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This section provides information about the Nios® Il peripherals.

This section includes the following chapters:

Altera Corporation

Chapter 5, SDRAM Controller with Avalon Interface

Chapter 6, DMA Controller with Avalon Interface

Chapter 7, PIO Core With Avalon Interface

Chapter 8, Timer Core with Avalon Interface

Chapter 9, JTAG UART Core with Avalon Interface

Chapter 10, UART Core with Avalon Interface

Chapter 11, SPI Core with Avalon Interface

Chapter 12, EPCS Device Controller Core with Avalon Interface

Chapter 13, Common Flash Interface Controller Core with Avalon
Interface

Chapter 14, System ID Core with Avalon Interface

Chapter 15, Character LCD (Optrex 16207) Controller with Avalon
Interface

Chapter 16, Mutex Core with Avalon Interface
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The SDRAM controller with Avalon™ interface provides an Avalon
interface to off-chip SDRAM. The SDRAM controller allows designers to
create custom systems in an Altera® FPGA that connect easily to SDRAM
chips. The SDRAM controller supports standard SDRAM as described in
the PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large
amounts of volatile memory. While SDRAM is relatively inexpensive,
control logic is required to perform refresh operations, open-row
management, and other delays and command sequences. The SDRAM
controller connects to one or more SDRAM chips, and handles all
SDRAM protocol requirements. Internal to the FPGA, the core presents
an Avalon slave port that appears as linear memory (i.e., flat address
space) to Avalon master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16,
32, or 64 bits), various memory sizes, and multiple chip selects. The
Avalon interface is latency-aware, allowing read transfers to be pipelined.
The core can optionally share its address and data buses with other off-
chip Avalon tristate devices. This feature is valuable in systems that have
limited 170 pins, yet must connect to multiple memory chips in addition
to SDRAM.

The SDRAM controller with Avalon Interface is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system.

Figure 5-1 shows a block diagram of the SDRAM controller core
connected to an external SDRAM chip.
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Figure 5-1. SDRAM Controller with Avalon Interface Block Diagram
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The following sections describe the components of the SDRAM controller
core in detail. All options are specified at system generation time, and
cannot be changed at run-time.

Avalon Interface

The Avalon slave port is the only user-visible part of the SDRAM
controller core. The slave port presents a flat, contiguous memory space
as large as the SDRAM chip(s). When accessing the slave port, the details
of the PC100 SDRAM protocol are entirely transparent. The Avalon
interface behaves as a simple memory interface. There are no memory-
mapped configuration registers.

The Avalon slave port supports peripheral-controlled wait-states for read
and write transfers. The slave port stalls the transfer until it can present
valid data. The slave port also supports read transfers with variable
latency, enabling high-bandwidth, pipelined read transfers. When a
master peripheral reads sequential addresses from the slave port, the first
data returns after an initial period of latency. Subsequent reads can
produce new data every clock cycle. However, data is not guaranteed to
return every clock cycle, because the SDRAM controller must pause
periodically to refresh the SDRAM.

Altera Corporation
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See the Avalon Interface Specification Reference Manual for details on
Avalon transfer types.

Off-Chip SDRAM Interface

The interface to the external SDRAM chip presents the signals defined by
the PC100 standard. These signals must be connected externally to the
SDRAM chip(s) via I/0 pins on the Altera FPGA.

Signal Timing & Electrical Characteristics

The timing and sequencing of signals depends on the configuration of the
core. The hardware designer configures the core to match the SDRAM
chip chosen for the system. See “Instantiating the Core in SOPC Builder”
on page 5-6 for details. The electrical characteristics of the FPGA pins
depend on both the target device family and the assignments made in the
Quartus® Il software. Some FPGA families support a wider range of
electrical standards, and therefore are capable of interfacing with a
greater variety of SDRAM chips. For details, see the handbook for the
target FPGA family.

Synchronization

The SDRAM chip is driven at the same clock rate as the Avalon interface.
Asshown in Figure 5-1, an on-chip phase-locked loop (PLL) is often used
to alleviate clock skew between the SDRAM controller core and the
SDRAM chip. At lower clock speeds, the PLL may not be necessary. At
higher clock rates, a PLL becomes necessary to tune the SDRAM clock to
toggle within the window when signals are valid on the pins.

The PLL block is not an integral part of the SDRAM controller core. If the
PLL is necessary, the designer must manually instantiate the PLL outside
the SOPC Builder-generated system module. Different combinations of
Altera FPGA and SDRAM chip will require different PLL settings.

The SDRAM controller does not support clock-disable modes. The
SDRAM controller permanently asserts the cke pin.

The Nios® Il development kit provides an example hardware design that
uses the SDRAM controller core in conjunction with a PLL.

Sharing Pins with Other Avalon Tristate Devices

If an Avalon tristate bridge is present in the SOPC Builder system, the
SDRAM controller core can share pins with the existing tristate bridge. In
this case, the core’s addr, dqg (data) and dgm (byte-enable) pins are shared
with other devices connected to the Avalon tristate bridge. This feature

5-3
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conserves I/0 pins, which is valuable in systems that have multiple
external memory chips (e.g., flash, SRAM, in addition to SDRAM), but
too few pins to dedicate to the SDRAM chip. See “Performance
Considerations” on page 5-4 for details on how pin sharing affects
performance.

Performance Considerations

Under optimal conditions, the SDRAM controller core’s bandwidth
approaches one word per clock cycle. However, because of the overhead
associated with refreshing the SDRAM, it is impossible to reach one word
per clock cycle. Other factors affect the core’s performance, as described
below.

Open Row Management

SDRAM chips are arranged as multiple banks of memory, wherein each
bank is capable of independent open-row address management. The
SDRAM controller core takes advantage of open-row management for a
single bank. Continuous reads or writes within the same row and bank
will operate at rates approaching one word per clock. Applications that
frequently access different destination banks will require extra
management cycles for row closings and openings.

Sharing Data & Address Pins

When the controller shares pins with other tristate devices, average access
time usually increases while bandwidth decreases. When access to the
tristate bridge is granted to other devices, the SDRAM requires row open
and close overhead cycles. Furthermore, the SDRAM controller has to
wait several clock cycles before it is granted access again.

To maximize bandwidth, the SDRAM controller automatically maintains
control of the tristate bridge as long as back-to-back read or write
transactions continue within the same row and bank.

s Note that this behavior may degrade the average access time for
other devices sharing the Avalon tristate bridge.

The SDRAM controller closes an open row whenever there is a break in
back-to-back transactions, or whenever a refresh transaction is required.
As a result:

B The controller cannot permanently block access to other devices
sharing the tristate bridge.

B The controller is guaranteed not to violate the SDRAM'’s row open
time limit.

5-4 Altera Corporation
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Hardware Design & Target FPGA

The target FPGA affects the maximum achievable clock frequency of a
hardware design. Certain device families achieve higher fy,ax
performance than other families. Furthermore, within a device family
faster speed grades achieve higher performance. The SDRAM controller
core can achieve 100 MHz in Altera’s high-performance device families,
such as Stratix® brand FPGAs. However, the core does not guarantee
100 MHz performance in all Altera FPGA families.

The fyax performance also depends on the overall hardware design. The
master clock for the SOPC Builder system module drives both the
SDRAM controller core and the SDRAM chip. Therefore, the overall
system module’s performance determines the performance of the
SDRAM controller. For example, to achieve fy,ax performance of

100 MHz, the system module must be designed for a 100-MHz clock rate,
and timing analysis in the Quartus Il software must verify that the
hardware design is capable of 100-MHz operation.

The SDRAM Controller with Avalon Interface core supports all Altera
FPGA families. Different FPGA families support different I/0 standards,
which may affect the ability of the core to interface to certain SDRAM
chips. For details on supported 170 types, see the handbook for the target
FPGA family.

5-5
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Instantiating the
Core in SOPC
Builder

5-6

Designers use the configuration wizard for the SDRAM controller in
SOPC Builder to specify hardware features and simulation features. The
SDRAM controller configuration wizard has two tabs: Memory Profile
and Timing. This section describes the options available on each tab.

The Presets list offers several pre-defined SDRAM configurations as a
convenience. If the SDRAM subsystem on the target board matches one
of the preset configurations, then the SDRAM controller core can be
configured easily by selecting the appropriate preset value. The following
preset configurations are defined:

Micron MT8LSDT1664HG module

Four SDR100 8 MByte x 16 chips

Single Micron MT48LC2M32B2-7 chip

Single Micron MT48LC4M32B2-7 chip

Single NEC D4564163-A80 chip (64 MByte x 16)
Single Alliance AS4LC1M16S1-10 chip

Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the
Memory Profile and Timing tabs to match the specific configuration.
Altering a configuration setting on any tab changes the Preset value to
custom.

Altera Corporation
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Memory Profile Tab

The Memory Profile tab allows designers to specify the structure of the

SDRAM subsystem, such as address and data bus widths, the number of
chip select signals, and the number of banks. Table 5-1 lists the settings

available on the Memory Profile tab.

Table 5-1. Memory Profile Tab Settings

Settings

Allowed
Values

Default
Values

Description

Data Width

8,16, 32,
64

32

SDRAM data bus width. This value determines the width of
the dq bus (data) and the dgm bus (byte-enable).

Architecture
Settings

Chip Selects

1,2,4,8

Number of independent chip selects in the SDRAM
subsystem. By using multiple chip selects, the SDRAM
controller can combine multiple SDRAM chips into one
memory subsystem.

Banks

Number of SDRAM banks. This value determines the width
of the ba bus (bank address) that connects to the SDRAM.
The correct value is provided in the data sheet for the target
SDRAM.

Address
Width
Settings

Row

11,12,
13,14

Number of row address bits. This value determines the
width of the addr bus. The Row and Column values
depend on the geometry of the chosen SDRAM. For
example, an SDRAM organized as 4096 (2'2) rows by 512
columns has a Row value of 12.

Column

>=8, and
less than
Row
value

Number of column address bits. For example, the SDRAM
organized as 4096 rows by 512 (29) columns has a Column
value of 9.

Controller shares
dg/dgm/addr 1/O pins

Yes, No

No

When set to No, all pins are dedicated to the SDRAM chip.
When set to Yes, the addr, dg, and dgm pins can be
shared with a tristate bridge in the system. In this case,
SOPC Builder presents a new configuration tab that allows
the user to associate the SDRAM controller pins with a
specific tristate bridge.

Include a functional memory
model in the system

testbench

Yes, No

Yes

When this option is turned on, SOPC Builder creates a
functional simulation model for the SDRAM chip. This
default memory model accelerates the process of creating
and verifying systems that use the SDRAM controller. See
“Hardware Simulation Considerations” on page 5-9.

Altera Corporation
September 2004
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Based on the settings entered on the Memory Profile tab, the wizard
displays the expected memory capacity of the SDRAM subsystem in units
of megabytes, megabits, and number of addressable words. It is useful to
compare these expected values to the actual size of the chosen SDRAM to
verify that the settings are correct.

Timing Tab

The Timing tab allows designers to enter the timing specifications of the
SDRAM chip(s) used. The correct values are provided in the
manufacturer’s data sheet for the target SDRAM. Table 5-2 lists the
settings available on the Timing tab.

Table 5-2. Timing Tab Settings

Settings Allowed | Default Description
g Values | Values P
CAS latency 1,2,3 3 Latency (in clock cycles) from a read command to data out.
Initialization refresh 1-8 2 This value specifies how many refresh cycles the SDRAM

cycles

controller will perform as part of the initialization sequence after
reset.

Issue one refresh
command every

- 15.625 | This value specifies how often the SDRAM controller refreshes

us the SDRAM. A typical SDRAM requires 4,096 refresh
commands every 64 ms, which can be met by issuing one
refresh command every 64 ms / 4,096 = 15.625 ps.

Delay after power up,
before initialization

- 100 us | The delay from stable clock and power to SDRAM initialization.

Duration of refresh
command (t_rfc)

— 70 ns | Auto Refresh period.

Duration of precharge — 20 ns | Precharge command period.
command (t_rp)
ACTIVE to READ or — 20 ns |[ACTIVE to READ or WRITE delay.

WRITE delay (t_rcd)

Access time (t_ac)

- 17 ns | Access time from clock edge. This value may depend on CAS

latency.

Write recovery time
(t_wr, No auto

— 14 ns

Write recovery if explicit precharge commands are issued. This
SDRAM controller always issues explicit precharge commands.

precharge)
Regardless of the exact timing values input by the user, the actual timing
achieved for each parameter will be integer multiples of the Avalon clock.
For the Issue one refresh command every parameter, the actual timing
will be the greatest number of clock cycles that does not exceed the target
5-8 Altera Corporation
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value. For all other parameters, the actual timing is the smallest number
of clock ticks that provides a value greater than or equal to the target
value.

Hardware This section discusses considerations for simulating systems with
. . SDRAM. There are three major components required for simulation:
Simulation

Considerations B The simulation model for the SDRAM controller
B The simulation model for the SDRAM chip(s), also called the
memory model
B Asimulation testbench that wires the memory model to the SDRAM
controller pins.

Some or all of these components are generated by SOPC Builder at system
generation time.

SDRAM Controller Simulation Model

The SDRAM controller design files generated by SOPC Builder are
suitable for both synthesis and simulation. Some simulation features are
implemented in the HDL using “translate on/off” synthesis directives
that make certain sections of HDL code invisible to the synthesis tool.

The simulation features are implemented primarily for easy simulation of
Nios and Nios Il processor systems using the ModelSim simulator. There
is nothing ModelSim-specific about the SDRAM controller simulation
model. However, minor changes may be required to make the model
work with other simulators.

If you change the simulation directives to create a custom
simulation flow, be aware that SOPC Builder overwrites
existing files during system generation. Take precaution so that
your changes are not overwritten.

CAUTION

e Refer to AN 351: Simulating Nios Il Processor Designs for a demonstration
of simulation of the SDRAM controller in the context of Nios Il
embedded processor systems.

Altera Corporation 5-9
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SDRAM Memory Model

There are two options for simulating a memory model of the SDRAM
chip(s), as described below.

Using the Generic Memory Model

If the Include a functional memory model the system testbench option
is enabled at system generation, then SOPC Builder generates an HDL
simulation model for the SDRAM memory. In the auto-generated system
testbench, SOPC Builder automatically wires this memory model to the
SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process
of creating and verifying systems that use the SDRAM controller.
However, the memory model is a generic functional model that does not
reflect the true timing or functionality of real SDRAM chips. The generic
model is always structured as a single, monolithic block of memory. For
example, even for a system that combines two SDRAM chips, the generic
memory model is implemented as a single entity.

Using the SDRAM Manufacturer’s Memory Model

If the Include a functional memory model the system testbench option
is not enabled, the designer is responsible for obtaining a memory model
from the SDRAM manufacturer, and manually wiring the model to the
SDRAM controller pins in the system test bench.

Altera Corporation
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Configurations
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The following examples show how to connect the SDRAM controller
outputs to an SDRAM chip or chips. The bus labeled ctl is an aggregate of
the remaining signals, such as cas_n, ras_n, cke and we_n.

Figure 5-2 shows a single 128-Mbit SDRAM chip with 32-bit data.
Address, data and control signals are wired directly from the controller to
the chip. The result is a 128-Mbit (16-Mbyte) memory space.

Figure 5-2. Single 128-Mbit SDRAM Chip with 32-Bit Data
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Figure 5-3 shows two 64-Mbit SDRAM chips, each with 16-bit data.
Address and control signals wire in parallel to both chips. Note that
chipselect (cs_n) is shared by the chips. Each chip provides half of the 32-
bit data bus. The result is a logical 128-Mbit (16-Mbyte) 32-bit data

memory.

Figure 5-3. Two 64-MBit SDRAM Chips Each with 16-Bit Data
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Model
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Figure 5-4 shows two 128-Mbit SDRAM chips, each with 32-bit data.
Control, address and data signals wire in parallel to the two chips. The
chipselectbus(cs_n[1:0])determines which chipis selected. The result
is a logical 256-Mbit 32-bit wide memory.

Figure 5-4. Two 128-Mbit SDRAM Chips Each with 32-Bit Data

Altera FPGA
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’ v 128 Mbits 2
e 16 Mbytes <
32 data width device
cs_n[1] -
Ll
data 32

A

The SDRAM controller behaves like simple memory when accessed via
the Avalon interface. There are no software-configurable settings, and
there are no memory-mapped registers. No software driver routines are
required for a processor to access the SDRAM controller.

