillator is stopped.
The AVR can wake up only from an external reset, Watchdog time-out or external level triggered
interrupt.

void powersave(void)

this function puts the AVR chip in the powersave mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering in low power
consumption modes.
This mode is similar to the powerdown mode with some differences, please consult the Atmel Data
Sheet for the particular chip that you use.

© 1998-2001 HP InfoTech S.R.L. Page 147

CodeVisionAVR

4.14 Delay Functions

These functions are intended for generating delays in C programs.

The prototypes for these functions are placed in the file delay.h, located in the ..\INC subdirectory.
This file must be #include -ed before using the functions.

Before calling the functions the interrupts must be disabled, otherwise the delays will be

much longer then expected.

Also it is very important to specify the correct AVR chip clock frequency in the Project|Configure|C
Compiler menu.

The functions are:
void delay_us(unsigned int n)

generates a delay of n nseconds. n must be a constant expression.
void delay_ms(unsigned int n)

generates a delay of n milliseconds.
This function automatically resets the wtachdog timer every 1ms by generating the wdr instruction.

Example:

void mai n(void) {
/* disable interrupts */
#asnm("cli")

/* 100nms del ay */
del ay_us(100);

/* 10ns del ay */
del ay_ns(10);

/* enable interrupts */
#asn("sei ")

© 1998-2001 HP InfoTech S.R.L. Page 148

CodeVisionAVR

5. CodeWizardAVR Automatic Program Generator

The CodeWizardAVR Automatic Program Generator allows you to easily write all the code needed for
|mplement|ng the following functions:

External memory access setup

Chip reset source identification

Input/Output Port initialization

External Interrupts initialization

Timers/Counters initialization

Watchdog Timer initialization

UART initialization and interrupt driven buffered serial communication

Analog Comparator initialization

ADC initialization

SPI Interface initialization

I°C Bus, LM75 Temperature Sensor, DS1621 Thermometer/Thermostat, PCF8563, PCF8583,
D81302 and DS1307 Real Time Clocks initialization

1 Wire Bus and DS1820/DS1822 Temperature Sensors initialization

LCD module initialization.

The Automatic Program Generator is invoked using the Tools|CodeWizardAVR menu command or
by pressing the CodeWizardAVR command bar button.

The File|]New menu command allows creating a new CodeWizardAVR project.
This project will be named by default untitled.cwp .

The File|Open menu command allows loading an existing CodeWizardAVR project:

Dpon Projoct G
Look in: Ia Bin j ﬁl

test

File name: Iteat

Files of type: ICDdeWizardAUFi project files *.owp) j Cancel

© 1998-2001 HP InfoTech S.R.L. Page 149

CodeVisionAVR

The File|Save menu command allows saving the currently opened CodeWizardAVR project.
The File|Save As menu command allows saving the currently opened CodeWizardAVR project under
a new name:

Save CACVAVR\BIN\untitled.cwpAs ______HEH|
Sawe in; Ia Bin j ﬁl

File name: Iteat

save as bype: ICDdeWizardAUFi project files *.owp) j Cancel

The user must set all the AVR chip configuration options.

After that, by selecting the File|Generate, Save and Exit menu option, CodeWizardAVR will generate
the main C source and project files, save the CodeWizardAVR project file and return to the
CodeVisionAVR IDE.

Eventual pin function conflicts will be prompted to the user, allowing him to correct the errors.

Selecting the File|Exit menu option allows you to exit the CodeWizardAVR without generating any
program files.

By selecting the Help menu option you can see the help topic that corresponds to the current
CodeWizardAVR configuration menu.

© 1998-2001 HP InfoTech S.R.L. Page 150

CodeVisionAVR

In the course of program generation the user will be prompted for the name of the main C file:

Save C Compiler Source File — HH|
Sane in: Ia Examples j ﬁl

C_asm C1Therm?5
Ds1820 (A Thermicd
Eeprom

kevpad

Leddemo

Led

hdax1 241

=pi

File name: Iteat

oave as type: IC Compilerfiles (*c) j Cancel |

and for the name of the project file:

Save C Compiler ProjectFile — HH|
Sane in: Ia Examples j ﬁl

C_asm C1Therm?5
Ds1820 (A Thermicd
Eeprom

kevpad

Leddemo

Led

hdax1 241

=pi

File name: Iteat

save as bype: IPrn:ujen:tfiIes {*.arj) j Cancel

© 1998-2001 HP InfoTech S.R.L. Page 151

CodeVisionAVR

5.1 Setting the AVR Chip Options
By selecting the Chip tab of the CodeWizardAVR, you can set the AVR chip options.

CodeWizardAVR - untitied_cwp i
File Help
External IRQ | Timers | UART |
Analog Comparatar i ADC i =F 1 lZC
1 'ire ; LCD
BitBanged] Froject Infarmatian
......... Ch|p] ool SR i —

Chip: [ATmegat03 x|

Clock: [4.000000 [34] MHz

v Crystal Oscillatar Divider Enabled

Cryestal Gsn:illaturDivider:lE Zi

[T Check Eeset Source

The chip type can be specified using the Chip list box.
The chip clock frequency in MHz can be specified using the Clock spinedit box.

For the AVR chips that contain a crystal oscillator divider, a supplementary Crystal Oscillator Divider
Enabled check box is visible.

