General Description
The MAX1677 is a compact, high-efficiency, dual-output boost converter for portable devices needing two regulated supplies, typically for logic and liquid crystal displays (LCDs). Operation with inputs as low as 0.7 V allows the MAX1677 to accept 1, 2, or 3-cell alkaline, NiCd , or NiMH batteries as well as 1-cell lithium-ion batteries. The device requires no external FETs and can maintain regulation while consuming only $20 \mu \mathrm{~A}$, making it ideal for hand-held pen-input and PDA devices operating with low-current "sleep" states.
The MAX1677's primary regulator supplies up to 350 mA at either a factory-preset 3.3 V or an adjustable 2.5 V to 5.5 V output. On-chip synchronous rectification provides efficiencies up to 95%. 300 kHz (or externally clocked) pulse-width-modulation (PWM) operation is particularly suitable for applications needing low noise, such as those with wireless features. The primary converter also features pin-selectable pulse-frequencymodulation (PFM) operation that consumes only $20 \mu \mathrm{~A}$. A $1 \mu \mathrm{~A}$ shutdown state also minimizes battery drain.
The MAX1677's secondary step-up converter supplies up to +28 V or -28 V for LCD bias, varactor tuning, or other high-voltage, low-current functions. Other MAX1677 features include precision reference, logic control inputs for both regulators, and an uncommitted comparator for low-battery detection or a reset function. The MAX1677 is supplied in Maxim's compact 16-pin QSOP package, which occupies no more space than a standard SO-8.

Applications

PDAs	Portable Phones
Hand-Held Terminals	Portable Instruments

Pin Configuration

	-	16 pout
		15 LX
	MノX1/V	14 PGND
	MAX1677	13 LCDGND
		12 LCDLX
		11 ON
		10 LCDFB
		9 GND
	QSOP	

Features
- No External FETs Required
- Main Output
Up to 350 mA for Logic Supply
Fixed 3.3V or Adjustable (2.5V to 5.5V)
Synchronous Rectification for High Efficiency (up to 95\%)
300kHz (200kHz to 400kHz Synchronizable)
Fixed-Frequency PWM Operation
- Secondary Output
Up to $\mathbf{+ 2 8 V}$ or -28 V for LCD Bias
Programmable Current Limit
- 0.7V to 5.5V Input Voltage Range
- 20رA Quiescent Current
- $1 \mu \mathrm{~A}$ Shutdown Current
- Low-Battery Comparator
- Small 16-Pin QSOP Package

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1677EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Typical Operating Circuit

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

OUT, LCDON, ON, POUT, LBI, $\overline{L B O}$,

CLK/SEL, LCDPOL, REF, LCDF...............................
........................-0.3V to +6 V
FB to GND
....................................-0.
0.3 V to (Vout + 0.3V)

LCDLX to GND -0.3V to +30V
PGND, LCDGND to GND -0.3 V to +0.3 V
POUT to OUT -0.3 V to +0.3 V

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 696 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature \qquad $\ldots+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VOUT $=3.3 \mathrm{~V}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$, POUT $=\mathrm{OUT}, \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL						
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	(Note 1)	0.7		5.5	V
Minimum Start-Up Voltage	VStartup	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{ILOAD}<1 \mathrm{~mA}$		0.9	1.1	V
Reference Voltage	VREF	$I_{\text {REF }}=0$	1.23	1.25	1.27	V
Reference Load Regulation		IREF $=0$ to $50 \mu \mathrm{~A}$ (Note 2)		2	15	mV
Reference Line Rejection		VOUT $=2.5 \mathrm{~V}$ to 5.5 V		0.2	5	mV
Supply Current Main DC On, LCD Off	ILCDOFF	No load, current into OUT		20	40	$\mu \mathrm{A}$
Supply Current All On, Main DC-DC in PFM Mode	IPFM	No load, current into OUT		35	60	$\mu \mathrm{A}$
Supply Current All On, Main DC-DC in PWM Mode	IPWM	No load, current into OUT		115	300	$\mu \mathrm{A}$
Supply Current in Shutdown				0.3	5	$\mu \mathrm{A}$
MAIN BOOST DC-DC						
Output Voltage	Vout	$\begin{aligned} & \text { FB }=\text { GND, } 0 \leq \mathrm{ILX} \leq 350 \mathrm{~mA}, \\ & \mathrm{CLK} / \mathrm{SEL}=\mathrm{OUT}(\text { Note } 3) \end{aligned}$	3.20	3.30	3.43	V
FB Regulation Voltage	$\mathrm{V}_{\text {FB(REG }}$	Adjustable mode, CLK/SEL = OUT (Note 3)	1.225	1.25	1.275	V
FB Input Current	IfB	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$		0.02	50	nA
Output Voltage Adjustment Range			2.5		5.5	V
Start-Up to Normal Mode Transition Voltage (Note 4)	VLOCKOUT		2.1		2.4	V
Line Regulation		IOUT $=150 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$ to 3 V		0.6		\%
Load Regulation		$\begin{aligned} & \text { CLK/SEL }=\mathrm{OUT}, \mathrm{~V} \text { IN }=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LOAD}}=10 \mathrm{~mA} \text { to } 200 \mathrm{~mA} \end{aligned}$		1		\%
Frequency in Start-Up Mode	fstartup	VOUT $=1.5 \mathrm{~V}$	40		300	kHz
LX Leakage Current	ILX(LEAK)			0.2	5	$\mu \mathrm{A}$