5-13
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The Direct Memory Access (DMA) controller with Avalon™ interface
(“the DMA controller”) performs bulk data transfers, reading data from a
source address range and writing the data to a different address range.
An Avalon master peripheral, such as a CPU, can offload memory
transfer tasks to the DMA controller. While the DMA controller performs
memory transfers, the master is free to perform other tasks in parallel.

The DMA controller transfers data as efficiently as possible, reading and
writing data at the maximum pace allowed by the source or destination.
The DMA controller is capable of performing streaming Avalon transfers,
enabling it to automatically transfer data to or from a slow streaming
peripheral (e.g., a universal asynchronous receiver/transmitter [UART]),
at the maximum pace allowed by the peripheral.

The DMA controller is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. For the Nios® Il processor, device
drivers are provided in the HAL system library. See “Software
Programming Model” on page 6-5 for details of HAL support.

The DMA controller is used to perform direct memory-access data
transfers from a source address-space to a destination address-space. The
source and destination may be either an Avalon slave peripheral (i.e., a
constant address) or an address range in memory. The DMA controller
can be used in conjunction with streaming-capable peripherals, which
allows data transactions of fixed or variable length. The DMA controller
cansignal an interrupt request (IRQ) when a DMA transaction completes.
This document defines a transaction as a sequence of one or more Avalon
transfers initiated by the DMA controller core.

The DMA controller has two Avalon master ports—a master read port
and a master write port—and one Avalon slave port for controlling the
DMA as shown in Figure 6-1.
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Figure 6-1. X. DMA Controller Block Diagram

'gd?r* Register File
ata,
trol status Read
ion_rc; master | 4
Avalon readaddress port Sepelrate
Control avalon
SFI)%\:? Port writeaddress master
i orts
4& length Wiite | g—p p
master
control port

A typical DMA transaction proceeds as follows:

1.

A CPU prepares the DMA controller for a transaction by writing to
the control port.

The CPU enables the DMA controller. The DMA controller then
begins transferring data without additional intervention from the
CPU. The DMA’s master read port reads data from the read address,
which may be a memory or a peripheral. The master write port
writes the data to the destination address, which can also be a
memory or peripheral. A shallow FIFO buffers data between the
read and write ports.

The DMA transaction ends when a specified number of bytes are
transferred (i.e., a fixed-length transaction), or an end-of-packet
signal is asserted by either the sender or receiver (i.e., a variable-
length transaction). At the end of the transaction, the DMA
controller generates an interrupt request (IRQ) if it was configured
by the CPU to do so.

During or after the transaction, the CPU can determine if a
transaction is in progress, or if the transaction ended (and how) by
examining the DMA controller’s status register.

Setting Up DMA Transactions

An Avalon master peripheral sets up and initiates DMA transactions by
writing to registers via the control port. The master peripheral configures
the following options:

B Read (source) address location
B Write (destination) address location

6-2
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B Size of the individual transfers: Byte (8-bit), halfword (16-bit), word
(32-bit), doubleword (64-bit) or quadword (128-bit)

B Enable interrupt upon end of transaction

B Enable source or destination to end the DMA transaction with end-
of-packet signal

B Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate
the DMA transaction.

The Master Read & Write Ports

The DMA controller reads data from the source address through the
master read port, and then writes to the destination address through the
master write port. There is a shallow FIFO buffer between the master read
and write ports. The default depth is 2, which makes the write action
depend on the data-available status of the FIFO, rather than on the status
of the master read port.

Both the read and write master ports are capable of performing Avalon
streaming transfers, which allows the slave peripheral to control the flow
of data and terminate the DMA transaction.

For details on streaming Avalon data transfers and streaming Avalon
peripherals, see the Avalon Interface Specification Reference Manual.

Address Incrementing

When accessing memory, the read (or write) address increments by 1, 2,
4, 8 or 16 after each access, depending on the width of the data. On the
other hand, a typical peripheral device (such as UART) has fixed register
locations. In this case, the read/write address is held constant throughout
the DMA transaction.

6-3
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The rules for address incrementing are, in order of priority:

B Ifthe control register’s RCON (or WCON) bit is set, the read (or write)
increment value is 0.

B Otherwise, the read and write increment values are set according to
the transfer size specified in the control register, as shown in
Table 6-1.

Table 6-1. Address Increment Values

Transfer Width Increment

byte

halfword

word

O [IN| =

doubleword

quadword 16

Instantiating the  Designers use the DMA controller’s SOPC Builder configuration wizard
. to specify hardware options for the target system. Instantiating the DMA
Core in SOPC controller in SOPC Builder creates one slave port and two master ports.
Builder The designer must specify which slave peripherals can be accessed by the
read and write master ports. Likewise, the designer must specify which
other master peripheral(s) can access the DMA control port and initiate
DMA transactions. The DMA controller does not export any signals to the
top level of the system module.

The configurable hardware features are described below.

DMA Parameters (Basic)

The following sections describe the basic parameters.

Width of the DMA Length Register

This option sets the minimum width of the DMA’s transaction length
register. The acceptable range is 1 to 32. The length register determines
the maximum number of transfers possible in a single DMA transaction.

By default, the length register is wide enough to span any of the slave
peripherals mastered by the read or write ports. Overriding the length
register may be necessary if the DMA master port (read or write) masters
only data peripherals, such as a UART. In this case, the address span of
each slave is small, but a larger number of transfers may be desired per
DMA transaction.
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Construct FIFO from Registers vs. Construct FIFO from Memory Blocks

This option controls the implementation of the FIFO buffer between the
master read and write ports. When Construct FIFO from Registers is
selected (the default), the FIFO is implemented using one register per
storage bit. This has a strong impact on logic utilization when the DMA
controller’s data width is large (see “Advanced Options” on page 6-5).
When Construct FIFO from Memory Blocks is selected, the FIFO is
implemented using embedded memory blocks available in the FPGA.

Advanced Options

This section describes the advanced options.

Allowed Transactions

The designer can choose the transfer data width(s) supported by the
DMA controller hardware. The following data-width options can be
enabled or disabled:

Byte

Halfword (two bytes)
Word (four bytes)
Doubleword (eight bytes)
Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the amount of on-chip
logic resources consumed by the DMA controller core. For example, if a
system has both 16-bit and 32-bit memories, but the DMA controller will
only transfer data to the 16-bit memory, then 32-bit transfers could be
disabled to conserve logic resources.

This section describes the programming model for the DMA controller,
including the register map and software declarations to access the
hardware. For Nios Il processor users, Altera provides HAL system
library drivers that enable you to access the DMA controller core using
the HAL API for DMA devices.

HAL System Library Support

The Altera-provided driver implements a HAL DMA device driver that
integrates into the HAL system library for Nios Il systems. HAL users
should access the DMA controller via the familiar HAL API, rather than
accessing the registers directly.

6-5
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If your program uses the HAL device driver to access the DMA
controller, accessing the device registers directly will interfere
with the correct behavior of the driver.

CAUTION

The HAL DMA driver provides both ends of the DMA process; the driver
registers itself as both a receive channel (alt_dma_rxchan) and a transmit
channel (alt_dma_txchan). The Nios Il Software Developer’s Handbook
provides complete details of the HAL system library and the usage of
DMA devices.

ioctl() Operations

ioctl () operation requests are defined for both the receive and transmit
channels, which allows you to control the hardware-dependent aspects of
the DMA controller. Two ioct1 () functions are defined for the receiver

driver and the transmitter driver: alt _dma_rxchan_ioctl () and
alt dma_ txchan ioctl (). Table 6-2 lists the available operations.
These are valid for both the transmit and receive channels.

Table 6-2. Operations for alt_dma_rxchan_ioctl() & alt_dma_txchan_ioctl()

Request

Meaning

ALT DMA SET MODE 8

Transfers data in units of 8 bits. The value of “arg” is ignored.

ALT DMA SET MODE 16

Transfers data in units of 16 bits. The value of “arg” is ignored.

ALT DMA SET MODE 32

Transfers data in units of 32 bits. The value of “arg” is ignored.

ALT DMA SET MODE 64

Transfers data in units of 64 bits. The value of “arg” is ignored.

ALT DMA SET MODE 128

Transfers data in units of 128 bits. The value of “arg” is ignored.

ALT DMA RX ONLY ON (1)

Sets a DMA receiver into streaming mode. In this case, data is read
continuously from a single location. The “arg” parameter specifies the
address to read from.

ALT DMA RX_ONLY OFF (1)

Turns off streaming mode for a receive channel. The value of “arg” is
ignored.

ALT DMA TX ONLY ON (1)

Sets a DMA transmitter into streaming mode. In this case, data is written
continuously to a single location. The “arg” parameter specifies the address
to write to.

ALT DMA TX ONLY OFF (1)

Turns off streaming mode for a transmit channel. The value of “arg” is
ignored.

Note to Table 6-2:

(1) These macro names changed in version 1.1 of the Nios Il development kit. The old names
(ALT DMA TX_STREAM ON,ALT_DMA TX STREAM OFF,ALT DMA RX_ STREAM ON,and
ALT_DMA RX STREAM OFF) arestill valid, but new designs should use the new names.

6-6
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Limitations

Currently the Altera-provided drivers do not support 64-bit and 128-bit
DMA transactions.

This function is not thread safe. If you want to access the DMA controller
from more than one thread then you should use a sesmaphore or mutex to
ensure that only one thread is executing within this function at any time.

Software Files

The DMA controller is accompanied by the following software files.
These files define the low-level interface to the hardware. Application
developers should not modify these files.

B altera_avalon_dma_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used only by device driver functions.

B altera_avalon_dma.h, altera_avalon_dma.c—These files implement
the DMA controller’s device driver for the HAL system library.

Register Map

Programmers using the HAL API never access the DMA controller
hardware directly via its registers. In general, the register map is only
useful to programmers writing a device driver.

The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

CAUTION

Table 6-3 shows the register map for the DMA controller. Device drivers
control and communicate with the hardware through five memory-
mapped 32-bit registers.

Table 6-3. DMA Controller Register Map

off

Read

| Regster el st [ 9 | 8 | 7|6 | 5|43 210
Name 0
set e
0 [status@ | RW @) LE |WEO| REO | BU | DO
N P P SY | NE
1 |readaddr | RW Read master start address
ess
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Table 6-3. DMA Controller Register Map

Off Register Read 1
- 9 vrit | 31...11 o | 8 | 7|6 |5 |a|3|2|1]o0
Name 0
set e
2 |writeadd | RW Write master start address
ress
3 |length RwW DMA transaction length (in bytes)
4 - Reserved (3)
5 - Reserved (3)
6 |control RW (2) [(4](5|WCO|RCO |LEE |WEE|REE |[I_E| GO |WOR | HW | BYT
) 1) N N N N N N D E
7 - Reserved (3)
Notes:

(1) Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.

(2) These bits are reserved. Read values are undefined. Write zero.

(3) This register is reserved. Read values are undefined. The result of a write is undefined.
(4) QUADWORD.
(55 DOUBLEWORD.

status Register

The status register consists of individual bits that indicate conditions
inside the DMA controller. The status register can be read at any time.
Reading the status register does not change its value.

The status register bits are shown in Table 6-4.

Table 6-4. status Register Bits

Bit Number | Bit Name | Read/Write/Clear Description

0 DONE R/C A DMA transaction is completed. The DONE bit is set to 1 when
an end of packet condition is detected or the specified
transaction length is completed. Write zero to the status register
to clear the DONE bit.

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.

2 REOP R The REOP bit is 1 when a transaction is completed due to an
end-of-packet event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an
end of packet event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to
zero.
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readaddress Register

The readaddress register specifies the first location to be read ina DMA
transaction. The readaddress register width is determined at system
generation time. It is wide enough to address the full range of all slave
ports mastered by the read port.

writeaddress Register

The writeaddress register specifies the first location to be written in a
DMA transaction. The writeaddress register width is determined at
system generation time. It is wide enough to address the full range of all
slave ports mastered by the write port.

length Register

The length register specifies the number of bytes to be transferred from
the read port to the write port. The 1length register is specified in bytes.
For example, the value must be a multiple of 4 for word transfers, and a
multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the
write master port. When length reaches 0 the LEN bit isset. The length
register does not decrement below 0.

The length register width is determined at system generation time. It is at
least wide enough to span any of the slave ports mastered by the read or
write master ports, and it can be made wider if necessary.

control Register

The control register is composed of individual bits that control the DMA’s
internal operation. The control register’s value can be read at any time.
The control register bits determine which, if any, conditions of the DMA
transaction result in the end of a transaction and an interrupt request.

The control register bits are shown in Table 6-5.

Table 6-5. control Register Bits (Part 1 of 2)

Bit Number Bit Name Read/Write/Clear Description
0 BYTE RW Specifies byte transfers.
1 HW RW Specifies halfword (16-bit) transfers.
2 WORD RW Specifies word (32-bit) transfers.

Altera Corporation

December 2004
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Table 6-5. control Register Bits (Part 2 of 2)

Bit Number

Bit Name

Read/Write/Clear

Description

3

GO

RW

Enables DMA transaction. When the GO bit is set to 0,
the DMA is prevented from executing transfers. When
the GO bit is set to 1 and the length register is non-zero,
transfers occur.

RwW

Enables interrupt requests (IRQ). When the I_EN bitis 1,
the DMA controller generates an IRQ when the status
register’'s DONE bit is set to 1. IRQs are disabled when
the I_EN bit is 0.

REEN

RwW

Ends transaction on read-side end-of-packet. When the
REEN bit is set to 1, a streaming slave port on the read
side may end the DMA transaction by asserting its end-
of-packet signal.

WEEN

RW

Ends transaction on write-side end-of-packet. When the
WEEN bit is set to 1, a streaming slave port on the write
side may end the DMA transaction by asserting its end-
of-packet signal.

LEEN

RwW

Ends transaction when the 1ength register reaches
zero. When the LEEN bit is 1, the DMA transaction ends
when the 1ength register reaches 0. When this bitis 0,
length reaching 0 does not cause a transaction to
end. In this case, the DMA transaction must be
terminated by an end-of-packet signal from either the
read or write master port.

RCON

RwW

Reads from a constant address. When RCON is 0, the
read address increments after every data transfer. This
is the mechanism for the DMA controller to read a range
of memory addresses. When RCON is 1, the read
address does not increment. This is the mechanism for
the DMA controller to read from a peripheral at a
constant memory address. For details, see “Address
Incrementing” on page 6-3.

WCON

RW

Writes to a constant address. Similar to the RCON bit,
when WCON is 0 the write address increments after
every data transfer; when WCON is 1 the write address
does not increment. For details, see “Address
Incrementing” on page 6-3.

10

DOUBLEWORD

RwW

Specifies doubleword transfers.

1"

QUADWORD

RwW

Specifies quadword transfers.

6-10

The data width of DMA transactions is specified by the BYTE, HW,
WORD, DOUBLEWORD, and QUADWORD bits. Only one of these bits
can be set at a time. If more than one of the bits is set, the DMA controller
behavior is undefined. The width of the transfer is determined by the
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narrower of the two slaves read and written. For example, a DMA
transaction that reads from a 16-bit flash memory and writes to a 32-bit
on-chip memory requires a halfword transfer. In this case, HW must be
setto 1, and BYTE, WORD, DOUBLEWORD, and QUADWORD must be
setto 0.

To successfully perform transactions of a specific width, that width must
be enabled in hardware using the Allowed Transaction hardware option.
For example, the DMA controller behavior is undefined if quadword
transfers are disabled in hardware, but the QUADWORD bit is set during
a DMA transaction.

Interrupt Behavior

The DMA controller has a single IRQ output that is asserted when the
status register’s DONE bit equals 1 and the control register’s |_EN bit
equals 1.

Writing the status register clears the DONE bit and acknowledges the
IRQ. A master peripheral can read the status register and determine
how the DMA transaction finished by checking the LEN, REOP, and
WEORP bits.
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The parallel input/output (PIO) core provides a memory-mapped
interface between an Avalon™ slave port and general-purpose 1/0 ports.
The 1/0 ports connect either to on-chip user logic, or to 1/0 pins that
connect to devices external to the FPGA.

The PIO core provides easy 1/0 access to user logic or external devices in
situations where a “bit banging” approach is sufficient. Some example
uses are:

Controlling LEDs

Acquiring data from switches

Controlling display devices

Configuring and communicating with off-chip devices, such as
application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based
on input signals. The PIO core is SOPC Builder ready and integrates
easily into any SOPC Builder-generated system.

