131,072-word × 8-bit High Speed CMOS Static RAM

The Hitachi HM628128A is a CMOS static RAM organized 128 kword \times 8 bit. It realizes higher density, higher performance and low power consumption by employing 0.8 µm Hi-CMOS process technology.

It offers low power standby power dissipation; therefore, it is suitable for battery back-up systems. The device, packaged in a 525-mil SOP (460-mil body SOP) or a 600-mil plastic DIP, or a 8×20 mm TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards, and reverse type TSOP is also provided.

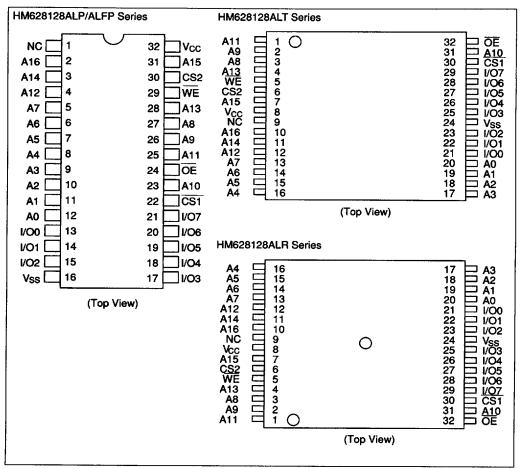
Features

- High speed
- Fast access time: 55/70/85/100 ns (max) • Low power
 - Active: 75 mW (typ) Standby: 10 μW (typ) (L/L-L/L-SL version)
- Single 5 V supply
- Completely static memory
 No clock or timing strobe required
- Equal access and cycle times
- Common data input and output
 Three state output
- Directly TTL compatible
 All inputs and outputs
- Capability of battery back up operation (L/L-L/L-SL version)
 2 chip selection for battery back up

Ordering Information

Type No.	Access time	Package
HM628128ALP-5	55 ns	600-mil 32-pin
HM628128ALP-7	70 ns	plastic DIP
HM628128ALP-8	85 ns	(DP-32)
HM628128ALP-10	100 ns	
HM628128ALP-5L	55 ns	
HM628128ALP7L	70 ns	
HM628128ALP-8L	85 ns	
HM628128ALP-10L	100 ns	

4496203 0024989 685 📟


HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 5-55

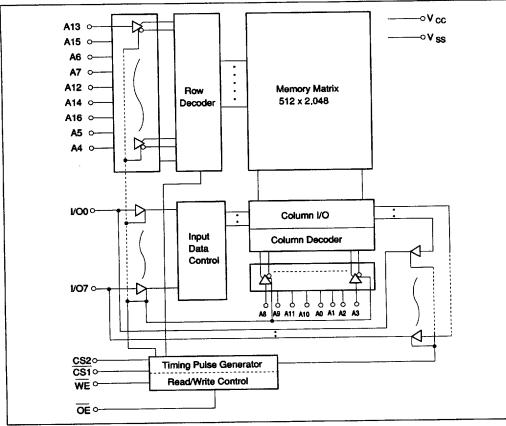
	Access	
Type No.	time	Package
HM628128ALP-5SL	55 ns	600-mil 32-pin
HM628128ALP-7SL	70 ns	plastic DIP
HM628128ALP-8SL	85 ns	(DP-32)
HM628128ALP-10SL	100 ns	
HM628128ALFP-5	55 ns	525-mil 32-pin
HM628128ALFP-7	70 ns	plastic SOP
HM628128ALFP-8	85 ns	(FP-32D)
HM628128ALFP-10	100 ns	
HM628128ALFP-5L	55 ns	
HM628128ALFP-7L	70 ns	
HM628128ALFP-BL	85 ns	
HM628128ALFP-10L	100 ns	
HM628128ALFP-5SL	55 ns	
HM628128ALFP-7SL	70 ns	
HM628128ALFP-8SL	85 ns	
HM628128ALFP-10SL	100 ns	
HM628128ALT-5	55 ns	8 mm × 20 mm
HM628128ALT-7	70 ns	32-pin TSOP
HM628128ALT-8	85 ns	(normal type)
HM628128ALT-10	100 ns	(TFP-32D)
HM628128ALT-5L	55 ns	_
HM628128ALT-7L	70 ns	
HM628128ALT-8L	85 ns	
HM628128ALT-10L	100 ns	
HM628128ALR-5	55 ns	8 mm × 20 mm
HM628128ALR-7	70 ns	32-pin TSOP
HM628128ALR-8	85 ns	(reverse type)
HM628128ALR10	100 ns	(TFP-32DR)
HM628128ALR-5L	55 ns	
HM628128ALR-7L	70 ns	
HM628128ALR-8L	85 ns	
HM628128ALR-10L	100 ns	