This check box allows you to enable or disable the crystal oscillator divider.

If the crystal oscillator is enabled, you can specify the division ratio using the Crystal Oscillator
Divider spinedit box.

For the AVR chips that allow the identification of the reset source, a supplementary Check Reset
Source check box is visible. If it's checked then the CodeWizardAVR will generate code that allows
identification of the conditions that caused the chip reset.

© 1998-2001 HP InfoTech S.R.L. Page 152

CodeVisionAVR

5.2 Setting the External SRAM

For the AVR chips that allow connection of external SRAM, you can specify the size of this memory
and wait state insertion by selecting the External SRAM tab.

CodeWizardAVR - untitied.cwp
File Help
External IRQ | Timers | UART |
AnalugCumparaturiADC iSPI 1IEC
1 'ire ; LCD
BitBanged ; Froject Infarmatian

Chip (T Edemal SEAR] Ports

External SEAR size:]SZk *1

[T External SRAK Wait State

The size of external SRAM can be specified using the External SRAM Size list box.
Additional wait states in accessing the external SRAM can be inserted by checking the External

SRAM Wait State check box.
The MCUCR register in the startup initialization code is configured automatically according to these

settings.

© 1998-2001 HP InfoTech S.R.L. Page 153

CodeVisionAVR

For devices, like the ATmegal61, that allow splitting the external SRAM in two pages, the External
SRAM configuration window will look like this:

CodeWizardAVR - untitied_cwp i
File Help
External IRQ | Timers | UARTO | UARTT |
Analog Cumparaturi =F i [20C 1 1 Whire
LCD ; BitBanged i Project Infarmation
Chip © External SRAM ; Earts]

External SFRARM size:}BEk '1

External ZRAM page configuration:
[0460K - 1FFFh / 2000k -FFFFh - =]

Lowerwait states: Lpperwait states:

|11 x| |eriwrtaddr =]

The External SRAM page configuration list box allows selection of the splitting address for the two
external SRAM pages .

The wait states that are inserted during external SRAM access, can be specified for the lower,
respectively upper, memory pages using the Lower wait states, respectively Upper wait states list
boxes.

The MCUCR and EMCUCR registers in the startup initialization code are configured automatically
according to these settings.

© 1998-2001 HP InfoTech S.R.L. Page 154

CodeVisionAVR

5.3 Setting the Input/Output Ports

By selecting the Ports tab of the CodeWizardAVR, you can specify the input/output Ports
configuration.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Froject Information
Chip [Porie] Extemal RO | Timers
PortA |PanB | PortD | PorE |
Data Direction Fullup/Output Yalue
Bit0 || T| BitO
Bit1 || T/ Bit1
Bit? || T| Bit2
Bit3 || T/ Bit3
Bitd || T Bit4
Bits || T| Bits
BitG || T| Bith
Bit7 || T/ Bit?

You can chose which port you want to configure by selecting the appropriate PORT x tab.
By clicking on the corresponding Data Direction bit you can set the chip pin to be output (O) or input
(D).

The DDRx register will be initialized according to these settings.

By clicking on the corresponding Pullup/Output Value bit you can set the following options:

if the pin is an input, it can be tri-stated (T) or have an internal pull-up (P) resistor connected to the
positive power supply.

if the pin is an output, it's value can be initially set to O or 1.
The PORTX register will be initialized according to these settings.

© 1998-2001 HP InfoTech S.R.L. Page 155

CodeVisionAVR

5.4 Setting the External Interrupts

By selecting the External IRQ tab of the CodeWizardAVR, you can specify the external interrupt
configuration.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Project Infarmation
Chip | Pors | External RO | Timers

W INTO Enabled
W INT1 Enabled
W INTZ Enabled

W INT3 Enabled

¥ INT4 Enahbled MDdE:ILDw Lenel

kS

¥ INTE Enakled MDdE:ILDw Lenel

kS

¥ INTE Enakled MDdE:ILDw Lenel

kS

I B B K B K

¥ INTZ Enahkled MDdE:ILDw Lenel

Checking the appropriate INTx Enabled check box enables the corresponding external interrupt.
If the AVR chip supports this feature, you can select if the interrupt will be edge or level triggered using
the corresponding Mode list box.

For each enabled external interrupt the CodeWizardAVR will define an ext_intx_isr interrupt service
routine, where x is the number of the external interrupt.

© 1998-2001 HP InfoTech S.R.L. Page 156

CodeVisionAVR

5.5 Setting the Timers/Counters

By selecting the Timers tab of the CodeWizardAVR, you can specify the timers/counters

configuration.
A number of Timer tabs will be displayed according to the AVR chip type.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Froject Information
Chip | Ports | ExtemaliRa Timers

|Timer1 I Timer £ | Wiiatchdog |

Clock Source: ISystem Clack, j

Clock Walue: ITimerIII stopped j

hode: IOutput Compare j

Clutput: IDisu:u:unnen:ted j

[T Clear Tirmer on Compare kdatch
M QwedlowRQ [~ Compare Match IRC

Timetalue: [0 h Compare: (1 h

By selecting the Timer O tab you can have the following options:

Clock Source specifies the timer/counter O clock pulse source

Clock Value specifies the timer/counter O clock frequency

Mode specifies if the timer/counter O functioning mode

Output specifies the function of the timer/counter O output and depends of the functioning mode

Clear Timer on Compare Match specifies if the timer/counter O is to be reset in the CPU cycle
after a compare match

Overflow IRQ specifies if an interrupt is to be generated on timer/counter O overflow

Compare Match IRQ specifies if an interrupt is to be generated on timer/counter O compare
match

Timer Value specifies the initial value of timer/counter O at startup

Compare specifies the initial value of timer/counter O output compare register.