Each P10 core can provide up to 32 170 ports. An intelligent host such as
a microprocessor controls the PIO ports by reading and writing the
register-mapped Avalon interface. Under control of the host, the PIO core
captures data on its inputs and drives data to its outputs. When the P1O
ports are connected directly to I/0 pins, the host can tristate the pins by
writing control registers in the P1O core. Figure 7-1 shows an example of
a processor-based system that uses multiple P10 cores to blink LEDs,
capture edges from on-chip reset-request control logic, and control an off-
chip LCD display.
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Figure 7-1. An Example System Using Multiple PIO Cores
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When integrated into an SOPC Builder-generated system, the PIO core
has two user-visible features:

B A memory-mapped register space with four registers: data,
direction, interruptmask, and edgecapture.
B 1to321/0 ports.

The 1/0 ports can be connected to logic inside the FPGA, or to device pins
that connect to off-chip devices. The registers provide an interface to the
1/0 ports via the Avalon interface. See Table 7-2 on page 7-7 for a
description of the registers. Some registers are not necessary in certain
hardware configurations, in which case the unnecessary registers do not
exist. Reading a non-existent register returns an undefined value, and
writing a non-existent register has no effect.

Data Input & Output

The PIO core I/0 ports can connect to either on-chip or off-chip logic. The
core can be configured with inputs only, outputs only, or both inputs and
outputs. If the core will be used to control bidirectional 1/0 pins on the
device, the core provides a bidirectional mode with tristate control.
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The hardware logic is separate for reading and writing the data register.
Reading the data register returns the value present on the input ports (if
present). Writing data affects the value driven to the output ports (if
present). These ports are independent; reading the data register does not
return previously-written data.

Edge Capture

The P10 core can be configured to capture edges on its input ports. It can
capture low-to-high transitions, high-to-low transitions, or both.
Whenever an input detects an edge, the condition is indicated in the
edgecapture register. The type of edges to detect is specified at system
generation time, and cannot be changed via the registers.

IRQ Generation

The P10 core can be configured to generate an IRQ on certain input
conditions. The IRQ conditions can be either:

B Level-sensitive—The P10 core hardware can detect a high level. ANOT
gate can be inserted external to the core to provide negative
sensitivity.

B Edge-sensitive—The core’s edge capture configuration determines
which type of edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt
mask determines which input port can generate interrupts.

7-3
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Examp|e Figure 7-2 shows a block diagram of the P10 core configured with input
. . and output ports, as well as support for IRQs.
Configurations

Figure 7-2. PIO Core with Input & Output Ports & with IRQ Support
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interruptmask
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edgecapture

Figure 7-3 shows a block diagram of the P1O core configured in
bidirectional mode, without support for IRQs.

Figure 7-3. PIO Core with Bidirectional Ports
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interface | (data | data out 4%2&;
to on-chip ¢ control
logic
direction

Avalon Interface

The PIO core’s Avalon interface consists of a single Avalon slave port. The
slave port is capable of fundamental Avalon read and write transfers. The
Avalon slave port provides an IRQ output so that the core can assert
interrupts.

Instantiating the  The hardware feature set is configured via the P1O core’s SOPC Builder

. configuration wizard. The following sections describe the available
PIO Core In Optionsl

SOPC Builder
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The configuration wizard has two tabs, Basic Settings and Input
Options.

Basic Settings

The Basic Settings tab allows the designer to specify the width and
direction of the 170 ports.

B The Width setting can be any integer value between 1 and 32. For a
value of n, the 1/0 ports become n-bits wide.

B The Direction setting has four options, as shown in Table 7-1.

Table 7-1. Direction Settings

Setting

Description

Bidirectional (tristate) ports

In this mode, each PIO bit shares one device pin for driving and capturing data.
The direction of each pin is individually selectable. To tristate an FPGA 1/O pin, set
the direction to input.

Input ports only

In this mode the PIO ports can capture input only.

Output ports only

In this mode the PIO ports can drive output only.

Both input and output ports

In this mode, the input and output ports buses are separate, unidirectional buses

of n bits wide.

Altera Corporation
September 2004

Input Options

The Input Options tab allows the designer to specify edge-capture and
IRQ generation settings. The Input Options tab is not available when
Output ports only is selected on the Basic Settings tab.

Edge Capture Register

When the Synchronously capture option is turned on, the P1O core
contains the edge capture register, edgecapture. The user must further
specify what type of edge(s) to detect:

B Rising Edge
m Falling Edge
B Either Edge

The edge capture register allows the core to detect and (optionally)
generate an interrupt when an edge of the specified type occurs on an
input port.

7-5
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When the Synchronously capture option is turned off, the edgecapture
register does not exist.

Interrupt

When the Generate IRQ option is turned on, the P1O core is able to assert
an IRQ output when a specified event occurs on input ports. The user
must further specify the cause of an IRQ event:

B Level—The core generates an IRQ whenever a specific input is high
and interrupts are enabled for that input in the interruptmask
register.

B Edge—The core generates an IRQ whenever a specific bit in the edge
capture register is high and interrupts are enabled for that bit in the
interruptmask register.

When the Generate IRQ option is turned off, the interruptmask
register does not exist.

The P10 core supports all Altera® FPGA families.

This section describes the software programming model for the PI1O core,
including the register map and software constructs used to access the
hardware. For Nios® Il processor users, Altera provides the HAL system
library header file that defines the P10 core registers. The PIO core does
not match the generic device model categories supported by the HAL, so
it cannot be accessed via the HAL API or the ANSI C standard library.

The Nios Il Development Kit provides several example designs that
demonstrate usage of the PIO core. In particular, the count_binary.c
example uses the PIO core to drive LEDs, and detect button presses
using P10 edge-detect interrupts.

Software Files

The P1O core is accompanied by one software file,
altera_avalon_pio_regs.h. This file defines the core’s register map,
providing symbolic constants to access the low-level hardware.
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Legacy SDK Routines

The PIO core is supported by the legacy SDK routines for the first-
generation Nios processor. For details on these routines, refer to the PIO
documentation that accompanied the first-generation Nios processor. For
details on upgrading programs based on the legacy SDK to the HAL
system library API, refer to AN 350: Upgrading Nios Processor Systems to the
Nios Il Processor.

Register Map

An Avalon master peripheral, such as a CPU, controls and communicates
with the PIO core via the four 32-bit registers, shown in Table 7-2. The
table assumes that the P10 core’s I/0 ports are configured to a width of n

bits.

Table 7-2. Register Map for the PIO Core
Offset Register Name R/W | (n-1) 2 1 0
0 data |read access R Data value currently on PIO inputs
write access w New value to drive on PIO outputs

direction (1)

R/W | Individual direction control for each 1/O port. A value of 0
sets the direction to input; 1 sets the direction to output.

2 interruptmask (1) R/W | IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.
3 edgecapture (1), (2) R/W | Edge detection for each input port.

Notes to Table 7-2:

(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the
register returns an undefined value, and writing the register has no effect.
(2) Writing any value to edgecapture clears all bits to 0.

Altera Corporation

September 2004

data Register

Reading from data returns the value present at the input ports. If the PIO
core hardware is configured in output-only mode, reading from data
returns an undefined value.

Writing to data stores the value to a register that drives the output ports.
If the P1O core hardware is configured in input-only mode, writing to
data has no effect. If the PIO core hardware is in bidirectional mode, the
registered value appears on an output port only when the corresponding
bit in the direction register is set to 1 (output).
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direction Register

The direction register controls the data direction for each P10 port,
assuming the port is bidirectional. When bit n in direction issetto 1,
port n drives out the value in the corresponding bit of the data register.

The direction register only exists when the P1O core hardware is
configured in bidirectional mode. The mode (input, output, or
bidirectional) is specified at system generation time, and cannot be
changed at runtime. In input-only or output-only mode, the direction
register does not exist. In this case, reading direction returns an
undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional 1/0 ports are
configured as inputs. If those P1O ports are connected to device pins, the
pins are held in a high-impedance state.

interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for
the corresponding P10 input port. Interrupt behavior depends on the
hardware configuration of the PIO core. See “Interrupt Behavior” on
page 7-9.

The interruptmask register only exists when the hardware is
configured to generate IRQs. If the core cannot generate IRQs, reading
interruptmask returns an undefined value, and writing to
interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are
disabled for all PIO ports.

edgecapture Register

Bitninthe edgecapture register is set to 1 whenever an edge is detected
on input port n. An Avalon master peripheral can read the edgecapture
register to determine if an edge has occurred on any of the PIO input
ports. Writing any value to edgecapture clears all bits in the register.

The type of edge(s) to detect is fixed in hardware at system generation
time. The edgecapture register only exists when the hardware is
configured to capture edges. If the core is not configured to capture edges,
reading from edgecapture returns an undefined value, and writing to
edgecapture has no effect.
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Interrupt Behavior

The P10 core outputs a single interrupt-request (IRQ) signal that can
connect to any master peripheral in the system. The master can read
either the data register or the edgecapture register to determine which
input port caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is
asserted whenever corresponding bits in the data and interruptmask
registers are 1. When the hardware is configured for edge-sensitive
interrupts, the IRQ is asserted whenever corresponding bits in the
edgecapture and interruptmask registers are 1. The IRQ remains
asserted until explicitly acknowledged by disabling the appropriate bit(s)
in interruptmask, or by writing to edgecapture.

Software Files

The P1O core is accompanied by the following software file. This file
provide low-level access to the hardware. Application developers should
not modify the file.

B altera_avalon_pio_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used by device driver functions.
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®

Interface

Core Overview

Functional
Description

The timer core with Avalon™ interface core is a 32-bit interval timer for
Avalon-based processor systems, such as a Nios® Il processor system. The
timer provides the following features:

reaches zero
B Optional periodic pulse generator feature that outputs a pulse when
timer reaches zero
B Compatible with 32-bhit and 16-bit processors

Controls to start, stop, and reset the timer

Two count modes: count down once and continuous count-down
Count-down period register
Maskable interrupt request (IRQ) upon reaching zero

Optional watchdog timer feature that resets the system if timer ever

Device drivers are provided in the HAL system library for the Nios Il
processor. The timer core is SOPC Builder-ready and integrates easily into

any SOPC Builder-generated system.

Figure 8-1 shows a block diagram of the timer core.

Figure 8-1. Timer Core Block Diagram
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The timer core has two user-visible features:

B The Avalon interface that provides access to six 16-bit registers
B An optional pulse output that can be used as a periodic pulse
generator

All registers are 16-bits wide, making the timer compatible with both 16-
bit and 32-bit processors. Certain registers only exist in hardware for a
given configuration. For example, if the timer is configured with a fixed
period, the period registers do not exist in hardware.

The basic behavior of the timer is described below:

B An Avalon master peripheral, such as a Nios Il processor, writes the

timer core’s control register to:

e Start and stop the timer

e Enable/disable the IRQ

e Specify count-down once or continuous count-down mode

B Aprocessor reads the status register for information about current
timer activity.

B A processor can specify the timer period by writing a value to the
period registers, periodl and periodh.

B Aninternal counter counts down to zero, and whenever it reaches
zero, it is immediately reloaded from the period registers.

B A processor can read the current counter value by first writing to
either snapl or snaph to request a coherent snapshot of the counter,
and then reading snapl and snaph for the full 32-bit value.

B When the count reaches zero:

e IfIRQs are enabled, an IRQ is generated

e The (optional) pulse-generator output is asserted for one clock
period

e The (optional) watchdog output resets the system

Avalon Slave Interface

The timer core implements a simple Avalon slave interface to provide
access to the register file. The Avalon slave port uses the resetrequest
signal to implement watchdog timer behavior. This signal is a non-
maskable reset signal, and it drives the reset input of all Avalon
peripherals in the SOPC Builder system. When the resetrequest
signal is asserted, it forces any processor connected to the system to
reboot. See “Configuring the Timer as a Watchdog Timer” on page 8—4 for
further details.
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The timer core supports all Altera® FPGA families.

Designers use the timer’s SOPC Builder configuration wizard to specify
the hardware features. This section describes the options available in the
configuration wizard.

Timeout Period

The Timeout Period setting determines the initial value of the periodl
and periodh registers. When the Writeable period setting is enabled, a
processor can change the value of the period by writing periodl and
periodh. When the Writeable period setting (see below) is turned off,
the period is fixed and cannot be updated at runtime.

The Timeout Period setting can be specified in units of usec, msec, sec, or
clocks (number of clock cycles). The actual period achieved depends on
the system clock. If the period is specified in usec, msec or sec, the true
period will be the smallest number of clock cycles that is greater than or
equal to the specified Timeout Period.

Hardware Options

The following options affect the hardware structure of the timer core. As
a convenience, the Preset Configurations list offers several pre-defined
hardware configurations, such as:

B Simple periodic interrupt—This configuration is useful for systems
that require only a periodic IRQ generator. The period is fixed and
the timer cannot be stopped, but the IRQ can be disabled.

B Full-featured—This configuration is useful for embedded processor
systems that require a timer with variable period that can be started
and stopped under processor control.

B Watchdog—This configuration is useful for systems that require
watchdog timer to reset the system in the event that the system has
stopped responding. See “Configuring the Timer as a Watchdog
Timer” on page 8-4.
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Register Options

Table 8-1 shows the settings that affect the timer core’s registers.

Table 8-1. Register Options

Option Description

Writeable When this option is enabled, a master peripheral can change the count-down period by writing

period periodl and periodh. When disabled, the count-down period is fixed at the specified
Timeout Period, and the periodl and periodh registers do not exist in hardware.

Readable When this option is enabled, a master peripheral can read a snapshot of the current count-

snapshot down. When disabled, the status of the counter is detectable only via other indicators, such as
the status register or the IRQ signal. In this case, the snapl and snaph registers do not
exist in hardware, and reading these registers produces an undefined value.

Start/Stop When this option is enabled, a master peripheral can start and stop the timer by writing the

control bits START and STOP bits in the control register. When disabled, the timer runs continuously.

When the System reset on timeout (watchdog) option is enabled, the START bit is also
present, regardless of the Start/Stop control bits option.

Output Signal Options

Table 8-2 shows the settings that affect the timer core’s output signals.

Table 8-2. Output Signal Options

Option

Description

clock wide)

Timeout pulse (1 When this option is enabled, the timer core outputs a signal t imeout_pulse. This signal

pulses high for one clock cycle whenever the timer reaches zero. When disabled, the
timeout_ pulse signal does not exist.

System reset on When this option is enabled, the timer core’s Avalon slave port includes the
timeout (watchdog) | resetrequest signal. This signal pulses high for one clock cycle (causing a system-

wide reset) whenever the timer reaches zero. When this option is enabled, the internal
timer is stopped at reset. Explicitly writing the START bit of the cont rol register starts the
timer. When this option is disabled, the resetrequest signal does not exist.

See “Configuring the Timer as a Watchdog Timer” on page 8—4.

8—4

Configuring the Timer as a Watchdog Timer

To configure the timer for use as a watchdog, in the configuration wizard
select Watchdog in the Preset Configurations list, or choose the following
settings:

B Setthe Timeout Period to the desired “watchdog” period.

B Turn off the Writeable period option.
B Turn off the Readable snapshot option.
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B Turn off the Start/Stop control bits option.
B Turn off the Timeout pulse option.
B Turn on the System reset on timeout (watchdog) option.

A watchdog timer wakes up (i.e., comes out of reset) stopped. A
processor later starts the timer by writing a 1 to the control register’s
START bit. Once started, the timer can never be stopped. If the internal
counter ever reaches zero, the watchdog timer resets the system by
generating a pulse on its resetrequest output. To prevent the system
from resetting, the processor must periodically reset the timer’s count-
down value by writing either the periodl or periodh registers (the
written value is ignored). If the processor fails to access the timer because,
for example, software stopped executing normally, then the watchdog
timer resets the system and returns the system to a defined state.

The following sections describe the software programming model for the
timer core, including the register map and software declarations to access
the hardware. For Nios Il processor users, Altera provides hardware
abstraction layer (HAL) system library drivers that enable you to access
the timer core using the HAL application programming interface (API)
functions.

HAL System Library Support

The Altera-provided drivers integrate into the HAL system library for
Nios Il systems. When possible, HAL users should access the timer via
the HAL API, rather than accessing the timer registers.

Altera provides a driver for both the HAL timer device models: system
clock timer, and timestamp timer.