A

Pin Arrangement

Pin Description

Pin name	Function					
A0 – A16	Address					
1/00 - 1/07	Input/output					
CS1	Chip select 1					
CS2	Chip select 2					
WE	Write enable					


Function						
Output enable						
No connection						
Power supply						
Ground						

4496203 0024990 3T7 🛲

HITACHI

5-56

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Supply voltage relative to V _{SS}	V _{CC}	0.5 to +7.0	ν	
Voltage on any pin relative to V _{SS}	٧ _T	-0.5 *1 to V _{CC} + 0.3*2	v	
Power dissipation	PT	1.0	w	
Operating temperature	Topr	0 to +70	<u>ວະ</u> ວະ	
Storage temperature	Tstg	-55 to +125		
Storage temperature under bias	Tbias	-10 to +85	°C	

Note: 1. -3.0 V for pulse half-width ≤ 30 ns

- 2. Maximum voltage is 7.0V.
- 4496203 00249912233 🔳

HITACHI

Function Table

CS1	CS2	ŌĒ	WE	Mode	V _{CC} current	I/O pin	Ref. cycle
н	х	x	x	Standby	I _{SB} , I _{SB1}	High-Z	
x	L	x	x	Standby	ISB, ISB1	High-Z	
L	н	н	Н	Output disable	lcc	High-Z	
L	Н	L	н	Read	lcc	Dout	Read cycle
L	Н	Н	L	Write	lcc	Din	Write cycle (1)
Ļ	н	L	L	Write	lcc	Din	Write cycle (2)

Note: 1. X: H or L

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	v
	V _{SS}	0	0	0	v
Input voltage	VIH	2.2		V _{CC} + 0.3	v
(HM628128A-7/8/10)	VIL	-0.3 *1	-	0.8	v
Input voltage (HM628128A-5)	VIH	2.4		V _{CC} + 0.3	v
(1111020120A-3)	VIL	-0.3 *1	_	0.8	v

Note: 1. -3.0 V for pulse half-width ≤ 30 ns

4496203 002499217T 📟

HITACHI

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions	Notes
Input leakage current	1 _{L1}	_		1.0	μA	Vin = V_{SS} to V_{CC}	
Output leakage current	lirol			1.0	μA		or
Operating power supply current: DC	lcc		15	30	mA	$\label{eq:cs1} \begin{split} \overline{CS1} &= V_{1L}, \ CS2 = V_{1H}, \\ Others &= V_{1H}/V_{1L} \\ I_{1/O} &= 0 \ \text{mA} \end{split}$	
Operating power supply current	ICC1	 ^	45	70	mA	Min cycle, duty = 100%, $\overline{CS1} = V_{IL}$, $CS2 = V_{IH}$,	HM628128A -7/8/10
			50	80	mA	— Others = V _{IH} /V _{IL} I _{I/O} = 0 mA	HM628128A -5
	ICC2		15	25	mA	Cycle time = 1 μ s, duty I _{UO} = 0 mA, $\overline{CS1} \leq 0.2$ V CS2 > VCC - 0.2 V V _{IH} ≥ V _{CC} - 0.2 V, V _{IL} :	,
Standby power supply current: DC	I _{SB}		1	2	mA	$\overline{\text{CS1}} = \text{V}_{\text{IH}}, \text{CS2} = \text{V}_{\text{IH}}$ or CS2 = V _{IL}	
Standby power supply	ISB1	_	0.02	2	mA	$0 V \leq Vin \leq V_{CC}$,	
current (1): DC			2	100	μA	$\frac{-CS1}{2} \ge V_{CC} - 0.2 \text{ V}, \\ CS2 \ge V_{CC} - 0.2 \text{ V or} \\ 0.2 \text{ V} = 0.2 \text{ V} \text{ or} $	L-version
		_	2	50	μA	0 V <u>≤</u> CS2 <u>≤</u> 0.2 V	L-L/L-SL version
Output voltage	VOL	_	_	0.4	v	I _{OL} = 2.1 mA	
	V _{OH}	2.4	_		v	l _{OH} = -1.0 mA	

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V)

Note: 1. Typical values are at V_{CC} = 5.0 V, Ta = +25°C and specified loading.