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

(VOUT $=3.3 \mathrm{~V}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$, POUT $=\mathrm{OUT}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LX On-Resistance	RLX(ON)N	N-channel		0.22	0.5	Ω
	RLX(ON)P	P-channel		0.4	1.0	
LX Current Limit	ILX(PWM)	N-channel PWM mode	550	670	800	mA
	ILX(PFM)	N-channel PFM mode	250	350	450	
P-Channel Synchronous Rectifier Turn-Off Current in PFM Mode			40	90	140	mA
Internal Oscillator	f	CLK/SEL = OUT	240	300	360	kHz
Oscillator Maximum Duty Cycle	D		80	85	90	\%
External Clock Frequency Range			200		400	kHz

LOGIC AND CONTROL INPUTS

Input Leakage Current		ON, LCDON, LCDPOL, CLK/SEL			1	$\mu \mathrm{A}$
ON Input Threshold	Von(LOW)	1.1 V < V OUT < 5.5 V			VOUT	V
	VoN(HIGH)		0.8V ${ }^{\text {OUT }}$			
LCDON, LCDPOL, CLK/SEL Input Threshold	VIL	Vout > 2.5 V	$0.2 \mathrm{~V}_{\text {Out }}$			V
	V_{IH}		$0.8 \mathrm{~V}_{\text {OUT }}$			
LBI Falling Threshold	VLBI(TH)		599	614	629	mV
LBI Hysteresis				1		\%
LBO Output Low Voltage	VLBO(LO)	Sink current $=1 \mathrm{~mA}$			0.1	V
LBI Input Bias Current	ILBI(BIAS)				50	nA
$\overline{\text { LBO Leakage Current }}$		$\mathrm{V} \overline{\mathrm{LBO}}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
LCD BIAS DC-DC						
LCDLX Voltage					28	V
LCDLX Switch Current Limit		LCDPOL = OUT or GND	300	350	450	mA
		LCDPOL connected to OUT or GND through 50k Ω	150	225	300	
LCDLX Switch Resistance	RLCDLX	VOUT $=3.3 \mathrm{~V}$		1.0	1.4	Ω
LCDLX Leakage Current		VLCDLX $=28 \mathrm{~V}$			1	$\mu \mathrm{A}$
LCDFB Set Point		Positive LCD, LCDPOL = OUT	1.225	1.25	1.275	V
		Negative LCD, LCDPOL = GND	-15	0	15	mV
LCDFB Input Bias Current					50	nA
LCD Line Regulation		I LOAD $=5 \mathrm{~mA}, \mathrm{~V} I \mathrm{~N}=1.2 \mathrm{~V}$ to 3.6 V , Figure 2	0.1			\%/V
LCD Load Regulation		ILOAD $=0$ to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, Figure 2	0.5			\%
Maximum LCDLX On-Time	ton LCD		3.4	4.3	5.2	$\mu \mathrm{s}$
Minimum LCDLX Off-Time		Operating mode	0.8	1	1.2	$\mu \mathrm{s}$
		Start-up mode (positive or negative)	3.0	4.0	5.0	
LCDFB Voltage for Start-Up Mode		LCDPOL = OUT	0.75			V
		LCDPOL = GND		0.5		