For some devices in Pulse Width Modulation Mode, there will be present a supplementary check box:
PWM frequency x2. Checking it allows doubling the pulse frequency on the OCO pin.

If timer/counter O interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

timerO_ovf _isr for timer/counter overflow

timer0_comp_isr for timer/counter output compare match.

© 1998-2001 HP InfoTech S.R.L. Page 157

CodeVisionAVR

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Froject Information
Chip | Ports | ExtemaliRa Timers

|T|mer e | Wiiatchdog |

Clock Source: ISystem Clack, j

Clock Walue: ITimeH stopped j

Mude:loutput Compare j

gt A IDiSI:I:Ir'I. j Cut, B: IDiSCDﬂ- j
I~ Clear Timer Inp. r Moise Cancel <5
Interrupt on: r Tirner 1 Overflow —:'

valll hCmpAfo hCmpBf0 h

By selecting the Timer 1 tab you can have the following options:
Clock Source specifies the timer/counter 1 clock pulse source
Clock Value specifies the timer/counter 1 clock frequency
Mode specifies if the timer/counter 1 functioning mode
Out. A specifies the function of the timer/counter 1 output A and depends of the functioning mode
Out. B specifies the function of the timer/counter 1 output B and depends of the functioning mode
Clear Timer specifies if the timer/counter 1 is to be reset in the CPU cycle after a compare match
Inp. specifies the timer/counter 1 capture trigger edge and if the noise canceler is to be used
Cmp. A specifies the initial value of timer/counter 1 output compare register A
Interru pt specifies if an interrupt is to be generated on timer/counter 1 overflow, input capture and
compare match
Timer Value specifies the initial value of timer/counter 1 at startup
Cmp. A specifies the initial value of timer/counter 1 output compare register A
Cmp. B specifies the initial value of timer/counter 1 output compare register B

For some devices in Pulse Width Modulation Mode, there will be present a supplementary check box:
PWM frequency x2. Checking it allows doubling the pulse frequency on the OC1A and OC1B pins.

© 1998-2001 HP InfoTech S.R.L. Page 158

CodeVisionAVR

If timer/counter 1 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

timerl_ovf _isr for timer/counter overflow

timerl_comp_isr or timerl_compa_isr and timerl_compb_isr for timer/counter output
compare match

timerl_capt_isr for timer/counter input capture

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Froject Information
Chip | Pors | Extarnal IRQ Timers
| ‘Watchdog |
Clock Source: ISystem Clack, j

Clock Walue: ITimerE stopped j

hode: IOutput Compare j

Clutput: IDisu:u:unnen:ted j

[T Clear Tirmer on Compare kdatch
M QwedlowRQ [~ Compare Match IRC

Timetalue: [0 h Compare: (1 h

By selecting the Timer 2 tab you can have the following options:

Clock Source specifies the timer/counter 2 clock pulse source

Clock Value specifies the timer/counter 2 clock frequency

Mode specifies if the timer/counter 2 functioning mode

Output specifies the function of the timer/counter 2 output and depends of the functioning mode

Clear Timer on Compare Match specifies if the timer/counter 2 is to be reset in the CPU cycle
after a compare match

Overflow IRQ specifies if an interrupt is to be generated on timer/counter 2 overflow

Compare Match IRQ specifies if an interrupt is to be generated on timer/counter 2 compare
match

Timer Value specifies the initial value of timer/counter 2 at startup

Compare specifies the initial value of timer/counter 2 output compare register.

For some devices in Pulse Width Modulation Mode, there will be present a supplementary check box:
PWM frequency x2. Checking it allows doubling the pulse frequency on the OC2 pin.

© 1998-2001 HP InfoTech S.R.L. Page 159

CodeVisionAVR

If timer/counter 2 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

timer2_ovf _isr for timer/counter overflow

timer2_comp_isr for timer/counter output compare match.

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

By selecting the Watchdog tab you can configure the watchdog timer.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
l2C | 1wie | LCD
BitBanged | Froject Information
Chip | Ports | ExtemaliRa Timers

W “watchdog Timer Enabled

—Oscillator Frescaler—————————
 0OSCHE OSC/2ER

 0SC/32 - 0SC/512
= 0SC/B4 0SC/1024
- 05C/128 & 05C/2045

Checking the Watchdog Timer Enabled check box activates the watchdog timer.

You will have then the possibility to set the watchdog timer's Oscillator Prescaller.

In case the watchdog timer is enabled, you must include yourself the appropriate code sequences to
reset it periodically.

Example:

#asn(“wdr”)

For more information about the watchdog timer you must consult the Atmel data sheet for the chip that
you use.