Capacitance (Ta = 25° C, f = 1.0 MHz)^{*1}

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	—	8	рF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	-	10	pF	V _{1/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

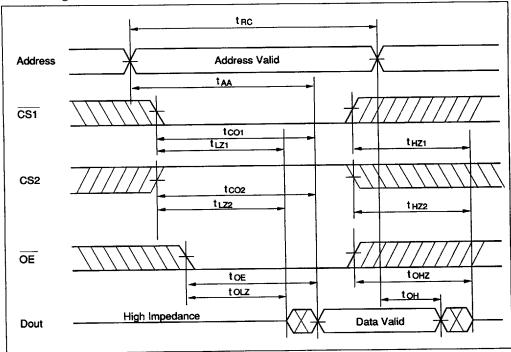
4496203 0024993 006 1

HITACHI

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, unless otherwise noted.)

Test Conditions

- Input pulse levels: 0.8 V to 2.4 V (HM628128A-7/8/10) 0 V to 3 V (HM628128A-5)
- Input rise and fall times: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load:1 TTL Gate and CL (100 pF) (HM628128A-7/8/10)
 - 1 TTL Gate and CL (30 pF) (HM628128A-5) (Including scope & jig)


Read Cycle

		HM628128A									
		-5	-5		-7		-8		-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	^t RC	55		70		85		100		ns	
Address access time	t _{AA}		55		70	_	85	_	100	ns	<u> </u>
Chip selection to output valid	^t CO1	_	55	-	70		85	_	100	ns	
	t _{CO2}	_	55		70		85	_	100	ns	
Output enable to output valid	^t OE		30	_	35		45	/	50	ns	
Chip selection to output in low-Z	tLZ1	5	_	10		10	_	10		ns	1, 2, 3
	tLZ2	5		10	_	10		10		ns	1, 2, 3
Output enable to output in low-Z	tolz	5	_	5	-	5	_	5		ns	1, 2, 3
Chip deselection to output in high-Z	^t HZ1	0	20	0	25	0	30	0	35	ns	1, 2, 3
	tHZ2	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output disable to output in high-Z	^t OHZ	0	20	0	25	0	30	0	35	ns	1, 2, 3
Dutput hold from address change	toн	5		10	_	10	_	10		ns	

4496203 0024994 T42 🖿

HITACHI

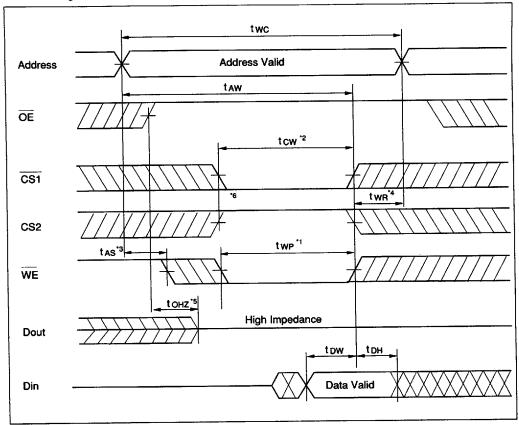
Read Timing Waveform *4

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 3. This parameter is sampled and not 100% tested.
- 4. WE is high for read cycle.