Compact, High-Effic iency, Dual-Output Step-Up and LCD Bias DC-DC Converter

ELECTRICAL CHARACTERISTICS

(VOUT $=3.3 \mathrm{~V}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$, POUT $=\mathrm{OUT}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
GENERAL					
Supply Current Main DC On, LCD Off	ILCDOFF	No load, current into OUT		40	$\mu \mathrm{A}$
Supply Current All On, Main DC-DC in PFM Mode	IPFM	No load, current into OUT		60	$\mu \mathrm{A}$
Supply Current All On, Main DC-DC in PWM Mode	IPWM	No load, current into OUT		300	$\mu \mathrm{A}$
Supply Current in Shutdown				5	$\mu \mathrm{A}$
MAIN BOOST DC-DC					
Output Voltage	Vout	$\begin{aligned} & \text { FB }=\text { GND, } 0 \leq \mathrm{ILX} \leq 350 \mathrm{~mA}, \\ & \text { CLK/SEL }=\text { OUT }(\text { Note } 3) \end{aligned}$	3.17	3.4	V
FB Regulation Voltage	$\mathrm{V}_{\text {FB(REG) }}$	Adjustable mode, CLK/SEL = OUT (Note 3)	1.22	1.28	V
Start-Up to Normal Mode Transition Voltage (Note 4)	VLOCKOUT		2.1	2.4	V
LX Leakage Current	ILX(LEAK)			5	$\mu \mathrm{A}$
LX Current Limit	ILX(PWM)	N-channel PWM mode	550	900	mA
	ILX(PFM)	N-channel PFM mode	250	500	
Internal Oscillator	f	CLK/SEL = OUT	240	360	kHz
External Clock Frequency Range			200	400	kHz
LOGIC AND CONTROL INPUTS					
ON Input Threshold	VON(LOW)	$1.1 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<5.5 \mathrm{~V}$		VOUT	V
	VON(HIGH)		0.8 VOU		
LCDON, LCDPOL, CLK/SEL Input Threshold	$\mathrm{V}_{\text {IL }}$			Vout	V
	V_{IH}		0.8 VOU		
LBI Falling Threshold	VLBI(TH)		599	629	mV
$\overline{\text { LBO Output Low Voltage }}$	V $\overline{\mathrm{LBO}}$ (LO)	Sink current $=1 \mathrm{~mA}$		0.1	V
LCD BIAS DC-DC					
LCDLX Switch Current Limit		LCDPOL = OUT or GND	300	450	mA
		LCDPOL connected to OUT or GND through $50 \mathrm{k} \Omega$	150	300	
LCDFB Set Point		Positive LCD, LCDPOL = OUT	1.22	1.28	V
		Negative LCD, LCDPOL = GND	-20	+20	mV

Note 1: The MAX1677 operates in bootstrap mode (operates from the output voltage). Once started, it will operate down to 0.7 V input. If Vin exceeds the set VOUT, VOUt will follow one diode drop below VIN.
Note 2: $C_{\text {REF }}=0.22 \mu \mathrm{~F}$ for applications where IREF > $10 \mu \mathrm{~A}$.
Note 3: In low-power mode (CLK/SEL = GND), the output voltage regulates 1% higher than in low-noise mode (CLK/SEL = OUT or synchronized).
Note 4: The device is in a start-up mode when VOUT is below this value.
Note 5: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Typical Operating Characteristics
(Circuits of Figures 2 and $3, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOAD CURRENT
vs. START-UP VOLTAGE

EFFICIENCY vs. LOAD CURRENT
(LCD V ${ }_{\text {OUT }}=20 \mathrm{~V}$)

NO-LOAD SUPPLY CURRENT vs. INPUT VOLTAGE (LCD OFF)

M AXIMUM LOAD CURRENT
vs. BATTERY INPUT VOLTAGE (PWM MODE)

REFERENCE VOLTAGE
vs. REFERENCE CURRENT

NO-LOAD SUPPLY CURRENT vs INPUT VOLTAGE (LCD ON)

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Typical Operating Characteristics (continued)

(Circuits of Figures 2 and $3, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

M AIN BOOST CONVERTER SWITCHING WAVEFORMS (PFM MODE, 50mA OUTPUT)

LCDLX CURRENT LIMIT $=225 \mathrm{~mA}$,
$2.4 \mathrm{~V} \mathrm{IN}_{\mathrm{N}},+12 \mathrm{~V}$ Out, 10 mA LOAD

LDCLX CURRENT LIMIT $=350 \mathrm{~mA}$, $2.4 \mathrm{~V}_{\text {IN }}+12 \mathrm{~V}_{\text {OUt, }} 10 \mathrm{~mA}$ LOAD

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Typical Operating Characteristics (continued)
(Circuits of Figures 2 and $3, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Pin Description