© 1998-2001 HP InfoTech S.R.L. Page 160

CodeVisionAVR

5.6 Setting the UART or USART
By selecting the UART tab of the CodeWizardAVR, you can specify the UART configuration.

CodeWizardAVR - untitled cwp =]|
File Help
l2C | 1wire | LCD
Bit-Banged | Froject Information

| Farts | External IRO | Timers
| Analog Cnmparatclrl ADC I SH

¥ EBeceiver ¥ Ex Interrupt

Feceiver Buffer: |8 ZI

W Transmitter W TxInterrupt

Transmitter Buffer:

I
LIART Baud rate: IEIEEIEI vl

Baud Rate Error: 0.2%4

Communication Parameters:

8 Data, 1 Stop, Mo Parity 7]

Checking the Receiver check box activates the UART receiver.
The receiver can function in the following modes:
polled, the Rx Interrupt check box isn't checked
interrupt driven circular buffer, the Rx Interrupt check box is checked.
In the interrupt driven mode you can specify the size of the circular buffer using the Receiver Buffer
spinedit box.

Checking the Transmitter check box activates the UART transmitter.
The transmitter can function in the following modes:
polled, the Tx Interrupt check box isn't checked
interrupt driven circular buffer, the Tx Interrupt check box is checked.
In the interrupt driven mode you can specify the size of the circular buffer using the Transmitter
Buffer spinedit box.

The communication Baud rate can be specified using the UART Baud Rate list box.
CodeWizardAVR will automatically set the UBRR according to the Baud rate and AVR chip clock
frequency. The Baud rate error for these parameters will be calculated and displayed.

The Communications Parameters list box allows you to specify the number of data bits, stop bits
and parity used for serial communication.

© 1998-2001 HP InfoTech S.R.L. Page 161

CodeVisionAVR

For devices featuring an USART there will be an additional Mode list box.

File Help
spl | ec |1
LcD | BitBanged

W Beceiver

Receiver Buffer:
W Transmitter

Transmitter Buffer:

LIART Baud rate:

wire | 2ire (12C)
I Froject Information
Chip | Forts | External IRD | Timers

LISART | Analog Comparator | ADC

W Fux Interrupt

-

W Tx Interrupt

i ZI
IEIEEIEI vl M =2

Baud Rate Error: 0.2%2

Cormmunication Parameters:

IB Data, 1 Stop, Mo Farity j

Mude:lﬁsynchrunuua j

It allows you to specify the following communication modes:

Asynchronous

Synchronous Master, with the UCSRC register's UCPOL bit set to 0
Synchronous Master, with the UCSRC register's UCPOL bit set to 1
Synchronous Slave, with the UCSRC register's UCPOL bit set to 0
Synchronous Slave, with the UCSRC register's UCPOL bit set to 1

© 1998-2001 HP InfoTech S.R.L.

Page 162

CodeVisionAVR

The serial communication is realized using the Standard Input/Output Functions getchar, gets,
scanf, putchar, puts and printf.

For interrupt driven serial communication, CodeWizardAVR automatically redefines the basic getchar
and putchar functions.

The receiver buffer is implemented using the global array rx_buffer.

The global variable rx_wr_index is the rx_buffer array index used for writing received characters in
the buffer.

The global variable rx_rd_index is the rx_buffer array index used for reading received characters
from the buffer by the getchar function.

The global variable rx_counter contains the number of characters received in rx_buffer and not yet
read by the getchar function.

If the receiver buffers overflows the rx_buffer_overflow global bit variable will be set.

The transmitter buffer is implemented using the global array tx_buffer.

The global variable tx_wr_index is the tx_buffer array index used for writing in the buffer the
characters to be transmitted.

The global variable tx_rd_index is the tx_buffer array index used for reading from the buffer the
characters to be transmitted by the putchar function.

The global variable tx_counter contains the number of characters from tx_buffer not yet transmitted
by the interrupt system.

For devices with 2 UARTS there will be two tabs present: UARTO and UARTL.

The functions of configuration check and list boxes will be the same as described above.
The UARTO will use the normal putchar and getchar functions.

In case of interrupt driven buffered communication, UARTO will use the following variables:
rx_buffer0, rx_wr_index0, rx_rd_index0, rx_counter0, rx_buffer_overflowO,
tx_buffer0, tx_wr_indexO0, tx_rd_index0, tx_counter0.

The UART1 will use the putcharl and getcharl functions.

In case of interrupt driven buffered communication, UART1 will use the following variables:
rx_bufferl, rx_wr_index1, rx_rd_index1, rx_counterl, rx_buffer_overflowl,
tx_bufferl, tx_wr_index1, tx_rd_index1, tx_counterl.

All serial 1/0O using functions declared in stdio.h, will be done using UARTO.

© 1998-2001 HP InfoTech S.R.L. Page 163

CodeVisionAVR

5.7 Setting the Analog Comparator

By selecting the Analog Comparator tab of the CodeWizardAVR, you can specify the analog
comparator configuration.

CodeWizardAVR - untitied.cwp
File Help
e | 1wire | 2wire | LD |
Bit-Banged i Froject Information
Chip i Forts i External IRO ; Timers

UART Analog Cn:umparaturé] ADC l o= 1

v Analog Comparator Enabled

[T Bandgap Yoltage Reference

I~ Input Multiplexer

[T Analog Comparator Interrupt

™ Analog Comparator Input Capture

Checking the Analog Comparator Enabled check box enables the on-chip analog comparator.
Checking the Bandgap Voltage Reference check box will connect an internal voltage reference to
the analog comparator's positive input.