HITACHI

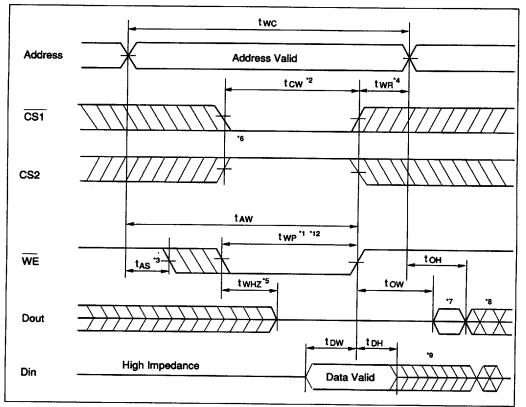
Write Cycle


		HM628128A									
		-5		-7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	twc	55	_	70		85		100	_	ns	
Chip selection to end of write	tcw	50	_	60	_	75		80	_	ns	
Address setup time	tAS	0		0	_	0		0		ns	
Address valid to end of write	t _{AW}	50	_	60		75		80		ns	
Write pulse width	twp	40	_	50	_	55		60	_	ns	
Write recovery time	twn	0	_	0	_	0	_	0		ns	
		0		0		0	_	0	_	ns	11
Write to output in high-Z	twnz	0	20	0	25	0	30	0	35	ns	10
Data to write time overlap	tow	25	_	30	_	35		40		ns	
Data hold from write time	t _{DH}	0	_	0	_	0		0		ns	<u> </u>
Output active from end of write	tow	5		5		5	_	5		ns	10

4496203 0024996 815 📟

HITACHI

5-62



4496203 0024997 751 🔳

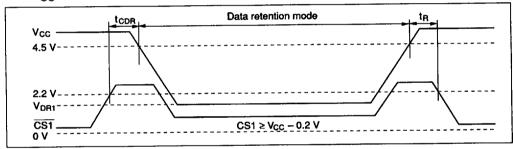
HITACHI

Write Timing Waveform (2) (OE low Fixed)

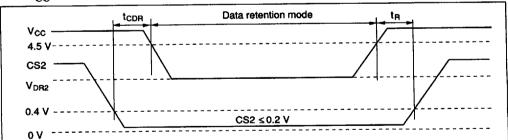
- Notes: 1. A write occurs during the overlap of a low CST, a high CS2, and a low WE. A write begins at the latest transition among CST going low, CS2 going high, and WE going low. A write ends at the earliest transition among CST going high, CS2 going low, and WE going high. t_{WP} is measured from the beginning of write to the end of write.
 - 2. t_{CW} is measured from the later of CS1 going low or CS2 going high to the end of write.
 - 3. tAS is measured from the address valid to the beginning of write.
 - 4. twp is measured from the earliest of CST or WE going high or CS2 going low to the end of write cycle.
 - 5. During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
 - 6. If the CS1 goes low simultaneously with WE going low or after the WE going low, the outputs remain in a high impedance state.
 - 7. Dout is the same phase of the latest written data in this write cycle.
 - 8. Dout is the read data of next address.
 - If CS1 is low and CS2 high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.
 - 10. This parameter is sampled and not 100% tested.
 - 11. This value is measured from CS2 going low to the end of write cycle.
 - 12. In the write cycle with OE low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention. t_{WP} ≥ t_{DW} min + t_{WHZ} max

4496203 0024998 698 📟

5-64


- HITACHI

Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)


This characteristics is guaranteed only for L, L-L, and L-SL version.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions Notes
V _{CC} for data retention	V _{DR}	2.0			V	$\begin{array}{c} \hline CS1 \geq V_{CC} - 0.2 \text{ V},\\ CS2 \geq V_{CC} - 0.2 \text{ V or}\\ 0 \text{ V} \leq CS2 \leq 0.2 \text{ V}\\ \hline \text{Vin} \geq 0 \text{ V} \end{array}$
Data retention current			1	50 ^{*1}	μA	
			1	30'2		- <u>CS1</u> ≥ V _{CC} - 0.2V CS2 ≥ V _{CC} - 0.2 V or L-Lversion - 0 V < CS2 < 0.2 V
		_	1	15 ^{•3}		L-Sversion
Chip deselect to data retention time	^t CDR	0	_	_	ns	See retention waveform
Operation recovery time	^t R	5	_		ms	

Low V_{CC} Data Retention Timing Waveform (1) (CS1 Controlled)

Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

Notes: 1, 20 µA max at Ta = 0 to 40°C (L version).

- 2. 6 μ A max at Ta = 0 to 40 °C (L-L version).
- 3. 3 µA max at Ta = 0 to 40°C (L-SL version).
- 4. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE, OE, CS1, I/O) can be in the high impedance state. If CS1 controls data retention mode, CS2 must be CS2 \ge V_{CC} – 0.2 V or 0 V \le CS2 \le 0.2 V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.

4496203 0024999 524 📰 HITACHI