PIN	NAME	FUNCTION
1	OUT	Output Sense Input. The device is powered from OUT. Bypass to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor. Connect OUT to POUT through a 10Ω series resistor.
2	FB	Dual Mode™ Main Boost Feedback Input. Connect to GND for 3.3 V output. Connect a voltage-divider from OUT to FB to adjust the output in the 2.5 V to 5.5 V range (Figure 5).
3	LBI	Low-Battery-Comparator Input. Threshold is 614 mV . Set the low-battery trip-point with an external voltage divider (Figure 7).
4	$\overline{\text { LBO }}$	Open-Drain, Low-Battery Output. $\overline{\mathrm{LBO}}$ is low when LBI is below 614 mV , otherwise it remains high.
5	CLK/SEL	Sync Clock and PWM Select Input. CLK/SEL = low: low-power, low-quiescent-current PFM mode. CLK/SEL = high: low-noise, high-power PWM mode at 300 kHz . CLK/SEL = driven with external clock of 200 kHz to 400 kHz , synchronized PWM high-power mode.
6	LCDON	LCD Enable Input. Drive high to turn on LCD boost converter. Main DC-DC must also be on.
7	LCDPOL	LCD Polarity Select Input. Sets LCD boost converter polarity and peak current output (Table 2).
8	REF	1.25 V Reference Output. Bypass with $0.1 \mu \mathrm{~F}$.
9	GND	Ground
10	LCDFB	LCD Feedback Input. Threshold is 1.25 V for positive with LCDPOL high, and 0 for negative with LCDPOL low.
11	ON	I.C. Enable Input. Drive high to enable the MAX1677.
12	LCDLX	LCD Boost 28V Switch Drain
13	LCDGND	Source of the Internal N-Channel DMOS LCD Boost-Converter Switch
14	PGND	Source of the Internal N-Channel Main Boost-Converter Switch
15	LX	Main Output Boost Internal Switch Drain
16	POUT	Boost DC-DC Converter Power Output. Source of internal P-channel MOSFET main boost-converter synchronous rectifier.

Dual Mode is a trademark of Maxim Integrated Products.

Detailed Description

The MAX1677 is a highly efficient dual-output power supply for battery-powered devices. On-chip are two complete step-up DC-DC converters to power main logic and bias an LCD (Figure 1). The main boost converter (MBC) has on-chip P-channel and N-channel MOSFETs that provide synchronous-rectified voltage conversion for maximum efficiency at loads up to 300 mA . See Table 1 for available output current with typical battery configurations. The output voltage of the MBC is factory-preset to 3.3 V , or can be set from 2.5 V to 5.5 V with external resistors (dual-mode operation). Either fixed-frequency PWM or low-operating-current PFM operation can be selected for the MBC using the CLK/SEL input (Table 2).

The LCD boost converter (LCD) includes an internal Nchannel DMOS switch to generate positive or negative voltages up to $\pm 28 \mathrm{~V}$. The polarity of the LCD output is set by LCDPOL input (Table 3). Figure 2 shows the MAX1677 configured for a positive LCD output voltage with a 3.3 V main output. Figure 3 shows the MAX1677 configured for a negative LCD output. LCDPOL also allows the current limit of LCDLX to be reduced from 350 mA to 225 mA to allow minimum-size inductors in low-current LCD applications (typically for LCD loads $<10 \mathrm{~mA}$).
Also included in the MAX1677 are a precision 1.25 V reference that sources up to $50 \mu \mathrm{~A}$, logic shutdown control for the MBC and LCD (the MBC must be on for the LCD to operate), and a low-battery comparator.

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Figure 1. Functional Block Diagram

Table 1. Main Boost Converter Available Output Current

NUMBER OF CELLS	INPUT vOLTAGE (V)	MBC OUTPUT VOLTAGE (V)	MBC OUTPUT CURRENT (mA) PWM/PFM
$1 \mathrm{Alk} / \mathrm{NiCd} / \mathrm{NiMH}$	1.2	3.3	$140 / 150$
$1 \mathrm{Alk} / \mathrm{NiCd} / \mathrm{NiMH}$	1.2	5	$100 / 70$
$2 \mathrm{Alk} / \mathrm{NiCd} / \mathrm{NiMH}$	2.4	3.3	$350 / 170$
2 Alk/NiCd/NiMH	2.4	5	$260 / 125$
1 Alk/NiCd/NiMH or 1 Li-lon	3.6	5	$350 / 170$

Main Boost Converter (MBC)
The MBC operates either in PFM mode, 300 kHz PWM mode, or externally synchronized PWM mode as selected by the CLK/SEL input (Table 2). PWM mode offers fixed-frequency operation and maximum output power. PFM mode offers the lowest IC operating current. LX current limit is reduced in PFM mode to increase efficiency and minimize output ripple.

PWM Mode
When CLK/SEL is high, the MAX1677 operates in its high-power, low-noise PWM mode, switching at the 300 kHz internal oscillator frequency. The MOSFET switch pulse-width is modulated to control the power transferred on each switching cycle and regulate the

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Figure 2. LCD Converter in Positive Mode

Figure 3. LCD Converter in Negative Mode

Figure 4. Controller Block Diagram in PWM Mode
output voltage. In PWM mode, the MBC can supply up to 350 mA . Switching harmonics generated by the fixedfrequency operation are consistent and easily filtered.
During PWM operation, the rising edge of the internal clock sets a flip-flop, which turns on the N-channel MOSFET (Figure 4). The switch turns off when the sum of the voltage-error, slope-compensation, and currentfeedback signals trips the multi-input comparator and resets the flip-flop; the switch remains off for the rest of the cycle. Changes in the output voltage error signal shift the inductor current level and modulate the MOSFET pulse width.