System Clock Driver

When configured as the system clock, the timer runs continuously in
periodic mode, using the default period set in SOPC builder. The system
clock services are then run as a part of the interrupt service routine for this
timer. The driver is interrupt-driven, and therefore must have its
interrupt signal connected in the system hardware.

The Nios Il integrated development environment (IDE) allows you to
specify system library properties that determine which timer device will
be used as the system clock timer.

8-5
Nios Il Processor Reference Handbook



Software Programming Model

8-6

Timestamp Driver

The timer core may be used as a timestamp device if it meets the
following conditions:

B Thetimer has a writeable snapshot register, as configured in SOPC
Builder.
B The timer is not selected as the system clock.

The Nios Il IDE allows you to specify system library properties that
determine which timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers,
then calls to the alt_timestamp_start () API function will not reset
the timestamp counter. All other HAL API calls will perform as expected.

See the Nios Il Software Developer’s Handbook for details on using the
system clock and timestamp features that use these drivers. The Nios Il
development kit also provides several example designs that use the
timer core.

Limitations

The HAL driver for the timer core does not support the watchdog reset
feature of the timer core.

Software Files

The timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

B altera_avalon_timer_regs.h—This file defines the core’s register
map, providing symbolic constants to access the low-level hardware.

B altera_avalon_timer.h, altera_avalon_timer_sc.c,
altera_avalon_timer_ts.c, altera_avalon_timer_vars.c—These files
implement the timer device drivers for the HAL system library.

Register Map

A programmer should never have to directly access the timer via its
registers if using the standard features provided in the HAL system
library for the Nios Il processor. In general, the register map is only useful
to programmers writing a device driver.
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The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate correctly.

CAUTION

Table 8-3 shows the register map for the timer.

Table 8-3. Register Map
Description of Bits
Offset Name R/W
15 4 3 2 1 0
0 status RW 1) RUN TO
1 control | RW ) ‘ STOP ‘ START | CONT | I1TO
2 periodl RW Timeout Period — 1 (bits 15..0)
3 periodh RW Timeout Period — 1 (bits 31..16)
4 snapl RW Counter Snapshot (bits 15..0)
5 snaph RW Counter Snapshot (31..16)

Note to Table 8-3:
(1) Reserved. Read values are undefined. Write zero.

status Register

The status register has two defined bits, as shown in Table 8-4.

Table 8-4. status Register Bits
Read/
Bit Name Write/ Description
Clear

0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once
set by a timeout event, the TO bit stays set until explicitly cleared by a master
peripheral. Write zero to the status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit
reads as 0. The RUN bit is not changed by a write operation to the status
register.

Altera Corporation 8-7
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control Register

The control register has four defined bits, as shown in Table 8-5.

Table 8-5. control Register Bits

Read/
Bit Name Write/ Description
Clear
0 ITO RW If the ITO bit is 1, the timer core generates an IRQ when the status
register’s TO bit is 1. When the ITO bit is 0, the timer does not generate
IRQs.
1 CONT RW The CONT (continuous) bit determines how the internal counter behaves

when it reaches zero. Ifthe CONT bit is 1, the counter runs continuously until
it is stopped by the STOP bit. If CONT is 0, the counter stops after it reaches
zero. When the counter reaches zero, it reloads with the 32-bit value stored
in the periodl and periodh registers, regardless of the CONT bit.

2 START (1) w Writing a 1 to the START bit starts the internal counter running (counting
down). The START bit is an event bit that enables the counter when a write
operation is performed. If the timer is stopped, writing a 1 to the START bit
causes the timer to restart counting from the number currently held in its
counter. If the timer is already running, writing a 1 to START has no effect.
Writing 0 to the START bit has no effect.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an
event bit that causes the counter to stop when a write operation is
performed. If the timer is already stopped, writing a 1 to STOP has no effect.
Writing a 0 to the stop bit has no effect. Writing 0 to the STOP bit has no
effect.

If the timer hardware is configured with the Start/Stop control bits option
turned off, writing the STOP bit has no effect.

Note:
(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.

periodl & periodh Registers

The periodl and periodh registers together store the timeout period
value. periodl holds the least-significant 16 bits, and periodh holds
the most-significant 16 bits. The internal counter is loaded with the 32-bit
value stored in periodh and periodl whenever one of the following
occurs:

B A write operation to either the periodh or periodl register
B The internal counter reaches 0

The timer’s actual period is one cycle greater than the value stored in
periodh and periodl, because the counter assumes the value zero
(0x00000000) for one clock cycle.
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Wrriting to either periodh or periodl stops the internal counter, except
when the hardware is configured with the Start/Stop control bits option
turned off. If the Start/Stop control bits option is turned off, writing
either register does not stop the counter. When the hardware is
configured with the Writeable period option disabled, writing to either
periodh or periodl causes the counter to reset to the fixed Timeout
Period specified at system generation time.

snapl & snaph Registers

A master peripheral may request a coherent snapshot of the current 32-bit
internal counter by performing a write operation (write-data ignored) to
either the snapl or snaph registers. When awrite occurs, the value of the
counter is copied to snapl and snaph. snap1l holds the least-significant
16 bits of the snapshot and snaph holds the most-significant 16 bits. The
snapshot occurs whether or not the counter is running. Requesting a
snapshot does not change the internal counter’s operation.

Interrupt Behavior

The timer core generates an IRQ whenever the internal counter reaches
zero and the ITO bit of the cont rol register is set to 1. Acknowledge the
IRQ in one of two ways:

B Clear the TO bit of the status register
B Disable interrupts by clearing the ITO bit of the control register

8-9
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The JTAG universal asynchronous receiver/transmitter (UART) core
with Avalon™ interface implements a method to communicate serial
character streams between a host PC and an SOPC Builder system on an
Altera® FPGA. In many designs, the JTAG UART core eliminates the need
for a separate RS-232 serial connection to a host PC for character 1/0. The
core provides a simple register-mapped Avalon interface that hides the
complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios® Il processor)
communicate with the core by reading and writing control and data
registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs,
and provides host access via the JTAG pins on the FPGA. The host PC can
connect to the FPGA via any Altera JTAG download cable, such as the
USB-Blaster™ cable. Software support for the JTAG UART core is
provided by Altera. For the Nios Il processor, device drivers are provided
in the HAL system library, allowing software to access the core using the
ANSI C Standard Library stdio.h routines. For the host PC, Altera
provides JTAG terminal software that manages the connection to the
target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated system.

Figure 9-1 shows a block diagram of the JTAG UART core and its
connection to the JTAG circuitry inside an Altera FPGA. The following
sections describe the components of the core.
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Figure 9-1. JTAG UART Core Block Diagram
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Avalon Slave Interface & Registers

The JTAG UART core provides an Avalon slave interface to the JTAG
circuitry on an Altera FPGA. The user-visible interface to the JTAG UART
core consists of two 32-bit registers, data and control, that are accessed
through an Avalon slave port. An Avalon master, such as a Nios |1
processor, accesses the registers to control the core and transfer data over
the JTAG connection. The core operates on 8-bit units of data at a time;
eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can
request an interrupt when read data is available, or when the write FIFO
is ready for data. For further details see “Interrupt Behavior” on

page 9-13.

Read & Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve
bandwidth over the JTAG connection. The FIFO depth is parameterizable
to accommodate the available on-chip memory. The FIFOs can be
constructed out of memory blocks or registers, allowing designers to
trade off logic resources for memory resources, if necessary.

Altera Corporation
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JTAG Interface

Altera FPGAs contain built-in JTAG control circuitry that interfaces the
device’s JTAG pins to logic inside the device. The JTAG controller can
connect to user-defined circuits called “nodes” implemented in the
FPGA. Because there may be several nodes that need to communicate via
the JTAG interface, a JTAG hub (i.e., a multiplexer) becomes necessary.
During logic synthesis and fitting, the Quartus® Il software automatically
generates the JTAG hub logic. No manual design effort is required to
connect the JTAG circuitry inside the device; it is presented here only for
clarity.

Host-Target Connection

Figure 9-2 shows the connection between a host PC and an SOPC
Builder-generated system containing a JTAG UART core.

Figure 9-2. Example System Using the JTAG UART Core
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The JTAG controller on the FPGA and the download cable driver on the
host PC implement a simple data-link layer between host and target. All
JTAG nodes inside the FPGA are multiplexed through the single JTAG
connection. JTAG server software on the host PC controls and decodes the
JTAG data stream, and maintains distinct connections with nodes inside
the FPGA.

9-3
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The example system in Figure 9-2 contains one JTAG UART core and a
Nios Il processor. Both agents communicate to the host PC over a single
Altera download cable. Thanks to the JTAG server software, each host
application has an independent connection to the target. Altera provides
the JTAG server drivers and host software required to communicate with
the JTAG UART core.

s Systems with multiple JTAG UART cores are possible, and all
cores communicate via the same JTAG interface. Only one
processor should communicate with each JTAG UART core to
maintain coherent data streams.

Device Su pport The JTAG UART core supports the Stratix®, Stratix Il, Cyclone™ and
Cyclone Il device families. The JTAG UART core is supported by the

& Tools Nios Il hardware abstraction layer (HAL) system library. No software
support is provided for the first-generation Nios processor.

To view the character stream on the host PC, the JTAG UART core must
be used in conjunction with the JTAG terminal software provided by
Altera. Nios Il processor users access the JTAG UART via the Nios Il IDE
or the nios2-terminal command-line utility.

e For further details, refer to the Nios Il Software Developer's Handbook or
the Nios Il IDE online help

Instantiati ng the  Designers use the JTAG UART core’s SOPC Builder configuration wizard
. to specify the core features. The following sections describe the available
Core in SOPC options in the configuration wizard.

Builder

Configuration Tab

The options on this tab control the hardware configuration of the JTAG
UART core. The default settings are pre-configured to behave optimally
with the Altera-provided device drivers and JTAG terminal software.
Most designers should not change the default values, except for the
Construct using registers instead of memory blocks option.
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Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host.
The following settings are available:

Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are allowable. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

IRQ Threshold—The write IRQ threshold governs how the core
asserts its IRQ in response to the FIFO emptying. As the JTAG
circuitry empties data from the write FIFO, the core asserts its IRQ
when the number of characters remaining in the FIFO reaches this
threshold value. For maximum bandwidth efficiency, a processor
should service the interrupt by writing more data and preventing the
write FIFO from emptying completely. A value of 8 is typically
optimal. See “Interrupt Behavior” on page 9-13 for further details.

Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of on-chip logic
resources. This option is useful when memory resources are limited.
Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth
of 8 (bytes) consumes roughly 88 LEs.

Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface.
Settings are available to control the depth of the FIFO and the generation
of interrupts.

Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are acceptable. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

IRQ Threshold—The IRQ threshold governs how the core asserts its
IRQ in response to the FIFO filling up. As the JTAG circuitry fills up
the read FIFO, the core asserts its IRQ when the amount of space
remaining in the FIFO reaches this threshold value. For maximum
bandwidth efficiency, a processor should service the interrupt by
reading data and preventing the read FIFO from filling up
completely. A value of 8 is typically optimal. See “Interrupt
Behavior” on page 9-13 for further details.
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B Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of logic resources.
This option is useful when memory resources are limited. Each byte
consumes roughly 11 LEs, so a FIFO depth of 8 (bytes) consumes
roughly 88 LEs.

Simulation Settings

At system generation time when SOPC Builder generates the logic for the
JTAG UART core, a simulation model is also constructed. The simulation
model offers features to simplify simulation of systems using the JTAG
UART core. Changes to the simulation settings do not affect the behavior
of the core in hardware; the settings affect only functional simulation.

Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read
FIFO upon simulated system reset. The configuration wizard accepts an
arbitrary character string, which is later incorporated into the test bench.
After reset, this character string is pre-initialized in the read FIFO, giving
the appearance that an external JTAG terminal program is sending a
character stream to the JTAG UART core.

Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create
ModelSim macros to open interactive windows during simulation. These
windows allow the user to send and receive ASCII characters via a
console, giving the appearance of a terminal session with the system
executing in hardware. The following options are available.

B Do not generate ModelSim aliases for interactive windows—This
option does not create any ModelSim macros for character 1/0.

B Create ModelSim alias to open a window showing outputas ASCI|I
text—This option creates a ModelSim macro to open a console
window that displays output from the write FIFO. Values written to
the write FIFO via the Avalon interface are displayed in the console
as ASCII characters.

B Create ModelSim alias to open an interactive stimulus/response
window—This option creates a ModelSim macro to open a console
window that allows input and output interaction with the core.
Values written to the write FIFO via the Avalon interface are
displayed in the console as ASCII characters. Characters typed into
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the console are fed into the read FIFO, and can be read via the Avalon
interface. When this option is enabled, the simulated character input
stream option is ignored.

The simulation features were created for easy simulation of Nios |1
processor systems when using the ModelSim simulator. The simulation
model is implemented in the JTAG UART core’s top-level HDL file. The
synthesizable HDL and the simulation HDL are implemented in the same
file. Some simulation features are implemented using “translate on/off”
synthesis directives that make certain sections of HDL code visible only
to the synthesis tool.

s~ Refer to AN 351: Simulating Nios Il Processor Designs for complete
details of simulating the JTAG UART core in Nios Il systems.

Other simulators can be used, but will require user effort to create a
custom simulation process. Designers can use the auto-generated
ModelSim scripts as reference to create similar functionality for other
simulators.

Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you change the
simulation directives to create a custom simulation flow, be
aware that SOPC Builder overwrites existing files during system
generation. Take precaution so that your changes are not
overwritten.

CAUTION

The following sections describe the software programming model for the
JTAG UART core, including the register map and software declarations to
access the hardware. For Nios Il processor users, Altera provides HAL

system library drivers that enable you to access the JTAG UART using the
ANSI C standard library functions, such as printf () and getchar ().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios Il systems.
HAL users should access the JTAG UART via the familiar HAL APl and
the ANSI C standard library, rather than accessing the JTAG UART
registers. ioctl () requests are defined that allow HAL users to control
the hardware-dependent aspects of the JTAG UART.

A If your program uses the Altera-provided HAL device driver to
access the JTAG UART hardware, accessing the device registers
directly will interfere with the correct behavior of the driver.

9-7
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For Nios Il processor users, the HAL system library API provides
complete access to the JTAG UART core's features. Nios |l programs treat
the JTAG UART core as a character mode device, and send and receive
data using the ANSI C standard library functions, such as getchar ()
and printf ().

“Printing Characters to a JTAG UART Core as stdout” demonstrates the
simplest possible usage, printing a message to stdout usingprintf ().In
this example, the SOPC Builder system contains a JTAG UART core, and
the HAL system library has been configured to use this JTAG UART
device for stdout.

Printing Characters to a JTAG UART Core as stdout

#include <stdio.hs>
int main ()

{
printf ("Hello world.\n") ;
return O;

}

“Transmitting Characters to a JTAG UART Core” on page 9-9
demonstrates reading characters from and sending messages to a JTAG
UART core using the C standard library. In this example, the SOPC
Builder system contains a JTAG UART core named jtag uart thatis
not necessarily configured as the stdout device. In this case, the program
treats the device like any other node in the HAL file system.

Altera Corporation

Nios Il Processor Reference Handbook December 2004



JTAG UART Core with Avalon Interface

Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>

int main ()

{

char* msg = "Detected the character 't'.\n";

FILE* fp;
char prompt =

0;

fp = fopen ("/dev/jtag uart", "r+"); //Open file for reading and writing
if (fp)
{
while (prompt != 'v')
{ // Loop until we receive a 'v'.
prompt = getc(fp); // Get a character from the JTAG UART.
if (prompt == 't"')

{ // Print a message if character is 't'.
fwrite (msg, strlen (msg), 1, £fp);

}

if (ferror(fp))// Check if an error occurred with the file pointer
clearerr(fp);// If so, clear it.

}

fprintf (fp,
fclose (fp);
}
return 0;

}

Altera Corporation
December 2004

"Closing the JTAG UART file handle.\n");

In this example, the ferror (£p) is used to check if an error occurred on
the JTAG UART connection, such as a disconnected JTAG connection. In
this case, the driver detects that the JTAG connection is disconnected,
reports an error (EI0), and discards data for subsequent transactions. If
this error ever occurs, the C library latches the value until you explicitly
clear it with the clearerr () function.

The Nios Il Software Developer's Handbook provides complete details of the
HAL system library. The Nios Il development kit provides a number of
software example designs that use the JTAG UART core.