Checking the Input Multiplexer check box will connect the ADCs analog multiplexer to the analog
comparator's negative input.

If you want to generate interrupts if the analog comparator's output changes state, then you must
check the Analog Comparator Interrupt check box.

The type of output change that triggers the interrupt can be specified in the Analog Comparator
Interrupt Mode settings.

If the analog comparator's output is to be used for capturing the state of timer/counter 1 then the
Analog Comparator Input Capture check box must be checked.

Some of this check boxes may not be present on all the AVR chips.

If the analog comparator interrupt is enabled, the CodeWizardAVR will define the ana_comp_isr
interrupt service routine.

© 1998-2001 HP InfoTech S.R.L. Page 164

CodeVisionAVR

5.8 Setting the Analog-Digital Converter

Some AVR chips contain an analog-digital converter (ADC).
By selecting the ADC tab of the CodeWizardAVR, you can specify the ADC configuration.

CodeWizardAVR - untitied_cwp i
File Help
e | 1wire | 2wire | LD |
Bit-Banged i Froject Information

Chip ; Farts ; External!u!ﬁ_g i Timers
LUART ;Analug Cormparatar | ADC E]SPI]

v ADCEnahkled ™ Use 8 hits
¥ ADC Interrupt
[~ ADC Moise Canceler

Yolt Ref. : iAF{EF pin :_j

ADCClock: [250.000kHz =]

—Automatically Scan Inputs———

¥ Enakled

First Input: m
Last Input: m

Checking the ADC Enabled check box enables the on-chip ADC.
On some AVR devices only the 8 most semnificative bits of the ADC conversion result can be used.
This feature is enabled by checking the Use 8 bits check box.
If the ADC has an internal reference voltage source, than it can be selected using the Volt. Ref. list
box or activated by checking the ADC Bandgap check box.
If you want to generate interrupts when the ADC finishes the conversion, then you must check the
ADC Interrupt check box.
If ADC interrupts are used you have the possibility to enable the following functions:

by checking the ADC Noise Canceler check box, the chip is placed in idle mode during the
conversion process, thus reducing the noise induced on the ADC by the chip's digital circuitry

by checking the Automatically Scan Inputs Enabled check box, the CodeWizardAVR wiill
generate code to scan an ADC input domain and put the results in an array. The start, respectively the
end, of the domain are specified using the First Input, respectively the Last Input, spinedit boxes.

© 1998-2001 HP InfoTech S.R.L. Page 165

CodeVisionAVR

If the automatic inputs scanning is disabled, then a single analog-digital conversion can be executed
using the function:

unsigned int read_adc(unsigned char adc_input)

This function will return the analog-digital conversion result for the input adc_input. The input
numbering starts from O.

If interrupts are enabled the above function will use an additional interrupt service routine adc_isr.
This routine will store the conversion result in the adc_data global variable.

If the automatic inputs scanning is enabled, the adc_isr service routine will store the conversion
results in the adc_data global array. The user program must read the conversion results from this
array.

© 1998-2001 HP InfoTech S.R.L. Page 166

CodeVisionAVR

5.9 Setting the SPI Interface
By selecting the SPI tab of the CodeWizardAVR, you can specify the SPI interface configuration.

CodeWizardAVR - untitied_cwp i
File Help
e | 1wire | 2wire | LD |
Bit-Banged i Froject Information

Chip ; Forts ; External IRD ; Timers
UART ; Analog Cnmparatclri ADC

v SFlEnahled ™ SPlInterrupt
[T Clock Rate =2 —Clock Phase—

~SPI Clock Rate— & Cyele Half
& 1000.000kHz | | © Cycle Start
i 250000 kHz —Clock PD|Elrit_',-"'
= B2.500 kHz &+ Low

= 31.280 kHz " High

-5F Type——— —Diata Order——
& Slawve & MSE First
= Master = LSB First

Checking the SPI Enabled check box enables the on-chip SPI interface.
If you want to generate interrupts upon completion of a SPI transfer, then you must check the SPI
Interrupt check box.
You have the possibility to specify the following parameters:
- SPI Clock Rate used for the serial transfer
Clock Phase: the position of the SCK strobe signal edge relative to the data bit
Clock Polarity: low or high in idle state
SPI Type: the AVR chip is master or slave
Data Order in the serial transfer.

Checking the Clock Rate x2 check box, available for some AVR chips, will double the SPI Clock
Rate.

For communicating through the SPI interface, with disabled SPI interrupt, you must use the SPI
Functions.

If the SPI interrupt is enabled, you must use the spi_isr interrupt service routine, declared by the
CodeWizardAVR.

© 1998-2001 HP InfoTech S.R.L. Page 167

CodeVisionAVR

5.10 Setting the I°C Bus

By selecting the I°C tab of the CodeWizardAVR, you can specify the I°C bus configuration.

CodeWizardAVR - untitled.cwp
File Help
UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
T | i | LD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

LM75 | Ds1621 | PoFesas | P4]

[T Enahled

=]|

Using the I°C Port list box you can specify which port is used for the implementation of the I°C bus.

The SDA Bit and SCL Bit list boxes allow you to specify which port bits the I°C bus uses.

© 1998-2001 HP InfoTech S.R.L.