Clock-Synchronized PWM
The MAX1677 operates as a clock-synchronized cur-rent-mode PWM when a clock signal (200 kHz to 400 kHz) is applied to CLK/SEL. This allows switching harmonics to be positioned to avoid sensitive frequency bands, such as those near IF frequencies in wireless applications.

Low Power PFM Mode

Pulling CLK/SEL low places the MAX1677 in low-power standby mode. During standby mode, PFM operation regulates the output voltage by transferring a fixed amount of energy during each cycle, and then modulating the switching frequency to control the power delivered to the output. The device switches only as needed to service the load, resulting in the highest possible efficiency at light loads and an operating current of only $20 \mu \mathrm{~A}$. The MBC can supply up to 170 mA when in PFM mode (Table 1).
During PFM operation, the error comparator detects when the output voltage is out of regulation and sets a

Compact, High-Effic iency, Dual-Output Step-Up and LCD Bias DC-DC Converter

flip-flop, turning on the N-channel MOSFET switch (Figure 5). When the inductor current ramps to the PFM mode current limit (350 mA), the current-sense comparator resets a flip-flop. The flip-flop turns off the N -channel switch and turns on the P-channel synchronous rectifier. The energy stored in the inductor is transferred to the output through the P-channel switch. A second flip-flop, previously reset by the switch's "on" signal, inhibits the next cycle until the inductor current is depleted and the output is out of regulation. This forces operation with discontinuous inductor current in PFM mode.

Start-Up Oscillator

The MBC employs a low-voltage start-up oscillator to ensure a 1.1 V (0.9 V typical) start-up voltage. On startup, if the output voltage is less than 2.25 V , the P -channel switch stays off and the N -channel pulses at a 25% duty cycle. When the output voltage exceeds 2.25 V , the normal PWM or PFM control circuitry takes over. Once the MBC is in regulation, it can operate with inputs down to 0.7 V since the internal power for the IC is taken from OUT. The MBC cannot supply full output current until OUT reaches 2.5 V .

Table 2. Selecting MBC Operating Mode

CLK/SEL	MBC MODE	FEATURES
0	Low-Power PFM	Lowest Supply Current
1	PWM	High Output Current, Fixed-Frequency Ripple
Ext Clock $(200 \mathrm{~Hz}$ to $400 \mathrm{kHz})$	Synchronized PWM	High Output Current, Synchronized Ripple Frequency

Figure 5. Controller Block Diagram in PFM Mode

Synchronous Rectifier

The MAX1677 MBC features an internal 1Ω P-channel synchronous rectifier. Synchronous rectification typically improves efficiency by 5% or more over similar nonsynchronous step-up designs. In PWM mode, the synchronous rectifier turns on during the second half of each cycle. In PFM mode, an internal comparator turns on the synchronous rectifier when the voltage at LX exceeds the MBC output, and then turns it off when the inductor current drops below 90 mA (typ).
The on-chip synchronous rectifier allows the external Schottky diode to be omitted in designs that operate from inputs exceeding 1.4V. In circuits operating below 1.4 V (1-cell inputs, for example), connecting a Schottky diode in parallel with the internal synchronous rectifier (from LX to POUT) provides the lowest start-up voltage.

LCD Boost Converter (LCD)

The LCD converter can be configured for a positive or negative output by setting the LCDPOL pin and using the appropriate circuit (Figures 2 and 3, and Table 3). A combination of peak current limiting and a pair of one-shot timers control LCD switching. During the oncycle the internal N -channel DMOS switch turns on, and inductor current ramps up until either the switch peak current limit is reached or the 5.2μ s maximum ontime expires (typically at low input voltages). After the on-cycle terminates, the switch turns off and the output capacitor charges. The switch remains off until the error comparator initiates another cycle.
The LCDLX current limit is set by LCDPOL, as outlined in Table 3. The lower, 225 mA peak current setting allows tiny low-current "chip" inductors to be used when powering smaller (less than 15 square inches) liquid crystal panels. Use the following equation to determine which LCDLX current-limit setting is required.

$$
\operatorname{ILCD}=\left(0.7 \cdot \operatorname{IPK}(\operatorname{LCD}) \cdot \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}\right) /\left(2 \cdot \mathrm{~V}_{\mathrm{LCD}}(\mathrm{MAX})\right)
$$

where ILCD is the output current, $\mathrm{V}_{\mathrm{IN}}(\mathrm{MIN})$ is the minimum expected input voltage, $\operatorname{VLCD}(\mathrm{MAX})$ is the maximum required LCD output voltage, and IPK(LCD) is 350 mA or 225 mA as set by LCDPOL. The 0.7 term is a correction factor to conservatively account for typical switch, inductor, and diode losses.
The LCD boost is enabled when both ON and LCDON are high, and the MBC output voltage is within 90% of its set value. A soft-start start-up mode with increased off time reduces transient input current when the LCD is activated.