Driver Options: Fast vs. Small Implementations

To accommodate the requirements of different types of systems, the JTAG
UART driver provides two variants: A fast version and a small version.
The fast behavior will be used by default. Both the fast and small drivers
fully support the C standard library functions and the HAL API.

9-9
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The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the JTAG UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for

systems that could be performing other tasks in the interim. In addition,
the fast version of the Altera Avalon JTAG UART monitors the connection
to the host. The driver discards characters if there is no host connected, or
if the host is not running an application that handles the 1/0 stream.

The small driver is a polled implementation that waits for the JTAG
UART hardware before sending and receiving each character. The
performance of the small driver is poor if you are sending large amounts
of data. The small version assumes that the host is always connected, and
will never discard characters. Therefore, the small driver will hang the
system if the JTAG UART hardware is ever disconnected from the host
while the program is sending or receiving data. There are two ways to
enable the small footprint driver:

B Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system as well.

B Specify the preprocessor option
-DALTERA AVALON JTAG_UART SMALL. You can use thisoption if
you want the small, polled implementation of the JTAG UART
driver, but you do not want to affect the drivers for other devices.

ioctl() Operations

The fast version of the JTAG UART driver supportsthe ioct1 () function
to allow HAL-based programs to request device-specific operations.
Specifically, you can use the ioct1 () operations to control the timeout
period, and to detect whether or not a host is connected. The fast driver
defines the ioct1l () operations shown in Table 9-1.

Table 9-1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will
decide that the host is not connected. A timeout of 0
makes the target assume that the host is always
connected. The 1oct 1 arg parameter passed in must
be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that

indicates whether the host is connected and acting as
a terminal (1), or not connected (0). The ioctl arg
parameter passed in must be a pointer to an integer.
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«® Refer to the Nios Il Software Developer's Handbook for details on the
ioctl () function.

Software Files

The JTAG UART core is accompanied by the following software files.
These files define the low-level interface to the hardware, and provide the
HAL drivers. Application developers should not modify these files.

B altera_avalon_jtag_uart_regs.h—This file defines the core's register
map, providing symbolic constants to access the low-level hardware.
The symbols in this file are used only by device driver functions.

B altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files
implement the HAL system library device driver.

Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The
Nios Il IDE supports the JTAG UART core, and displays character 1/0 in
a console window:. Altera also provides a command-line utility called
nios2-terminal that opens a terminal session with the JTAG UART core.

e For further details, refer to the Nios Il Software Developer's Handbook and
the Nios Il IDE online help.

Register Map

Programmers using the HAL API never access the JTAG UART core
directly via its registers. In general, the register map is only useful to
programmers writing a device driver for the core.

A The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

Altera Corporation 9-11
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Table 9-2 shows the register map for the JTAG UART core. Device drivers
control and communicate with the core through the two 32-bit memory-
mapped registers.

Table 9-2. JTAG UART Core Register Map

. Bit Description
Offset | REUISEr | oy
Name 31 (... 16 15 |14|...|11|10 |9 |8 |7]|...]2|1]0
0 data RW  |RAVAIL RVALID [ (1) DATA
1 control |RW |WSPACE @) ’AC ’WI‘RI I ‘WE’RE

Note to Table 9-2:
(1) Reserved. Read values are undefined. Write zero.

Data Register

Embedded software accesses the read and write FIFOs via the data
register. Table 9-3 describes the function of each bit.

Table 9-3. data Register Bits

Bit Number | Bit/Field Name | Read/Write/Clear Description

0.7 DATA R/W The value to transfer to/from the JTAG core. When
writing, the DATA field is a character to be written to the
write FIFO. When reading, the DATA field is a character
read from the read FIFO.

15 RVALID R Indicates whether the DATA field is valid. If RVALID=1,
then the DATA field is valid, else DATA is undefined.
16..32 RAVAIL R The number of characters remaining in the read FIFO

(after this read).

A read from the data register returns the first character from the FIFO (if
one is available) in the DATA field. Reading also returns information
about the number of characters remaining in the FIFO in the RAVAIL
field. A write to the data register stores the value of the DATA field in the
write FIFO. If the write FIFO is full, then the character is lost.

9-12 Altera Corporation
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Control Register

Embedded software controls the JTAG UART core’s interrupt generation
and reads status information via the control register. Table 9-4
describes the function of each bit.

Table 9-4. control Register Bits

Bit Number | Bit/Field Name | Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts

1 WE R/W Interrupt-enable bit for write interrupts

8 RI R Indicates that the read interrupt is pending

9 Wi R Indicates that the write interrupt is pending

10 AC R/C Indicates that there has been JTAG activity since the bit
was cleared. Writing 1 to AC clears it to 0.

16 .. 32 WSPACE R The number of spaces available in the write FIFO.

Altera Corporation
December 2004

A read from the cont rol register returns the status of the read and write
FIFOs. Writes to the register can be used to enable/disable interrupts, or
clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs,
respectively. The WI and RI bits indicate the status of the interrupt
sources, qualified by the values of the interrupt enable bits (WE and RE).
Embedded software can examine Rl and WI to determine what condition
generated the IRQ. See “Interrupt Behavior” on page 9-13 for further
details.

The AC bit indicates that an application on the host PC has polled the
JTAG UART core via the JTAG interface. Once set, the AC bit remains set
until it is explicitly cleared via the Avalon interface. Writing 1 to AC clears
it. Embedded software can examine the AC bit to determine if a
connection exists to a host PC. If no connection exists, the software may
choose to ignore the JTAG data stream. When the host PC has no data to
transfer, it can choose to poll the JTAG UART core as infrequently as once
per second. Delays caused by other host software using the JTAG
download cable could cause delays of up to 10 seconds between polls.

Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual
interrupt conditions are pending and enabled.

9-13
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= Interrupt behavior is of concern to device driver programmers
concerned with the bandwidth performance to the host PC.
Example designs and the JTAG terminal program provided with
Nios Il development Kits are pre-configured with optimal
interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and
read interrupts. The WE and RE bits in the control register
enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly
empty. The “nearly empty” threshold, write_threshold, is specified at
system generation time and cannot be changed by embedded software.
The write interrupt condition is set whenever there are write_threshold or
fewer characters in the write FIFO. It is cleared by writing characters to
fill the write FIFO beyond the write_threshold. Embedded software should
only enable write interrupts after filling the write FIFO. If it has no
characters remaining to send, embedded software should disable the
write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full.
The “nearly full” threshold value, read_threshold, is specified at system
generation time and cannot be changed by embedded software. The read
interrupt condition is set whenever the read FIFO has read_threshold or
fewer spaces remaining. The read interrupt condition is also set if there is
at least one character in the read FIFO and no more characters are
expected. The read interrupt is cleared by reading characters from the
read FIFO.

For optimum performance, the interrupt thresholds should match the
interrupt response time of the embedded software. For example, with a
10-MHz JTAG clock, a new character will be provided (or consumed) by
the host PC every 1ps. With a threshold of 8, the interrupt response time
must be less than 8ps. If the interrupt response time is too long, then
performance will suffer. If it is too short, then interrupts will occur too
frequently.

= For Nios Il processor systems, read and write thresholds of 8 are
an appropriate default.

9-14 Altera Corporation
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The universal asynchronous receiver/transmitter core with Avalon™
interface (“the UART core”) implements a method to communicate serial
character streams between an embedded system on an Altera® FPGA and
an external device. The core implements the RS-232 protocol timing, and
provides adjustable baud rate, parity, stop and data bits, and optional
RTS/cTS flow control signals. The feature set is configurable, allowing
designers to implement just the necessary functionality for a given
system.

The core provides a simple register-mapped Avalon slave interface that
allows Avalon master peripherals (such as a Nios® Il processor) to
communicate with the core simply by reading and writing control and
data registers.

The UART core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system.
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Figure 10-1 shows a block diagram of the UART core.

Figure 10-1. Block Diagram of the UART Core in a Typical System
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The core has two user-visible parts:

B The register file, which is accessed via the Avalon slave port
B The RS-232 signals, RXD, Txp, CTS, and RTS

Avalon Slave Interface & Registers

The UART core provides an Avalon slave interface to the internal register
file. The user interface to the UART core consists of six 16-bit registers:
control, status, rxdata, txdata, divisor, and endofpacket. A
master peripheral, such as a Nios Il processor, accesses the registers to
control the core and transfer data over the serial connection.

The UART core provides an active-high interrupt request (IRQ) output
that can request an interrupt when new data has been received, or when
the core is ready to transmit another character. For further details see
“Interrupt Behavior” on page 10-20.
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The Avalon slave port is capable of streaming transfers. The UART core

can be used in conjunction with a streaming direct memory access (DMA)
peripheral to automate continuous data transfers between, for example,

the UART core and memory.

See Chapter 6, DMA Controller with Avalon Interface for details. See the
Avalon Interface Specification Reference Manual for details of the Avalon
interface.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive
logic. The UART core sends and receives serial data via the TXD and RXD
ports. The I/0 buffers on most Altera FPGA families do not comply with
RS-232 voltage levels, and may be damaged if driven directly by signals
from an RS-232 connector. To comply with RS-232 voltage signaling
specifications, an external level-shifting buffer is required (e.g., Maxim
MAX3237) between the FPGA 1/0 pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter
inside the FPGA can be used to reverse the polarity of any of the RS-232
signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register
and a corresponding 7-, 8-, or 9-bit transmit shift register. Avalon master
peripherals write the txdata holding register via the Avalon slave port.
The transmit shift register is automatically loaded from the txdata
register when a serial transmit shift operation is not currently in progress.
The transmit shift register directly feeds the TXD output. Data is shifted
out to TXD least-significant bit (LSB) first.

These two registers provide double buffering. A master peripheral can
write a new value into the txdata register while the previously written
character is being shifted out. The master peripheral can monitor the
transmitter’s status by reading the status register’s transmitter ready
(trdy), transmitter shift register empty (tmt), and transmitter overrun
error (toe) bits.

The transmitter logic automatically inserts the correct number of start,
stop, and parity bits in the serial TXD data stream as required by the
RS-232 specification.

10-3
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Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and
a corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon master
peripherals read the rxdata holding register via the Avalon slave port.
The rxdata holding register is loaded from the receiver shift register
automatically every time a new character is fully received.

These two registers provide double buffering. The rxdata register can
hold a previously received character while the subsequent character is
being shifted into the receiver shift register.

A master peripheral can monitor the receiver’s status by reading the
status register’s read-ready (rrdy), receiver-overrun error (roe), break
detect (brk), parity error (pe), and framing error (fe) bits. The receiver
logic automatically detects the correct number of start, stop, and parity
bits in the serial RXD stream as required by the RS-232 specification. The
receiver logic checks for four exceptional conditions in the received data
(frame error, parity error, receive overrun error, and break), and sets
corresponding status register bits (fe, pe, roe, or brk).

Baud Rate Generation

The UART core’s internal baud clock is derived from the Avalon clock
input. The internal baud clock is generated by a clock divider. The divisor
value can come from one of the following sources:

B A constant value specified at system generation time
B The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at
system generation time, the divisor value is fixed, and the baud rate
cannot be altered.

The UART core can target all Altera FPGAs, including Stratix™ and
Cyclone™ device families.

Instantiating the UART in hardware creates at least two 1/0 ports for
each UART core: An RXD input, and a TXD output. Optionally, the
hardware may include flow control signals, the CTS input and RTS
output.

The hardware feature set is configured via the UART core’s SOPC Builder

configuration wizard. The following sections describe the available
options.
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Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232
connections. The baud rate can be configured in one of two ways:

B Fixed rate—The baud rate is fixed at system generation time and
cannot be changed via the Avalon slave port.

B \Variablerate—The baud rate can vary, based on a clock divisor value
held in the divisor register. A master peripheral changes the baud
rate by writing new values to the divisor register.

s The baud rate is calculated based on the clock frequency
provided by the Avalon interface. Changing the system clock
frequency in hardware without re-generating the UART core
hardware will result in incorrect signaling.

Baud Rate (bps) Setting

The Baud Rate setting determines the default baud rate after reset. The
Baud Rate option offers standard preset values (e.g., 9600, 57600, 115200
bps), or you can manually enter any baud rate.

The baud rate value is used to calculate an appropriate clock divisor
value to implement the desired baud rate. Baud rate and divisor values
are related as follows:

divisor = int( (clock frequency)/(baud rate) + 0.5)

baud rate = (clock frequency)/(divisor + 1)

Baud Rate Can Be Changed By Software Setting
When this setting is on, the hardware includes a 16-bit divisor register
ataddress offset 4. The divisor register is writeable, so the baud rate can
be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include adivisor
register. The UART hardware implements a constant (unchangeable)
baud divisor, and the value cannot be changed after system generation.
In this case, writing to address offset 4 has no effect, and reading from
address offset 4 produces an undefined result.

10-5
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Data Bits, Stop Bits, Parity

The UART core’s parity, data bits and stop bits are configurable. These
settings are fixed at system generation time; they cannot be altered via the
register file. The following settings are available.

Data Bits Setting
See Table 10-1.

Table 10-1. Data Bits Setting

Setting

Allowed Values Description

Data Bits

This setting determines the widths of the txdata, rxdata, and
endofpacket registers.

Stop Bits

This setting determines whether the core transmits 1 or 2 stop bits with every
character. The core always terminates a receive transaction at the first stop bit,
and ignores all subsequent stop bits, regardless of the Stop Bits setting.

Parity

None, Even, Odd | This setting determines whether the UART transmits characters with parity

checking, and whether it expects received characters to have parity checking.
See below for further details.

10-6

Parity Setting

When Parity is set to None, the transmit logic sends data without
including a parity bit, and the receive logic presumes the incoming data
does not include a parity bit. When parity is None, the status register’s pe
(parity error) bit is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and
inserts the required parity bit into the outgoing TXD bitstream, and the
receive logic checks the parity bit in the incoming RXD bitstream. If the
receiver finds data with incorrect parity, the status register’s pe is set to 1.
When parity is Even, the parity bitis 1 if the character has an even number
of 1 bits; otherwise the parity bit is 0. Similarly, when parity is Odd, the
parity bit is 1 if the character has an odd number of 1 bits.

Flow Control

The following flow control option is available.

Include CTS/RTS pins & control register bits
When this setting is on, the UART hardware includes:

B CTS_N (logic negative CTS) input port

B RTS_N (logic negative RTS) output port
B CTShitinthe status register

Altera Corporation
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B DCTS bitin the status register
B RTSbitinthe control register
B IDCTS bit in the control register

Based on these hardware facilities, an Avalon master peripheral can
detect CTS and transmit RTS flow control signals. The CTs input and RTS
output ports are tied directly to bits in the status and control
registers, and have no direct effect on any other part of the core.

When the Include CTS/RTS pins and control register bits setting is off,
the core does not include the hardware listed above. The control/status
bits CTS, DCTS, IDCTS, and RTS are not implemented; they always read
as 0.

Streaming Data (DMA) Control

The UART core’s Avalon interface optionally implements streaming
Avalon transfers. This allows an Avalon master peripheral to write data
only whenthe UART core is ready to accept another character, and to read
data only when the core has data available. The UART core can also
optionally include the end-of-packet register.

Include end-of-packet register
When this setting is on, the UART core includes:

B A7-, 8-, or9-bit endofpacket register at address-offset 5. The data
width is determined by the Data Bits setting.

B eop bit in the status register

B ieop bit in the control register

B endofpacket signal in the Avalon interface to support streaming
data transfers to/from other master peripherals in the system

End-of-packet (EOP) detection allows the UART core to terminate a
streaming data transaction with a streaming-capable Avalon master. EOP
detection can be used with a DMA controller, for example, to implement
a UART that automatically writes received characters to memory until a
specified character is encountered in the incoming RXD stream. The
terminating (end of packet) character’s value is determined by the
endofpacket register.

When the end-of-packet register is disabled, the UART core does not
include the resources listed above. Writing to the endofpacket register
has no effect, and reading produces an undefined value.

10-7
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Simulation Settings

When the UART core’s logic is generated, a simulation model is also
constructed. The simulation model offers features to simplify and
accelerate simulation of systems that use the UART core. Changes to the
simulation settings do not affect the behavior of the UART core in
hardware; the settings affect only functional simulation.

e For examples of how to use the following settings to simulate Nios |1
systems, refer to AN 351: Simulating Nios Il Embedded Processor Designs.

Simulated RXD-Input Character Stream

You can enter a character stream that will be simulated entering the RXD
port upon simulated system reset. The UART core’s configuration wizard
accepts an arbitrary character string, which is later incorporated into the
UART simulation model. After reset in reset, the string is input into the
RXD port character-by-character as the core is able to accept new data.