Page 168

CodeVisionAVR

5.10.1 Setting the LM75 devices

If you use the LM75 temperature sensor, you must select the LM75 tab and check the LM75 Enabled
check box.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
l2C | 1wie | LoD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

W Enabled Address:lp 0 =
™ Qutput Active High

Temperature "C

Hyst |75 2408 [0 [3]

The LM75 Address list box allows you to specify the 3 lower bits of the I°C addresses of the LM75
devices connected to the bus. Maximum 8 LM75 devices can be used.

The Output Active High check box specifies the active state of the LM75 O.S. output.

The Hyst., respectively O.S. , spinedit boxes specify the hysterezis, respectively O.S. temperatures.
The LM75 devices are accessed through the National Semiconductor LM75 Temperature Sensor
Functions.

© 1998-2001 HP InfoTech S.R.L. Page 169

CodeVisionAVR

5.10.2 Setting the DS1621 devices

If you use the DS1621 thermometer/thermostat, you must select the DS1621 tab and check the
DS1621 Enabled check box.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
l2C | 1wie | LoD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

W Enabled Address:lp 0 =
™ Qutput Active High

Temperature trigger '

Low: [0 [P4|High:[s5 [34]

The Output Active High check box specifies the active state of the DS1621 Tout output.

The Low, respectively High, spinedit boxes specify the low, respectively high temperatures trigger
temperatures for the Tout output.

The DS1621 devices are accessed through the Dallas Semiconductor DS1621
Thermometer/Thermostat functions.

© 1998-2001 HP InfoTech S.R.L. Page 170

CodeVisionAVR

5.10.3 Setting the PCF8563 devices

If you use the PCF8563 RTC, you must select the PCF8563 tab and check the PCF8563 Enabled
check box.

CodeWizardAVR - untitled_cwp =]
File Help

UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
l2C | 1wie | LoD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

W Enabled CLKOUT: |1 "l

[~ Alarm Interrupt

Timet
Clack: |1 | W Int. Enabled
Yalue: [1 W IMNT Fulzes

The CLKOUT list box specifies the frequency of the pulses on the CLKOUT output.

The Alarm Interrupt check box enables the generation of interrupts, on the INT pin, when the alarm
conditions are met.

The Timer|Clock list box specifies the countdown frequency of the PCF8563 Timer.

If the Int. Enabled check box is checked, an interrupt will be generated when the Timer countdown
value will be 0.

If the INT Pulses check box is checked, the INT pin will issue short pulses when the Timer countdown
value reaches 0.

The Timer|Value spinedit box specifies the Timer reload value when the countdown reaches 0.

The PCF8563 devices are accessed through the Philips PCF8563 Real Time Clock Functions.

© 1998-2001 HP InfoTech S.R.L. Page 171

CodeVisionAVR

5.10.4 Setting the PCF8583 devices

If you use the PCF8583 RTC, you must select the PCF8583 tab and check the PCF8583 Enabled

check box.

CodeWizardAVR - untitled.cwp

File Help
BitBanged | Froject Informatian
Chip | Fons | External IR | Timers
UART | Analog Comparator | ADC | 5P
l2C | 1wie | LoD

|2C Fort: IPDHTA v|
s0A Bit: IEI v|
SCL Bit: |1 v|

W Enabled Address: ||7 1] _lj

The PCF8583 Address list box allows you to specify the low bit of the I°C addresses of the PCF8583

devices connected to the bus. Maximum 2 PCF8583 devices can be used.

The PCF8583 devices are accessed through the Philips PCF8583 Real Time Clock Functions.

© 1998-2001 HP InfoTech S.R.L.

Page 172

CodeVisionAVR

5.10.5 Setting the DS1307 devices

If you use the DS1307 RTC, you must select the DS1307 tab and check the DS1307 Enabled check
box.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
l2C | 1wie | LoD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

sguare Whae Outpu
W Enahled | T Enabled

CILJT:ID vI

The DS1307 device is accessed through the Dallas Semiconductor DS1307 Real Time Clock
Functions.

In case the square wave signal output is disabled, the state of the SQW/OUT pin can be specified
using the OUT list box.

© 1998-2001 HP InfoTech S.R.L. Page 173

CodeVisionAVR

By checking the Square Wave Output Enabled check box a square wave signal will be available on
the DS1307’s SQW/OUT pin. The frequency of the square wave can be selected using the Freq. list
box.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | 5P
Bit-Banged | Froject Information
Chip | Fors | External IRD | Timers
12C | 1wie | LoD

IECPDH:IPDHTA "I
SDAEHt:IEI "I SCLEiit:|1 "l

sguare Whae Outpu
W Enahled | M Enabled

Freq.:|1 vI Hz

© 1998-2001 HP InfoTech S.R.L. Page 174

CodeVisionAVR

5.11 Setting the 1 Wire Bus

By selecting the 1 Wire tab of the CodeWizardAVR, you can specify the 1 Wire bus configuration.

CodeWizardAVR - untitled_cwp =]

File Help
BitBanged | Froject Informatian
Chip | Fons | External IR | Timers
UART | Analog Comparator | ADC | SPI
l2C Wi LCD

1WirEPDHZIPOHTB v|
Diata Bit: IEI T|

O=1820
[Enakled

Using the 1 Wire Port list box you can specify which port is used for the implementation of the 1 Wire

bus.
The Data Bit list box allows you to specify which port bit the 1 Wire bus uses.

© 1998-2001 HP InfoTech S.R.L.