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Table 3. Setting LCD Output Polarity and Peak Inductor Current

LCD OUTPUT POLARITY	LCDPOL CONNECTED TO:	LCDLX PEAK INDUCTOR CURRENT (mA)
Positive	OUT	350
Negative	GND	350
Positive	OUT through $50 \mathrm{k} \Omega$	225
Negative	GND through $50 \mathrm{k} \Omega$	225

Shutdown: ON and LCDON
A logic-low level at ON shuts down all MAX1677 circuits including the LCD converter, reference, and LBI comparator. A logic-high level at LCDON activates the LCD boost converter. The LCD boost converter can only be activated when ON is high. When ON is low, the MAX1677 draws $1 \mu \mathrm{~A}$.

Low-Battery Comparator

The MAX1677 has an on-chip comparator for low-battery detection. If the voltage at LBI falls below 614 mV , LBO (an open-drain output) sinks current to GND. The low-battery trip level is set by two resistors (Figure 6). Since the LBI input current is less than 50 nA, large resistor values ($\mathrm{R} 6 \leq 130 \mathrm{k} \Omega$) can be used to minimize input loading. Calculate R5 as follows:

$$
\text { R5 = R6 [(VTRIP / 0.614V) - } 1]
$$

Connect a pull-up resistor (R8) to $\overline{\mathrm{LBO}}$ when driving CMOS logic. $\overline{\text { LBO }}$ is an open-drain output and can be pulled as high as 6 V regardless of the voltage at OUT. When LBI is above $0.614 \mathrm{~V}, \overline{\mathrm{LBO}}$ is high impedance. If the LBI comparator is not used, ground LBI.
Since the low-battery comparator is noninverting, hysteresis can be added by connecting a resistor (R7) from LBI to $\overline{\mathrm{LBO}}$ as shown in Figure 7. When LBO is high, the series combination of R8 and R7 source current into the summing node at LBI (no current flows into the IC).

Figure 6. Setting the Low-Battery Trip Threshold

Design Procedure

The MBC feedback pin (FB) features Dual Mode operation. With FB grounded, the MBC output is preset to 3.3 V . It can also be adjusted from 2.5 V to 5.5 V with external resistors, R3 and R4, as shown in Figure 8. To set the output voltage externally, select resistor R4 in the $10 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$ range. Calculate R3 using:

$$
\text { R3 }=\text { R4 [(Vout / 1.25V) -1] }
$$

Setting the LCD Output Voltage

For either positive or negative LCD output voltages, set the voltage with two external resistors, R1 and R2, as shown in Figures 2 and 3 . Since the input current at FB has a maximum of 50 nA , large resistors can be used without significant accuracy loss. Begin by selecting R2 in the $10 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$ range and calculate R1 using one of the following two equations (for positive or negative output).

$$
V_{H}=0.614 \mathrm{~V}\left[1+\frac{\mathrm{R5}}{\mathrm{R} 7}+\frac{\mathrm{R} 5}{\mathrm{R} 6}\right] \quad \mathrm{V}_{\mathrm{L}}=0.614 \mathrm{~V}\left[1+\frac{\mathrm{R} 7}{\mathrm{R} 8}-\frac{\left(\mathrm{V}_{\text {POUT }}-0.614 \mathrm{~V}\right)(\mathrm{R7}+\mathrm{R} 8)}{0.614 \mathrm{~V}(\mathrm{R5}+\mathrm{R} 6)}\right]
$$

WHERE V_{H} IS THE RISING $V_{\text {TRIP }}$ LEVEL
AND V I IS THEFALLING VTRP LEVEL.
Figure 7. Adding External Hysteresis to the LBI Comparator

Figure 8. Setting the MBC Output Voltage Externally

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

For a positive LCD output, connect LCDPOL to OUT as shown in Figure 2. This sets the threshold at LCDFB to 1.25V. Select R2 and the desired output voltage (VLCD), and calculate R1:
For positive LCD output: R1 = R2 [(VLCD / 1.25V) - 1]
Figure 3 shows the standard circuit for generating a negative LCD supply. This connection limits VLCD to values between -VIN and -28V. If a smaller negative output voltage is required, D2's cathode can be connected to VIN rather than ground. This alternate connection permits output voltages from 0 to $-\left|28-V_{I N}\right|$.
For a negative LCD output voltage, connect LCDPOL to GND. The feedback threshold voltage of LCDFB is set to 0 . Select R2 and the desired output voltage (VLCD), and calculate R1:
For positive LCD output: R1 = R2 • |VLCD $\mid / 1.25 \mathrm{~V}$
To minimize ripple in the LCD output and prevent subharmonic noise caused by switching pulse grouping, it may be necessary in some PC board layouts to connect a small capacitor in parallel with R1. For R1 values in $500 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$ range, 22 pF is usually adequate.
Many LCD bias applications require an adjustable output voltage. In Figure 9, an external control voltage (generated by a potentiometer, DAC, filtered PWM control signal, or other source) is coupled to LCDFB through the resistor RADJ. The output voltage of this circuit, for both positive and negative outputs, is given by:

$$
\text { VOUT }=\text { VINIT }+\left(R 1 / R_{A D J}\right)\left(V_{L C D F B}-V_{A D J}\right)
$$

where VINIT is the initial output obtained without the added adjust voltage, as calculated in one of the preceding two equations. VLCDFB is 1.25 V for the positive configuration, and 0 for the negative configuration. RADJ sets the output adjustment span, which is 1.25V • R1 / RADJ for either polarity output. Note that raising $\mathrm{V}_{\text {ADJ }}$ lowers VOUT in positive output designs, while in negative output designs, raising VADJ increases the magnitude of the negative output.

Figure 9. Adjusting LCD Output Voltage

Higher LCD Output Voltages
If the application requires LCD output voltages greater than +28 V , use the connection in Figure 10. This circuit adds one capacitor-diode charge pump stage to increase the output voltage without increasing the voltage stress on the LCDLX pin. The maximum output voltage of the circuit is +55 V and output current is slightly less than half that available from the standard circuit in Figure 2. In Figure 10, diodes D1, D2, and D3 should be at least 30V-rated Schottky diodes such as 1 N5818 or MBR0530L or equivalent. Capacitors C1 and C2 should also be rated for 30V, while C3 must be rated for the maximum set output voltage.

Applic ations Information

Inductor Selection

The MAX1677's high switching frequency allows the use of small surface-mount inductors. The $10 \mu \mathrm{H}$ values shown in Figures 2 and 3 are recommended for most applications, although values between $4.7 \mu \mathrm{H}$ and $47 \mu \mathrm{H}$ are suitable. Smaller inductance values typically offer a smaller physical size for a given series resistance, allowing the smallest overall circuit dimensions. Larger inductance values exhibit higher output current capability, but larger physical dimensions.
Use inductors with a ferrite core or equivalent; powder iron cores are not recommended for use with the MAX1677's high switching frequencies. The inductor's incremental saturation rating ideally should exceed the

Figure 10. Higher LCD Output Voltage

Compact, High-Effic iency, Dual-Output Step-Up and LCD Bias DC-DC Converter

selected current limit, however it is generally acceptable to bias most inductors into saturation by as much as 20% (although this may reduce efficiency).
For best efficiency, select inductors with resistance no greater than the internal N -channel FET resistance in each boost converter ($220 \mathrm{~m} \Omega$ for the MBC, and 1Ω for the LCD). The inductor is effectively in series with the input at all times, so inductor wire losses can be roughly approximated by IIN^{2}. RL. See Table 4 for a list of inductor suppliers.
The LCD boost converter (LCD) features selectable inductor/switch current limit of 350 mA or 225 mA . The higher current setting provides the greatest output current, while the lower setting allows the smallest inductor size.

External Diodes
The MAX1677's on-chip synchronous rectifier allows the normally required external Schottky diode to be omitted from the MBC in designs whose input exceeds

Table 4. Component Suppliers

SUPPLIER	PHONE	FAX
INDUCTORS		
Coilcraft: DO and DT series	847-639-6400	847-639-1469
Murata: LQH4 and LQH3C series	814-237-1431	814-238-0490
Sumida: CD, CDR, and RCH series	847-956-0666	847-956-0702
TDK: NLC Series	847-390-4373	847-390-4428
CAPACITORS		
AVX: TPS series	803-946-0690	803-626-3123
Matsuo: 267 series	714-969-2591	714-960-6492
Sanyo: OS-CON and GX series	619-661-6835	619-661-1055
Sprague: 595D series	603-224-1961	603-224-1430
DIODES		
Motorola: MBR0520	602-303-5454	602-994-6430
Nihon: EC11 FS1 series	805-867-2555	805-867-2698

1.4V. In circuits that need to operate below 1.4 V (1-cell inputs for example), connecting a Schottky diode in parallel with the internal synchronous rectifier (from LX to POUT) provides the lowest start-up voltage. Suitable devices are the 1N5817 or MBR0520L, however the diode current rating need not match the peak switch current, since most of the current is handled by the onchip synchronous rectifier.
Since the LCD boost converter (LCD) does not have synchronous rectification, an external diode is always needed. High switching speed demands a high-speed rectifier. For best efficiency, Schottky diodes such as the 1N5818 and MBR0530L are recommended. Be sure that the diode current rating exceeds the peak current set by LCDPOL, and that the diode voltage rating exceeds the LCD output voltage. In particularly cost-sensitive applications, and if the LCD's 225 mA peak current is set, a high-speed silicon signal diode (such as an 1N4148) may be used instead of a Schottky diode, but with reduced efficiency.