Prepare Interactive Windows

Atsystem generation time, the UART core generator can create ModelSim
macros that facilitate interaction with the UART model during
simulation. The following options are available:

Create ModelSim Alias to open streaming output window
A ModelSim macro is created to open a window that displays all output
from the TXD port.

Create ModelSim Alias to open interactive stimulus window

A ModelSim macro is created to open a window that accepts stimulus for
the RXD port. The window sends any characters typed in the window to
the RXD port.

Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the
system, and it is seldom useful to simulate the functional model at the
true baud rate. For example, at 115,200 bps, it typically takes thousands of
clock cycles to transfer a single character. The UART simulation model
has the ability to run with a constant clock divisor of 2. This allows the
simulated UART to transfer bits at half the system clock speed, or roughly
one character per 20 clock cycles. You can choose one of the following
options for the simulated transmitter baud rate:

B accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in

simulation.

10-8 Altera Corporation
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B actual (use true baud divisor)—TXD transmits at the actual baud
rate, as determined by the divisor register.

The simulation features were created for easy simulation of Nios, Nios Il
or Excalibur™ processor systems when using the ModelSim simulator.
The documentation for each processor documents the suggested usage of
these features. Other usages may be possible, but will require additional
user effort to create a custom simulation process.

The simulation model is implemented in the UART core’s top-level HDL
file; the synthesizable HDL and the simulation HDL are implemented in
the same file. The simulation features are implemented using
translate on and translate off synthesis directives that make
certain sections of HDL code visible only to the synthesis tool.

Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you do change the simulation
directives for your custom simulation flow, be aware that SOPC Builder
overwrites existing files during system generation. Take precaution so
that your changes are not overwritten.

For details on simulating the UART core in Nios |l processor systems see
AN 351: Simulating Nios Il Processor Designs. For details on simulating the
UART core in Nios embedded processor systems see AN 189: Simulating
Nios Embedded Processor Designs.

The following sections describe the software programming model for the
UART core, including the register map and software declarations to
access the hardware. For Nios Il processor users, Altera provides
hardware abstraction layer (HAL) system library drivers that enable you
to access the UART core using the ANSI C standard library functions,
such as printf () and getchar ().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios Il systems.
HAL users should access the UART via the familiar HAL APl and the
ANSI C standard library, rather than accessing the UART registers.
ioctl () requests are defined that allow HAL users to control the
hardware-dependent aspects of the UART.

10-9
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A If your program uses the HAL device driver to access the UART
hardware, accessing the device registers directly will interfere
with the correct behavior of the driver.

For Nios Il processor users, the HAL system library API provides
complete access to the UART core's features. Nios Il programs treat the
UART core as a character mode device, and send and receive data using
the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled
in SOPC Builder. See “Driver Options: Fast vs. Small Implementations”
on page 10-11.

The following code demonstrates the simplest possible usage, printing a
message to stdout using printf (). In this example, the SOPC Builder
system contains a UART core, and the HAL system library has been
configured to use this device for stdout.

Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()

{
printf ("Hello world.\n") ;
return 0;

}

The following code demonstrates reading characters from and sending
messages to a UART device using the C standard library. In this example,
the SOPC Builder system contains a UART core named uart1 that is not
necessarily configured as the stdout device. In this case, the program
treats the device like any other node in the HAL file system.

Example: Sending & Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>

#include <string.h>

int main ()

char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;

fp = fopen ("/dev/uartl", "r+"); //Open file for reading and writing
if (fp)
{
while (prompt != 'v')
{ // Loop until we receive a 'v'.
prompt = getc(fp); // Get a character from the UART.
if (prompt == 't')
{ // Print a message if character is 't'.
fwrite (msg, strlen (msg), 1, fp);
}
10-10 Altera Corporation
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}

fprintf (fp, "Closing the UART file.\n");
fclose (fp);

}

return 0;

The Nios Il Software Developer's Handbook provides complete details of the
HAL system library.

Driver Options: Fast vs. Small Implementations

To accommodate the requirements of different types of systems, the
UART driver provides two variants: A fast version and a small version.
The fast behavior will be used by default. Both the fast and small drivers
fully support the C standard library functions and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for
systems that could be performing other tasks in the interim.

The small driver is a polled implementation that waits for the UART
hardware before sending and receiving each character. There are two
ways to enable the small footprint driver:

B Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system as well.

B Specify the preprocessor option
-DALTERA AVALON_ UART SMALL. You can use this option if you
want the small, polled implementation of the UART driver, but you
do not want to affect the drivers for other devices.

«® See the help system in the Nios Il IDE for details on how to set HAL
properties and preprocessor options.

If the CTS/RTS flow control signals are enabled in hardware, the fast
driver automatically uses them. The small driver always ignores them.

Altera Corporation 10-11
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ioctl() Operations

The UART driver supports the ioctl () function to allow HAL-based
programs to request device-specific operations. Table 10-2 defines
operation requests that the UART driver supports.

Table 10-2. UART ioctl() Operations

Request Meaning

TIOCEXCL Locks the device for exclusive access. Further calls to
open () for this device will fail until either this file descriptor
is closed, or the lock is released using the TIOCNXCL
ioctl request. For this request to succeed there can be no
other existing file descriptors for this device. The ioct1l
"arg" parameter is ignored.

TIOCNXCL Releases a previous exclusive access lock. See the
comments above for details. The ioctl "arg" parameter is
ignored.

Additional operation requests are also optionally available for the fast
driver only, as shown in Table 10-3. To enable these operations in your
program, you must set the preprocessor option
-DALTERA AVALON UART USE IOCTL.

Table 10-3. Optional UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCMGET Returns the current configuration of the device by filling in
the contents of the input termios (1) structure. A pointer to
this structure is supplied as the value of the ioct1 "opt"
parameter.

TIOCMSET Sets the configuration of the device according to the values
contained in the input termios structure (1). A pointer to this
structure is supplied as the value of the ioct1 "arg"
parameter.

Note to Table 10-3:

(1) The termios structure is defined by the Newlib C standard library. You can find
the definition in the file <Nios I1 kit
path>/components/altera_hal/HAL/inc/sys/termios.h.

«® Refer to the Nios Il Software Developer's Handbook for details on the
ioctl () function.
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Limitations

The HAL driver for the UART core does not support the endofpacket
register. See “Register Map” on page 10-13 for details.

Software Files

The UART core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

B altera_avalon_uart_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used only by device driver functions.

B altera_avalon_uart.h, altera_avalon_uart.c—These files implement
the UART core device driver for the HAL system library.

Legacy SDK Routines

The UART core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details on these routines, refer to the
UART documentation that accompanied the first-generation Nios
processor. For details on upgrading programs based on the legacy SDK to
the HAL system library API, refer to AN 350: Upgrading Nios Processor
Systems to the Nios Il Processor.

Register Map

Programmers using the HAL API or the legacy SDK for the first-
generation Nios processor never access the UART core directly via its
registers. In general, the register map is only useful to programmers
writing a device driver for the core.

A The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

Altera Corporation 10-13
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Table 10-4 shows the register map for the UART core. Device drivers
control and communicate with the core through the memory-mapped
registers.

Table 10-4. UART Core Register Map

Offset Rﬁgirifr W Description/Register Bits
15...13|112 (11|10 | 9 {8 | 7 6 5 4 3 2 11|10
0 rxdata RO | (1) (2) | (2) |Receive Data
1 txdata WO | (1) (2) | (2) | Transmit Data
2 status (3) RW | (1) eop |cts |dcts [(1) [e |rrdy |trdy |tmt [toe [roe |brk |fe |pe
3 control RW | (1) ieo |rts |idct [trb |ie [irrd [itrdy |itmt |itoe |iroe |ibrk [if |ip
p s k y e |e

4 divisor (4) |RW |Baud Rate Divisor

endofpacket |[RW [ (1) (2) | (2) | End-of-Packet Value

4)

Notes to Table 10-4:
These bits are reserved. Reading returns an undefined value. Write zero.

These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read zero,
and writing has no effect.
Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.

This register may or may not exist, depending on hardware configuration options. If it does not exist, reading
returns an undefined value and writing has no effect.

()]
@

(©)]
O]
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Some registers and bits are optional. These registers and bits exists in
hardware only if it was enabled at system generation time. Optional
registers and bits are noted below.

rxdata Register

The rxdata register holds data received via the RXD input. When a new
character is fully received via the RXD input, it is transferred into the
rxdata register, and the status register’s rrdy bit is setto 1. The
status register’s rrdy bit is set to 0 when the rxdata register is read. If
a character is transferred into the rxdata register while the rrdy bit is
already set (i.e., the previous character was not retrieved), a receiver-
overrun error occurs and the status register’s roe bit is set to 1. New
characters are always transferred into the rxdata register, regardless of
whether the previous character was read. Writing data to the rxdata
register has no effect.

Altera Corporation
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txdata Register

Avalon master peripherals write characters to be transmitted into the
txdata register. Characters should not be written to txdata until the
transmitter is ready for a new character, as indicated by the TRDY bit in
the status register. The TRDY bit is set to 0 when a character is written
into the txdata register. The TRDY bit is set to 1 when the character is
transferred from the txdata register into the transmitter shift register. If
acharacter is written to the txdata register when TRDY is 0, the resultis
undefined. Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon master
peripheral writes a first character into the txdata register. The TRDY bit
is set to 0, then set to 1 when the character is transferred into the
transmitter shift register. The master can then write a second character
into the txdata register, and the TRDY bit is set to 0 again. However, this
time the shift register is still busy shifting out the first character to the TXD
output. The TRDY bit is not set to 1 until the first character is fully shifted
out and the second character is automatically transferred into the
transmitter shift register.

status Register

The status register consists of individual bits that indicate particular
conditions inside the UART core. Each status bit is associated with a
corresponding interrupt-enable bit in the control register. The status
register can be read at any time. Reading does not change the value of any
of the bits. Writing zero to the status register clears the DCTS, E, TOE,
ROE, BRK, FE, and PE bits.

10-15
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The status register bits are shown in Table 10-5.

Table 10-5. status Register Bits (Part 1 of 3)

. Bit Read/ Write/ o
Bit Name Clear Description

0(1) PE RC Parity error. A parity error occurs when the received parity bit has an
unexpected (incorrect) logic level. The PE bit is set to 1 when the core
receives a character with an incorrect parity bit. The PE bit stays set to 1 until
itis explicitly cleared by a write to the status register. When the PE bit is set,
reading from the rxdata register produces an undefined value.

If the Parity hardware option is not enabled, no parity checking is performed
and the PE bit always reads 0. See “Data Bits, Stop Bits, Parity” on
page 10-6.

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a
correct stop bit. The FE bitis setto 1 when the core receives a character with
an incorrect stop bit. The FE bit stays set to 1 until it is explicitly cleared by
a write to the status register. When the FE bit is set, reading from the
rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held
low (logic 0) continuously for longer than a full-character time (data bits, plus
start, stop, and parity bits). When a break is detected, the BRK bit is set to
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the
status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly
received character is transferred into the rxdata holding register before
the previous character is read (i.e., while the RRDY bit is 1). In this case, the
ROE bit is set to 1, and the previous contents of rxdata are overwritten
with the new character. The ROE bit stays set to 1 until it is explicitly cleared
by a write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new
character is written to the txdata holding register before the previous
character is transferred into the shift register (i.e., while the TRDY bit is 0).
In this case the TOE bit is set to 1. The TOE bit stays set to 1 until it is
explicitly cleared by a write to the status register.

5 T™MT R Transmit empty. The TMT bit indicates the transmitter shift register’s current
state. When the shift register is in the process of shifting a character out the
TXD pin, TMT is set to 0. When the shift register is idle (i.e., a character is
not being transmitted) the TMT bit is 1. An Avalon master peripheral can
determine if a transmission is completed (and received at the other end of a
serial link) by checking the TMT bit.

10-16 Altera Corporation
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Table 10-5. status Register Bits

(Part 2 of 3)

Bit

Bit
Name

Read/ Write/
Clear

Description

TRDY

R

Transmit ready. The TRDY bit indicates the txdata holding register’s
current state. When the txdata register is empty, it is ready for a new
character, and trdy is 1. When the txdata register is full, TRDY is 0. An
Avalon master peripheral must wait for TRDY to be 1 before writing new data
to txdata.

RRDY

Receive character ready. The RRDY bit indicates the rxdata holding
register’s current state. When the rxdata register is empty, it is not ready
to be read and rrdy is 0. When a newly received value is transferred into the
rxdata register, RRDY is set to 1. Reading the rxdata register clears
the RRDY bit to 0. An Avalon master peripheral must wait for RRDY to equal
1 before reading the rxdata register.

RC

Exception. The E bit indicates that an exception condition occurred. The E
bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The e bit and its
corresponding interrupt-enable bit (IE) bit in the control register provide
a convenient method to enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1)

DCTS

RC

Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a
logic-level transition is detected on the CTS_N input port (sampled
synchronously to the Avalon clock). This bit is set by both falling and rising
transitions on CTS_N. The DCTS bit stays set to 1 until itis explicitly cleared
by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always
reads 0. See “Flow Control” on page 10-6.

11 (1)

CTS

Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input's
instantaneous state (sampled synchronously to the Avalon clock). Because
the CTS_N input is logic negative, the CTS bit is 1 when a 0 logic-level is
applied to the CTS_N input.

The CTS_N input has no effect on the transmit or receive processes. The
only visible effect of the CTS_N input is the state of the CTS and DCTS bits,
and an IRQ that can be generated when the control register’s idcts bit is
enabled.

If the Flow Control hardware option is not enabled, the CTS bit always
reads 0. See “Flow Control” on page 10-6.

Altera Corporation
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Table 10-5. status Register Bits (Part 3 of 3)

. Bit Read/ Write/ _
Bit Description
Name Clear
12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following

events:

® An EOP character is written to txdata
® An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to
the status register.

If the Include End-of-Packet Register hardware option is not enabled, the
EOP bit always reads 0. See “Streaming Data (DMA) Control” on page 10-7.

Note to Table 10-5:
(1) This bit is optional and may not exist in hardware.

control Register

The control register consists of individual bits, each controlling an
aspect of the UART core’s operation. The value in the control register
can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit
in the status register. When both a status bit and its corresponding
interrupt-enable bit are 1, the core generates an IRQ. For example, the pe
bit is bit 0 of the status register, and the ipe bit is bit 0 of the control
register. An interrupt request is generated when both pe and ipe equal 1.

The control register bits are shown in Table 10-6.

Table 10-6. control Register Bits

Bit Bit Name I\j\?:?t(l/ Description
0 IPE RW Enable interrupt for a parity error.
1 IFE RW Enable interrupt for a framing error.
2 IBRK RwW Enable interrupt for a break detect.
3 IROE RW Enable interrupt for a receiver overrun error.
4 ITOE RW Enable interrupt for a transmitter overrun error.
5 ITMT RW Enable interrupt for a transmitter shift register empty.
6 ITRDY RW Enable interrupt for a transmission ready.
10-18
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Table 10-6. control Register Bits

. . Read/ -
Bit Bit Name . Description
Write P
IRRDY RW Enable interrupt for a read ready.
IE RwW Enable interrupt for an exception.
TRBK RW Transmit break. The TRBK bit allows an Avalon master peripheral to transmit

a break character over the TXD output. The TXD signal is forced to 0 when the
TRBK bit is set to 1. The TRBK bit overrides any logic level that the transmitter
logic would otherwise drive on the TXD output. The TRBK bit interferes with
any transmission in process. The Avalon master peripheral must set the TRBK
bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output.

An Avalon master peripheral can write the RTS bit at any time. The value of the
RTS bit only affects the RTS_N output; it has no effect on the transmitter or
receiver logic. Because the RTS_N output is logic negative, when the RTS bit
is 1, a low logic-level (0) is driven on the RTS_N output.
If the Flow Control hardware option is not enabled, the RTS bit always reads
0, and writing has no effect. See “Flow Control” on page 10-6.

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 10-6:
(1) This bit is optional and may not exist in hardware.

Altera Corporation

May 2004

divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock.
The effective baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate
Can Be Changed By Software hardware option is not enabled, then the
divisor register does not exist. In this case, writing divisor has no
effect, and reading divisor returns an undefined value. For more
information see “Baud Rate Options” on page 10-5.

endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet
character for variable-length DMA transactions. After reset, the default
value is zero, which is the ASCII null character (\0). For more
information, see Table 10-5 on page 10-16 for the description for the eop
bit.