Page 175

CodeVisionAVR

If you use the DS1820/DS1822 temperature sensors, you must check the DS1820/DS1822 Enabled

check box.

CodeWizardAVR - untitled.cwp

File Help
BitBanged | Froject Informatian
Chip | Fons | External IR | Timers
UART | Analog Comparator | ADC | SPI
12C Wi LCD

1WirEPDHZIPOHTB v|
Diata Bit: IEI T|

Ds1820
W Enakled
W Multiple Devices

If you use several DS1820/DS1822 devices connected to the 1 Wire bus, you must check the Multiple

Devices check box. Maximum 8 DS1820/DS1822 devices can be connected to the bus.
The ROM codes for these devices will be stored in the ds1820_rom_codes array.

The DS1820/DS1822 devices can be accessed using the Dallas Semiconductor DS1820/DS1822

Temperature Sensors Functions.

© 1998-2001 HP InfoTech S.R.L.

Page 176

CodeVisionAVR

5.12 Setting the 2 Wire Bus

By selecting the 2 Wire (IZC) tab of the CodeWizardAVR, you can specify the 2 Wire bus interface
configuration.

CodeWizardAVR - untitled.cwp

File Help
UART | Analog Compavator | ADC | P
LD | Bit-Banged I Froject Information
Chip | Forts | External IRD | Timers
l2C | twire | 2Wire(leC)

v 2'Wire Enabled
[T Generate Acknowledge Pulse
Slawe Address: |0 h

[T General Call Fecognition

BitRate: [250.000kHz =]

™ 2'Wire Interrupt

The AVR chip’s 2 Wire interface can be enabled by checking the 2 Wire Enabled check box.
If the Generate Acknowledge Pulse check box is checked the ACK pulse on the 2 Wire bus is
generated if one of the following conditions is met:

the device’s own slave address has been received,;
a General Call has been received and the General Call Recognition check box is checked;
a data byte has been received in master receiver or slave receiver mode.

If the Generate Acknowledge Pulse check box is not checked, the chip’s 2 Wire interface is virtually
disconnected from the 2 Wire bus. This check box will set the state of the TWEA bit of the TWCR
register.

The Slave Address edit box sets the slave address of the 2 Wire serial bus unit. This address must
be specified in hexadecimal and will be used to initialize the bits 1..7 of the TWAR register.

Checking the General Call Recognition check box, enables the recognition of the General Call given
over the 2 Wire bus. This check box will set the state of the TWGCE bit of the TWAR register.

The Bit Rate list box allows you to specify maximum frequency of the pulses on the SCL 2 Wire bus
line. It will affect the value of the TWBR register.

As both the receiver and transmitter may stretch the duration of the low period of the SCL line, when
waiting for response, the frequency of the pulses may be lower than specified.

If the 2 Wire Interrupt check box is checked, the 2 Wire interface will generate interrupts.

These interrupts will be serviced by the twi_isr function.

© 1998-2001 HP InfoTech S.R.L. Page 177

CodeVisionAVR

5.13 Setting the LCD
By selecting the LCD tab of the CodeWizardAVR, you can specify the LCD configuration.

CodeWizardAVR - untitled cwp =]|
File Help
BitBanged | Froject Informatian
Chip | Fons | External IR | Timers

l2C | 1wire [LCD

LCD Fort: IF"DHTD v|
Chars./Line: |1E T|

FORT Bit 0 - RS (LCD Fin 4)
FORT Bit1-RD (LCD Fin &)
FORT Bit £ - EM (LZD Fin B)
FORT Bit 3 - Free
FORT Bit 4-DB4
FORT Bits-DBS
FORT Bit& - DBE
FORT Bit 7 - DBY

LCO Fin11)
LCD Pin12)
LCD Pin 13)
LCD Pin 14)

— A

Using the LCD Port list box you can specify which port is used for connecting the alphanumeric LCD.
The Chars./Line list box allows you to specify the number of characters per display line.
This value is used by the lcd_init function.

The LCD can be accessed using the standard LCD Functions.

© 1998-2001 HP InfoTech S.R.L. Page 178

CodeVisionAVR

5.14 Setting Bit-Banged Peripherals

By selecting the Bit-Banged tab of the CodeWizardAVR, you can specify the configuration of the
peripherals connected using the bit-banging method.
If you use the DS1302 RTC, you must select the DS1302 tab.

CodeWizardAVR - untitled.cwp

File Help
Chip | Fors | External IRC | Timers
UART | Analog Comparatar | 4DC | 5P
l2C | 1wire | LCD
BitBanged | Project Infarmation
DS1302 |

Pot. [PORTE =]
voBit [0]
scLkBit]1 ~]
ReTEz ~]

Trickle Charge

¥ Enahled Diudes:|1 vl
Charge Hesiatur:INDne *l

Using the Port list box you can specify which port is used for connecting with the DS1302.

The 1/0 Bit, SCLK Bit and /RST Bit list boxes allow you to specify which port bits are used for this.
The DS1302’s trickle charge function can be activated by checking the Trickle Charge|Enabled
check box.

The number of diodes, respectively the charge resistor value, can be specified using the Trickle
Charge|Diodes, respectively Trickle Charge|Resistors, list boxes.

The DS1302 device is accessed through the Dallas Semiconductor DS1302 Real Time Clock
Functions.