Input Bypass Capacitors

A low-ESR input capacitor connected in parallel with the battery will reduce peak currents and input-reflected noise. Battery bypassing is especially helpful at low input voltages and with high-impedance batteries (such as alkaline types). Benefits include improved efficiency and lower useful end-of-life voltage for the battery. $100 \mu \mathrm{~F}$ is typically recommended for 2 -cell applications. Small ceramic capacitors may also be used for light loads or in applications that can tolerate higher input ripple. Only one input bypass capacitor is typically needed for both the MBC and LCD.

Output Filter Capacitors

For most applications, a $100 \mu \mathrm{~F}, 10 \mathrm{~V}$, low-ESR output filter capacitor is recommended for the MBC output. A surface-mount tantalum capacitor typically exhibits 30 mV ripple when the MBC is stepping up from 1.2 V to 3.3 V at 100 mA . OS-CON and ceramic capacitors offer lowest ESR, while low-ESR tantalums offer a good balance between cost and performance.
The LCD output typically exhibits less than 1% peak-topeak ripple with $4.7 \mu \mathrm{~F}$ of filter capacitance. This can be either a ceramic or tantalum type, but be sure that the capacitor voltage rating exceeds the LCD output voltage. If the LCD's 225 mA peak switch current setting is used, the designer can choose lower output ripple or reduce the output filter to $2.2 \mu \mathrm{~F}$. Ceramic capacitors will exhibit lower ripple than equivalent value (or even higher value) tantalums due to lower ESR.

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

Layout Considerations

The MAX1677's high-frequency operation makes PC board layout important for minimizing ground bounce and noise. Protect sensitive analog grounds by using a star ground configuration. Minimize ground noise by connecting PGND, the input bypass capacitor ground terminal, and the output filter capacitor ground terminal to a single point (star ground configuration). Also, minimize lead lengths to reduce stray capacitance and trace resistance. Where an external resistor-divider is used to set output voltage, the trace from FB or LCDFB to the feedback resistors should be extremely short to minimize coupling from LX and LCDLX. To maximize efficiency and minimize output ripple, use a ground plane and connect the MAX1677 GND and PGND pins directly to the ground plane. Consult the MAX1677 evaluation kit for a full PC board example.

Compact, High-Efficiency, Dual-Output Step-Up and LCD Bias DC-DC Converter

	INCHES		Millime TERS	
DIM	MIN	MAX	MIN	MAX
A	. 061	. 068	1.55	1.73
Al	. 004	. 0098	0.102	0.249
A2	. 055	061	1.40	1.55
B	. 008	. 012	0.20	0.31
C	. 0075	. 0098	0.191	0.249
D	SEE VARJATIUNS			
E	. 150	. 157	3.81	3.99
e	. 025 BSC		0.635 BSC	
H	230	. 244	5.84	6.20
h	. 010	. 016	0.25	0.41
L	. 016	. 035	0.41	0.89
N	SEE VARIATİNS			
X	SEE VARIATIDNS			
Y	. 071	. 087	1.803	2.209
α	$0{ }^{\circ}$	$8{ }^{*}$	$0 \times$	$8{ }^{*}$

NDTES:

1. D \& E DZ NDT INCLUDE MDLD FLASH DR PRITRUSIDNS
2. MILD FLASH $\square R$ PRUTRUSIGNS NDT TI EXCEED .006" PER SIDE
3. HEAT SLUG DIMENSIDNS X AND Y APPLY $\square N L Y$ TI 16 AND 28 LEAD PDWER-QSIP PACKAGES.
4. CONTRGLLING DIMENSICNS: INCHES.

	INCHES		MILLIMETERS		
	MIN.	MAX	MIN.	MAX.	N
D	. 189	. 196	4.80	4.98	16 \|AA
S	. 0020	. 0070	0.05	0.18	
x	. 107	123	2.72	3.12	
D	. 337	344	8.56	8.74	$20 . A B$
S	. 0500	. 0550	1.270	1.397	
D	. 337	. 344	8.56	8.74	$24 \mid \mathrm{AC}$
S	. 0250	. 0300	0.635	0.762	
D	. 386	. 393	9.80	9.98	$28 / \mathrm{AD}$
S	. 0250	0300	0.635	0.762	
X	271	287	6.88	7.29	

/VI/JXI/VI

TITLE:
PACKAGE DUTLINE, QSDP, . 150°, . 025° LEAD PITCH

APRRIVAL	DOCUMENT CONTROL NO. $21-0055$	B	$1 / 1$