10-19
Nios Il Processor Reference Handbook




Software Programming Model

10-20

The endofpacket register is an optional hardware feature. If the
Include end-of-packet register hardware option is not enabled, then the
endofpacket register does not exist. In this case, writing endofpacket
has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs asingle IRQ signal to the Avalon interface, which
can connect to any master peripheral in the system, such as a Nios Il
processor. The master peripheral must read the status register to
determine the cause of the interrupt.

Every interrupt condition has an associated bit in the status register
and an interrupt-enable bit in the control register. When any of the
interrupt conditions occur, the associated status bit is set to 1 and
remains set until it is explicitly acknowledged. The IRQ output is asserted
when any of the status bits are set while the corresponding interrupt-
enable bitis 1. A master peripheral can acknowledge the IRQ by clearing
the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot
assert an IRQ until a master peripheral sets one or more of the interrupt-
enable bits to 1.

All possible interrupt conditions are listed with their associated status
and control (interrupt-enable) bits in Table 10-5 on page 10-16 and
Table 10-6 on page 10-18. Details of each interrupt condition are
provided in the status bit descriptions.

Altera Corporation
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SPI is an industry-standard serial protocol commonly used in embedded
systems to connect microprocessors to a variety of off-chip sensor,
conversion, memory, and control devices. The SPI core with Avalon™
interface implements the SPI protocol and provides an Avalon interface
on the back end.

The SPI core can implement either the master or slave protocol. When
configured as a master, the SPI core can control up to 16 independent SPI
slaves. The width of the receive and transmit registers are configurable
between 1 and 16 bits. Longer transfer lengths (e.g., 24-bit transfers) can
be supported with software routines. The SPI core provides an interrupt
output that can flag an interrupt whenever a transfer completes.

The SPI core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system.

The SPI core communicates using two data lines, a control line, and a
synchronization clock:

B Master Out Slave In (mosi)—Output data from the master to the
inputs of the slaves

B Master In Slave Out (miso)—Output data from a slave to the input
of the master

m  Serial Clock (sc1k)—Clock driven by the master to slaves, used to
synchronize the data bits

B Slave Select (ss_n)— Select signal (active low) driven by the master
to individual slaves, used to select the target slave

The SPI core has the following user-visible features:

B A memory-mapped register space comprised of five registers:
rxdata, txdata, status, control, and slaveselect
B Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the
Avalon slave port. The sclk, ss_n, mosi, and miso ports provide the
hardware interface to other SPI devices. The behavior of sclk, ss_n,
mosi, and miso depends on whether the SPI core is configured as a
master or slave.
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Figure 11-1 shows a block diagram of the SPI core in master mode.

Figure 11-1. SPI Core Block Diagram

baud rate divisor*
Avalon clock

—>
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interface < €———» l

toon-chip | €422y
logic

rxdata <€ shiftregister |« miso
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status

» ss_no
» ss_nl

IRQ — control

slaveselect® » ss_nl5

*Not present on SPI slave

The SPI core logic is synchronous to the clock input provided by the
Avalon interface. When configured as a master, the core divides the
Avalon clock to generate the SCLK output. When configured as a slave,
the core's receive logic is synchronized to SCLK input. The core’s Avalon
interface is capable of streaming Avalon transfers. The SPI core can be
used in conjunction with a streaming DMA controller to automate
continuous data transfers between, for example, the SPI core and
memory. See Chapter 6, DMA Controller with Avalon Interface for
details.

Example Configurations

Two possible configurations are shown below. In Figure 11-2, the SPI core
provides a slave interface to an off-chip SPI master.

11-2 Altera Corporation
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Figure 11-2. SPI Core Configured as a Slave
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In Figure 11-3 the SPI core provides a master interface driving multiple
off-chip slave devices. Each slave device in Figure 11-3 must tristate its
miso output whenever its select signal is not asserted.

Figure 11-3. SPI Core Configured as a Master

Altera FPGA
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> spi
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(configured < Device2
as master) >
The ss_nsignal is active-low. However, any signal can be inverted inside
the FPGA, allowing the slave-select signals to be either active high or
active low.
Transmitter Logic
The SPI core transmitter logic consists of a transmit holding register
(txdata) and transmit shift register, each n bits wide. The register width
n is specified at system generation time, and can be any integer value
Altera Corporation 11-3
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from 1 to 16. After a master peripheral writes a value to the txdata
register, the value is copied to the shift register and then transmitted
when the next operation starts.

The shift register and the txdata register provide double buffering
during data transmission. A new value can be written into the txdata
register while the previous data is being shifted out of the shift register.
The transmitter logic automatically transfers the txdata register to the
shift register whenever a serial shift operation is not currently in process.

In master mode, the transmit shift register directly feeds the mos i output.
In slave mode, the transmit shift register directly feeds the mi so output.
Data shifts out least-significant bit (LSB) first or most-significant bit
(MSB) first, depending on the configuration of the SPI core.

Receiver Logic

The SPI core receive logic consists of a receive holding register (rxdata)
and receive shift register, each n bits wide. The register width n is
specified at system generation time, and can be any integer value from 1
to 16. A master peripheral reads received data from the rxdata register
after the shift register has captured a full n-bit value of data.

The shift register and the rxdata register provide double buffering
during data receiving. The rxdata register can hold a previously
received data value while subsequent new data is shifting into the shift
register. The receiver logic automatically transfers the shift register
content to the rxdata register when a serial shift operation completes.

In master mode, the shift register is fed directly by the miso input. In
slave mode, the shift register is fed directly by the mosi input. The
receiver logic expects input data to arrive least-significant bit (LSB) first
or most-significant bit (MSB) first, depending on the configuration of the
SPI core.

Master & Slave Modes

At system generation time, the designer configures the SPI core in either
master mode or slave mode. The mode cannot be switched at runtime.

11-4 Altera Corporation
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Master Mode Operation

In master mode, the SPI ports behave as shown in Table 11-1.

Table 11-1. Master Mode Port Configurations
Name Direction Description
mosi output Data output to slave(s)
miso input Data input from slave(s)
sclk output Synchronization clock to all slaves
ss_nM output Slave select signal to slave M, where M is a number between 0 and 15.

Altera Corporation
September 2004

Only an SPI master can initiate an operation between master and slave. In
master mode, an intelligent host (e.g., a microprocessor) configures the
SPI core using the control and slaveselect registers, and then writes
data to the txdata buffer to initiate a transaction. A master peripheral
can monitor the status of the transaction by reading the status register.
A master peripheral can enable interrupts to notify the host whenever
new data is received (i.e., a transfer has completed), or whenever the
transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and
receives data at the same time. The master transmits a new data bit on the
mosi output and the slave drives a new data bit on the miso input for
each active edge of sc1k. The SPI core divides the Avalon system clock
using a clock divider to generate the sc1k signal.

When the SPI core is configured to interface with multiple slaves, the core
has one ss_n signal for each slave, up to a maximum of sixteen slaves.
During a transfer, the master asserts ss_n to each slave specified in the
slaveselect register. Note that there can be no more than one slave
transmitting data during any particular transfer, or else there will be a
conflict on the miso input. The number of slave devices is specified at
system generation time.

11-5
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Slave Mode Operation

In slave mode, the SPI ports behave as shown in Table 11-2.

Table 11-2. Slave Mode Port Configurations

Name Direction Description
mosi input Data input from the master
miso output Data output to the master
sclk input Synchronization clock
ss n input Select signal

In slave mode, the SPI core simply waits for the master to initiate
transactions. Before a transaction begins, the slave logic is continuously
polling the ss_n input. When the master asserts ss_n (drives it low), the
slave logic immediately begins sending the transmit shift register
contents to the miso output. The slave logic also captures data on the
mosi input, and fills the receive shift register simultaneously. Thus, a
read and write transaction are carried out simultaneously.

An intelligent host (e.g., a microprocessor) writes data to the txdata
registers, so that it will be transmitted the next time the master initiates an
operation. A master peripheral reads received data from the rxdata
register. A master peripheral can enable interrupts to notify the host
whenever new data is received, or whenever the transmit buffer is ready
for new data.

Multi-Slave Environments

When ss_n is not asserted, typical SPI cores set their miso output pins to
high impedance. The Altera®-provided SPI slave core drives an
undefined high or low value on its miso output when not selected.
Special consideration is necessary to avoid signal contention on the miso
output, if the SPI core in slave mode will be connected to an off-chip SPI
master device with multiple slaves. In this case, the ss_n input should be
used to control a tristate buffer on the mi so signal. Figure 11-4 shows an
example of the SPI core in slave mode in an environment with two slaves.

Altera Corporation
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Figure 11-4. SPI Core in a Multi-Slave Environment
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Avalon Interface

The SPI core’s Avalon interface consists of a single Avalon slave port. In
addition to fundamental slave read and write transfers, the SPI core
supports Avalon streaming read and write transfers.

Instantiating the  The hardware feature set is configured via the SPI core’s SOPC Builder
configuration wizard. The following sections describe the available

SPI Core in options.
SOPC Builder

Master/Slave Settings

The designer can select either master mode or slave mode to determine
the role of the SPI core. When master mode is selected, the following
options are available: Generate Select Signals; SPI Clock Rate; and
Specify Delay.

Generate Select Signals

This setting specifies how many slaves the SPI master will connect to. The
acceptable range is 1 to 16. The SPI master core presents a unique ss_n
signal for each slave.

Altera Corporation 1M-7
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SPI Clock (sclk) Rate

This setting determines the rate of the sc1k signal that synchronizes data
between master and slaves. The target clock rate can be specified in units
of Hz, kHz or MHz. The SPI master core uses the Avalon system clock and
a clock divisor to generate sclk.

The actual frequency of sc1k may not exactly match the desired target
clock rate. The achievable clock values are:

<Avalon system clock frequency> 7/ [2, 4,6, 8, ...]

The actual frequency achieved will not be greater than the specified target
value. For example, if the system clock frequency is 50 MHz and the
target value is 25 MHz, then the clock divisor is 2 and the actual sc1k
frequency achieves exactly 25 MHz. However, if the target frequency is
24 MHz, then the clock divisor is 4 and the actual sc1k frequency
becomes 12.5 MHz.

Specify Delay

Turning on this option causes the SPI master to add a time delay between
asserting the ss_n signal and shifting the first bit of data. This delay is
required by certain SPI slave devices. If the delay option is turned on, the
designer must also specify the delay time in units of ns, us or ms. An
example is shown in Figure 11-5.

Figure 11-5. Time Delay Between Asserting ss_n & Toggling sclk

S \ ! /
SCLK | N |
The delay generation logic uses a granularity of half the period of sc1k.
The actual delay achieved is the desired target delay rounded up to the
nearest multiple of half the sc1k period, as shown in the following
equations:
p =% * <period of sclk>
actual delay = ceiling( <desired delay>/p)*p
11-8 Altera Corporation
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Data Register Settings

The data register settings affect the size and behavior of the data registers
in the SPI core. There are two data register settings:

B Width—This setting specifies the width of rxdata, txdata, and the
receive and transmit shift registers. Acceptable values are from 1 to
16.

B Shift direction—This setting determines the direction that data shifts
(MSB first or LSB first) into and out of the shift registers.

Timing Settings

The timing settings affect the timing relationship between the ss_n,
sclk, mosi and miso signals. In this discussion the mosi and miso
signals are referred to generically as “data”. There are two timing settings:

B Clock polarity—This setting can be 0 or 1. When clock polarity is set to
0, the idle state for sc1k is low. When clock polarity is set to 1, the
idle state for sclk is high.

B Clock phase—This setting can be 0 or 1. When clock phase is 0, data is
latched on the leading edge of sc1k, and data changes on trailing
edge. When clock phase is 1, data is latched on the trailing edge of
sclk, and data changes on the leading edge.

Figures 11-6 through 11-9 demonstrate the behavior of signals in all
possible cases of clock polarity and clock phase.

Figure 11-6. Clock Polarity = 0, Clock Phase = 0

SS.n \ i\ /
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Figure 11-7. Clock Polarity = 0, Clock Phase = 1
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Figure 11-8. Clock Polarity = 1, Clock Phase =0
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Figure 11-9. Clock Polarity = 1, Clock Phase = 1
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Device & Tools The SPI core can target all Altera FPGAs.

Support
Software The following sections describe the software programming model for the
. SPI core, including the register map and software constructs used to
PFOg ramming access the hardware. For Nios |l processor users, Altera provides the HAL
Model system library header file that defines the SPI core registers. The SPI core
does not match the generic device model categories supported by the
HAL, so it cannot be accessed via the HAL API or the ANSI C standard
library. Altera provides a routine to access the SPI hardware that is
specific to the SPI core.
Hardware Access Routines
Alteraprovides one access routine,alt _avalon spi_command (), that
provides general-purpose access to an SPI core configured as a master.
11-10 Altera Corporation

Nios Il Processor Reference Handbook September 2004



alt_avalon_spi_command()

Prototype:

Thread-safe:

Available from ISR:

Include:

Description:

Returns:

Altera Corporation
September 2004

alt_avalon_spi_command()

int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,
alt_u32 write length,
const alt u8* wdata,
alt u32 read length,
alt _u8* read data,
alt _u32 flags)

No.
No.
<altera_avalon_spi.h>

alt_avalon_ spi command () is used to perform a control sequence on
the SPI bus. This routine is designed for SPI masters of 8-bit data width or less.
Currently, it does not support SPI hardware with data-width greater than 8 bits. A
single call to this function writes a data buffer of arbitrary length out the MOSI port,
and then reads back an arbitrary amount of data from the MISO port. The function
performs the following actions:
(1) Asserts the slave select output for the specified slave. The first slave select
output is numbered 0, the next is 1, etc.
(2) Transmits write length bytes of data from wdata through the SPI
interface, discarding the incoming data on MISO.
(3) Reads read_length bytes of data, storing the data into the buffer
pointed to by read data. MOSl is set to zero during the read transaction.
(4) Deasserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from
scattered buffers then you can call the function multiple times, specifying the
merge flag on all the accesses except the last.

This function is not thread safe. If you want to access the SPI bus from more than
one thread, then you should use a semaphore or mutex to ensure that only one
thread is executing within this function at any time.

The number of bytes stored in the read data buffer.

11-11
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Software Files

The SPI core is accompanied by the following software files. These files
provide a low-level interface to the hardware.

B altera_avalon_spi.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

B altera_avalon_spi.c—This file implements low-level routines to
access the hardware.

Legacy SDK Routines

The SPI core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details on these routines, refer to the SPI
documentation that accompanied the first-generation Nios processor. For
details on upgrading programs based on the legacy SDK to the HAL
system library API, refer to AN 350: Upgrading Nios Processor Systems to the
Nios Il Processor.

Register Map

An Avalon master peripheral controls and communicates with the SPI
core via the six 16-bit registers, shown in Table 11-3. The table assumes an
n-bit data width for rxdata and txdata.

Table 11-3. Register Map for SPI Master Device

ng:gi Register Name [15..11 | 10 |9 |8 | 7 6 | 5| 4 3 20110

0 |rxdata() RXDATA (n-1..0)

1 |txdata () TXDATA (n-1.0)

2 |status (2 E |RRDY | TRDY |TMT |[TOE |ROE

3 |control ‘sso (3)| IE | IRRDY |ITRDY ITOE |IROE

4 Reserved

5 slaveselect Slave Select Mask

3

Notes to Table 11-3:

(1) Bits 15 to n are undefined when n is less than 16.

(2) A write operation to the status register clears the roe, toe and e bits.
(3) Present only in master mode.

Reading undefined bits returns an undefined value. Writing to undefined
bits has no effect.

11-12 Altera Corporation
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rxdata Register

A master peripheral reads received data from the rxdata register. When
the receive shift register receives a full n bits of data, the status
register’s rrdy bit is set to 1 and the data is transferred into the rxdata
register. Reading the rxdata register clears the rrdy bit. Writing to the
rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not
the previous data was retrieved. If rrdy is 1 when data is transferred into
the rxdata register (i.e., the previous data was not retrieved), a receive-
overrun error occurs and the status register’s roe bit is set to 1. In this
case, the contents of rxdata are undefined.

txdata Register

A master peripheral writes data to be transmitted into the txdata
register. When the status register’s trdy bit is 1, it indicates that the
txdata register is ready for new data. The trdy bit is set to 0 whenever
the txdata register is written. The trdy bit is set to 1 after data is
transferred from the txdata register into the transmitter shift register,
which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the
transmitter is ready for new data. If trdy is 0 and a master peripheral
writes new data to the txdata register, a transmit-overrun error occurs
and the status register’s toe bitis set to 1. In this case, the new data is
ignored, and the content of txdata remains unchanged.