© 1998-2001 HP InfoTech S.R.L. Page 179

CodeVisionAVR

5.15 Specifying the Project Information

By selecting the Project Information tab, you can specify the information placed in the comment
header, located at the beginning of the C source file produced by CodeWizardAVR.

CodeWizardAVR - untitled_cwp =]

File Help

Chip | Fors | External IRC | Timers
UART | Analog Comparatar | 4DC | 5P
l2C | 1wie | LCD

Eit-Banged : ProjectInformation

Froject Name:

|
YEFSIOn: I Date: I

Authar: I

Cnmpany:l

Caomments:

You can specify the Project Name, Date, Author, Company and Comments.

© 1998-2001 HP InfoTech S.R.L. Page 180

CodeVisionAVR

6. License Agreement

6.1 Software License

The use of CodeVisionAVR indicates your understanding and acceptance of the following terms and
conditions. This license shall supersede any verbal or prior verbal or written, statement or agreement
to the contrary. If you do not understand or accept these terms, or your local regulations prohibit "after
sale" license agreements or limited disclaimers, you must cease and desist using this product
immediately.

This product is © Copyright 1998-2001 by Pavel Haiduc and HP InfoTech S.R.L., all rights reserved.
International copyright laws, international treaties and all other applicable national or international laws
protect this product. This software product and documentation may not, in whole or in part, be copied,
photocopied, translated, or reduced to

any electronic medium or machine readable form, without prior consent in writing, from HP InfoTech
S.R.L. and according to all applicable laws.

The sole owners of this product are Pavel Haiduc and HP InfoTech S.R.L.

6.2 Liability Disclaimer

This product and/or license is provided as is, without any representation or warranty of any kind, either
express or implied, including without limitation any representations or endorsements regarding the use
of, the results of, or performance of the product,

Its appropriateness, accuracy, reliability, or correctness.

The user and/or licensee assume the entire risk as to the use of this product.

Pavel Haiduc and HP InfoTech S.R.L. do not assume liability for the use of this program beyond the
original purchase price of the software. In no event will Pavel Haiduc or HP InfoTech S.R.L. be liable
for additional direct or indirect damages including any lost profits, lost savings, or other incidental or
consequential damages arising from any defects, or the use or inability to use these programs, even if
Pavel Haiduc or HP InfoTech S.R.L. have been advised of the possibility of such damages.

6.3 Restrictions

You may not use, copy, modify, translate, or transfer the programs, documentation, or any copy
except as expressly defined in this agreement. You may not attempt to unlock or bypass any "copy-
protection” or authentication algorithm utilized by the program. You may not remove or modify any
copyright notice or the method by which it may be invoked.

6.4 Operating License

You have the non-exclusive right to use any enclosed program only by a single person, on a single
computer at a time. You may physically transfer the program from one computer to another, provided
that the program is used only by a single person, on a single computer at a

time. In-group projects where multiple persons will use the program, you must purchase an individual
license for each member of the group.

Use over a "local area network" (within the same locale) is permitted provided that only a single
person, on a single computer uses the program at a time. Use over a "wide area network" (outside the
same locale) is strictly prohibited under any and all circumstances.

© 1998-2001 HP InfoTech S.R.L. Page 181

CodeVisionAVR

6.5 Back-up and Transfer

You may make one copy of the program solely for "back-up" purposes, as prescribed by international
copyright laws. You must reproduce and include the copyright notice on the back-up copy. You may
transfer the product to another party only if the other party agrees to the terms and conditions of this
agreement, and completes and returns

registration information (name, address, etc.) to Pavel Haiduc and HP InfoTech S.R.L. within 30 days
of the transfer. If you transfer the program you must at the same time transfer the documentation and
back-up copy, or transfer the documentation and destroy the back-up copy. You may not retain any
portion of the program, in any form, under any circumstance.

6.6 Terms

This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any terms
or conditions of this agreement. You agree upon such termination to destroy all copies of the program
and of the documentation, or return them to Pavel Haiduc or HP InfoTech S.R.L. for disposal. Note
that by registering this product you give Pavel Haiduc and HP InfoTech S.R.L. permission to reference
your name in product advertisements.

6.7 Other Rights and Restrictions

All other rights and restrictions not specifically granted in this license are reserved by Pavel Haiduc
and HP InfoTech S.R.L.

© 1998-2001 HP InfoTech S.R.L. Page 182

CodeVisionAVR

7. Technical Support

Registered users of the commercial version of CodeVisionAVR Standard get one-year free technical
support by e-mail.
The free technical support period for the commercial version of CodeVisionAVR Light is six months.

The e-mail support addresses are dhptechn@ir.ro and hpinfotech@mail.com .

© 1998-2001 HP InfoTech S.R.L. Page 183

CodeVisionAVR

8. Contact Information

HP InfoTech S.R.L. and Mr. Pavel Haiduc can be contacted at:

HP INFOTECH S.R.L.
STR. LIVIU REBREANU 13
BL. N20, SC. B, AP. 58
SECTOR 3

BUCHAREST 746311
ROMANIA

phone: +(40)-93469754 ; +(401)-6436887

fax: +(401)-6436887

e-mail: dhptechn@ir.ro ; hpinfotech@mail.com
Internet: http://infotech.ir.ro

© 1998-2001 HP InfoTech S.R.L.

Page 184