As an example, assume that the SPI core is idle (i.e., the txdata register
and transmit shift register are empty), when a CPU writes a data value
into the txdata holding register. The t rdy bitis set to 0 momentarily, but
after the data in txdata is transferred into the transmitter shift register,
trdy returns to 1. The CPU writes a second data value into the txdata
register, and again the trdy bit is set to 0. This time the shift register is
still busy transferring the original data value, so the trdy bit remains at
0 until the shift operation completes. When the operation completes, the
second data value is transferred into the transmitter shift register and the
trdy bit is again set to 1.

status Register

The status register consists of bits that indicate status conditions in the
SPI core. Each bit is associated with a corresponding interrupt-enable bit
inthe control register, as discussed in “control Register” on page 11-14.

11-13
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A master peripheral can read status at any time without changing the
value of any bits. Writing status does clear the roe, toe and e bits.
Table 11-4 describes the individual bits of the status register.

Table 11-4. status Register Bits

# Name

Description

ROE

Receive-overrun error

The ROE bitis set to 1 if new data is received while the rxdata register is full (thatis, while
the RRDY bit is 1). In this case, the new data overwrites the old. Writing to the status
register clears the ROE bit to 0.

4 TOE

Transmitter-overrun error

The TOE bit is set to 1 if new data is written to the t xdata register while it is still full (that is,
while the TRDY bit is 0). In this case, the new data is ignored. Writing to the status register
clears the TOE bit to 0.

5 T™T

Transmitter shift-register empty
The TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift register
is empty.

6 TRDY

Transmitter ready
The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY

Receiver ready
The RRDY bit is set to 1 when the rxdata register is full.

Error
The E bitis the logical OR of the TOE and ROE bits. This is a convenience for the programmer
to detect error conditions. Writing to the st atus register clears the E bit to 0.

11-14

control Register

The control register consists of data bits to control the SPI core’s
operation. A master peripheral can read control at any time without
changing the value of any bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register
control interrupts for status conditions represented in the status
register. For example, bit 1 of status is ROE (receiver-overrun error),
and bit 1 of control is IROE, which enables interrupts for the ROE
condition. The SPI core asserts an interrupt request when the
corresponding bits in status and control are both 1.

Altera Corporation
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The control register bits are shown in Table 11-5.

Table 11-5. control Register Bits

# Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY | Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a
serial shift operation is in progress or not. The slaveselect register controls which
ss_n outputs are asserted. sso can be used to transmit or receive data of arbitrary size
(i.e., greater than 16 bits).

Altera Corporation

September 2004

After reset, all bits of the control register are set to 0. All interrupts are
disabled and no ss_n signals are asserted after reset.

slaveselect Register

The slaveselect register is a bit mask for the ss_n signals driven by
an SP1 master. During a serial shift operation, the SPI master selects only
the slave device(s) specified in the slaveselect register.

The slaveselect register is only present when the SPI core is
configured in master mode. There is one bitin slaveselect for each
ss_n output, as specified by the designer at system generation time. For
example, to enable communication with slave device 3, set bit 3 of
slaveselect to 1.

A master peripheral can set multiple bits of slaveselect
simultaneously, causing the SPI master to simultaneously select multiple
slave devices as it performs a transaction. For example, to enable
communication with slave devices 1, 5, and 6, set bits 1, 5, and 6 of
slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after
a device reset, slave device 0 is automatically selected.

11-15
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The EPCS device controller core with Avalon™ interface (“the EPCS
controller”) allows Nios® Il systems to access an Altera® EPCS serial
configuration device. Altera provides drivers that integrate into the Nios
Il hardware abstraction layer (HAL) system library, allowing you to read
and write the EPCS device using the familiar HAL application program
interface (API) for flash devices.

Using the EPCS controller, Nios Il systems can:

B Store program code in the EPCS device. The EPCS controller
provides a boot-loader feature that allows Nios Il systems to store the
main program code in an EPCS device.

B Store nonvolatile program data, such as a serial number, a NIC
number, and other persistent data.

B Manage the FPGA configuration data. For example, a network-
enabled embedded system can receive new FPGA configuration data
over anetwork, and use the EPCS controller to program the new data
into an EPCS serial configuration device.

The EPCS controller is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. The flash programmer utility in the
Nios Il IDE allows you to manage and program data contents into the
EPCS device.

For information on the EPCS serial configuration device family, see the
Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet. For details on
using the Nios Il HAL API to read and write flash memory, see the
Nios Il Software Developer’s Handbook. For details on managing and
programming the EPCS memory contents, see the Nios Il Flash
Programmer User Guide.

1= For Nios Il processor users, the EPCS controller core supersedes

the Active Serial Memory Interface (ASMI) device. New designs
should use the EPCS controller instead of the ASMI core.
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Figure 12-1 shows a block diagram of the EPCS controller in a typical
system configuration. As shown in Figure 12-1, the EPCS device’s
memory can be thought of as two separate regions:

B FPGA configuration memory—FPGA configuration data is stored in
this region.

B General-purpose memory—If the FPGA configuration data does not fill
up the entire EPCS device, any left-over space can be used for
general-purpose data and system startup code.

Figure 12-1. Nios Il System Integrating an EPCS Controller
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By virtue of the HAL generic device model for flash devices, accessing the
EPCS device using the HAL API is the same as accessing any flash
memory. The EPCS device has a special-purpose hardware interface, so
Nios Il programs must read and write the EPCS memory using the
provided HAL flash drivers.

The EPCS controller core contains a 1 Kbyte on-chip memory for storing
a boot-loader program. The Nios Il processor can be configured to boot
from the EPCS controller. In this case, after reset the CPU first executes
code from the boot-loader ROM, which copies data from the EPCS
general-purpose memory region into a RAM. Then, program control
transfers to the RAM. The Nios Il IDE provides facilities to compile a

Altera Corporation
September 2004
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program for storage in the EPCS device, and create a programming file to
program into the EPCS device. See the Nios Il Flash Programmer User
Guide.

The Altera EPCS configuration device connects to the FPGA through
dedicated pins on the FPGA, not through general-purpose 1/0 pins.
Therefore, the EPCS controller core does not create any 1/0 ports on the
top-level SOPC Builder system module. If the EPCS device and the FPGA
are wired together on a board for configuration using the EPCS device
(i.e. active serial configuration mode), no further connection is necessary
between the EPCS controller and the EPCS device. When you compile the
SOPC Builder system in the Quartus Il software, the EPCS controller core
signals are automatically routed to the device pins for the EPCS device.

s If you program the EPCS device using the Quartus® Il
Programmer, all previous content is erased. To program the
EPCS device with a combination of FPGA configuration data
and Nios |l program data, use the Nios Il IDE flash programmer

utility.

Avalon Slave Interface & Registers

The EPCS controller core has a single Avalon slave interface that provides
access to both boot-loader code and registers that control the core. As
shown in Table 12-1 on page 12-4, the first 256 words are dedicated to the
boot-loader code, and the next 7 words are control and data registers. A
Nios Il CPU can read 256 instruction words starting from the EPCS
controller’s base address as flat memory space, which enables the CPU to
reset into the EPCS controller’s address space.

12-3
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Table 12-1. EPCS Controller Register Map

Bit Description
Offset Register Name R/W
31...0

0x000 Boot ROM Memory R Boot Loader Code
OxOFF

0x100 Read Data R 1)
0x101 Write Data w @
0x102 Status R/W (1)
0x103 Control R/W (1)
0x104 Reserved - 1)
0x105 Slave Enable R/W 1)
0x106 End of Packet R/W (1)

Note to Table 12-1:
(1) Altera does not publish the usage of the control and data registers. To access the EPCS device, you must use the
HAL drivers provided by Altera.

Device & Tools The EPCS controller supports all Altera FPGA families that support the

Support

EPCS configuration device, such as the Cyclone™ device family. The
EPCS controller must be connected to a Nios Il processor. The core
provides drivers for HAL-based Nios Il systems, and the precompiled
boot loader code compatible with the Nios Il processor. No software
support is provided for any other processor, including the first-
generation Nios.

Instantiating the Hardware designers use the EPCS controller’s SOPC Builder

configuration wizard to specify the core features. There is only one

Core in SOPC available option in the configuration wizard.

Builder

124

B Reference Designator—This setting is a drop-down menu that
allows you to select a reference designator on the current SOPC
Builder target board component, which associates the current EPCS
controller to the reference designator for an EPCS device on the
board. If no matching reference designator is found for the target
board (i.e., the board component does not declare an EPCS device),

Altera Corporation
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then an EPCS controller cannot be added to the system. The reference
designator is used by the Nios Il IDE flash programmer. For details
see the Nios Il Flash Programmer User Guide.

Only one EPCS controller can be instantiated in each FPGA design.

Software This section describes the software programming model for the EPCS

. controller. Altera provides HAL system library drivers that enable you to
Prog ramming erase and write the EPCS memory using the HAL API functions. Altera
Model does not publish the usage of the cores registers. Therefore, you must use

the HAL drivers provided by Altera to access the EPCS device.

HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that
integrates into the HAL system library for Nios Il systems. Programs call
the familiar HAL API functions to program the EPCS memory. You do not
need to know anything about the details of the underlying drivers to use
them.

«® The HAL API for programming flash, including C-code examples, is
described in detail in the Nios Il Software Developer’s Handbook. For details
on managing and programming the EPCS device contents, see the Nios |1
Flash Programmer User Guide.

Software Files

The EPCS controller provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into
the Nios Il HAL system library. Application developers should not
modify these files.

B altera_avalon_epcs_flash_controller.h,
altera_avalon_epcs_flash_controller.c—Header and source files
that define the drivers required for integration into the HAL system
library.

B epcs_commands.h, epcs_commands.c—Header and source files
that directly control the EPCS device hardware to read and write the
device. These files also rely on the Altera SPI core drivers.

Altera Corporation 12-5
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The common flash interface controller core with Avalon™ interface (“the
CFI controller”) allows you to easily connect SOPC Builder systems to
external flash memory that complies with the Common Flash Interface
(CFI) specification. The CFI controller is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system.

For the Nios® Il processor, Altera provides hardware abstraction layer
(HAL) driver routines for the CFI controller. The drivers provide
universal access routines for CFl-compliant flash memories. Therefore,
you do not need to write any additional code to program CFI-compliant
flash devices. The HAL driver routines take advantage of the HAL
generic device model for flash memory, which allows you to access the
flash memory using the familiar HAL application programming interface
(API) and/or the ANSI C standard library functions for file 1/0. For
details on how to read and write flash using the HAL API, refer to the
Nios 11 Software Developer’s Handbook.

Nios Il development tools provide a flash programmer utility based on

the Nios Il processor and the CFI controller. The flash programmer utility
can be used to program any CFl-compliant flash memory connected to an
Altera® FPGA. For details, refer to the Nios I Flash Programmer User Guide.

Further information on the Common Flash Interface specification is
available at www.intel.com/design/flash/swb/cfi.ntm. As an example of
a flash device supported by the CFI controller, see the data sheet for the
AMD Am29LV065D-120R, available at www.amd.com.

The common flash interface controller core supersedes previous Altera
flash cores distributed with SOPC Builder or Nios development kits. All
flash chips associated with these previous cores comply with the CFI
specification, and therefore are supported by the CFI controller.

Figure 13-1 shows a block diagram of the CFI controller in a typical
system configuration. As shown in Figure 13-1, the Avalon interface for
flash devices is connected through an Avalon tristate bridge. The Avalon
tristate bridge creates an off-chip memory bus that allows the flash chip
to share address and data pins with other memory chips. It provides
separate chipselect, read, and write pins to each chip connected to the
memory bus. The CFI controller hardware is minimal: It is simply an
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Avalon tristate slave port configured with waitstates, setup, and hold
time appropriate for the target flash chip. This slave port is capable of
Avalon tristate slave read and write transfers.

Figure 13-1. An SOPC Builder System Integrating a CFI controller
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Avalon master ports can perform read transfers directly from the CFI
controller’s Avalon port. See “Software Programming Model” on
page 13-4 for more detail on writing/erasing flash memory.

The CFI controller supports the Stratix®, Stratix Il, Cyclone™, and
Cyclone Il device families. The CFI controller provides drivers for the
Nios Il HAL system library. No software support is provided for the first-
generation Nios processor.

Hardware designers use the CFI controller’s SOPC Builder configuration
wizard to specify the core features. The following sections describe the
available options in the configuration wizard.

Attributes Tab

The options on this tab control the basic hardware configuration of the
CFlI controller.

Altera Corporation
Handbook December 2004
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Presets Settings

The Presets setting is a drop-down menu of flash chips that have already
been characterized for use with the CFI controller. After you select one of
the chips in the Presets menu, the wizard updates all settings on both tabs
(except for the Board Info setting) to work with the specified flash chip.

If the flash chip on your target board does not appear in the Presets list,
you must configure the other settings manually.

Size Settings

The size setting specifies the size of the flash device. There are two
settings:

B Address Width—The width of the flash chip’s address bus.
B Data Width—The width of the flash chip’s data bus

The size settings cause SOPC Builder to allocate the correct amount of
address space for this device. SOPC Builder will automatically generate
dynamic bus sizing logic that appropriately connects the flash chip to
Avalon master ports of different data widths. See the Avalon Interface
Specification Reference Manual for details about dynamic bus sizing.

Board Info

The Board Info setting is used by the flash programmer utility provided
in Nios Il development kits. This setting maps a CFl controller to a known
chip in a target system board component for the SOPC Builder system.

The Reference Designator (chip label) setting is a drop-down menu that
maps the current flash component to a reference designator on the target
board. This drop-down menu is only enabled if there are multiple flash
chips on the target board. If all flash chips on the board are represented
by other instances of the CFI controller, SOPC Builder displays an error.

-« For details, see the Nios Il Flash Programmer User Guide.

Altera Corporation 13-3
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Timing Tab

The options on this tab specify the timing requirements for read and write
transfers with the flash device. The settings available on the Timing page
are:

B Setup—After asserting chipselect, the time required before
asserting the read or write signals.

B Wait—The time required for the read or write signals to be
asserted for each transfer.

B Hold—After deasserting the write signal, the time required before
deasserting the chipselect signal.

B Units—The timing units used for the Setup, Wait, and Hold values.
Possible values include ns, us, ms, and clock cycles.

e For more information about signal timing for the Avalon interface, see
the Avalon Interface Specification Reference Manual.

Software This section describes the software programming model for the CFI

. controller. In general, any Avalon master in the system can read the flash
PrOgrammlng chip directly as a memory device. For Nios Il processor users, Altera
Model provides HAL system library drivers that enable you to erase and write

the flash memory using the HAL API functions.

HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that
integrates into the HAL system library for Nios Il systems. Programs call
the familiar HAL API functions to program CFl-compliant flash memory.
You do not need to know anything about the details of the underlying
drivers.

e The HAL API for programming flash, including C code examples, is
described in detail in the Nios Il Software Developer’s Handbook. The
Nios Il development kit also provides a reference design called Flash
Tests that demonstrates erasing, writing, and reading flash memory.

Limitations

Currently, the Altera-provided drivers for the CFI controller support only
AMD and Intel flash chips.

13-4 Altera Corporation
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Software Files

The CFI controller provides the following software files. These files define
the low-level access to the hardware, and provide the routines for the
HAL flash device driver. Application developers should not modify these
files.

B altera_avalon_cfi_flash.h, altera_avalon_cfi_flash.c—The header
and source code for the functions and variables required to integrate
the driver into the HAL system library.

B altera_avalon_cfi_flash_funcs.h, altera_avalon_cfi_flash_table.c—
The header and source code for functions concerned with accessing
the CFI table.

W altera_avalon_cfi_flash_amd_funcs.h,
altera_avalon_cfi_flash_amd.c—The header and source code for
programming AMD CFl-compliant flash chips.

B altera_avalon_cfi_flash_intel_funcs.h,
altera_avalon_cfi_flash_intel.c—The header and source code for
programming Intel CFl-compliant flash chips.

Altera Corporation 13-5
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The system ID core is a simple read-only device that provides SOPC
Builder systems with a unique identifier. Nios® Il processor systems use
the system ID core to verify that an executable program was compiled
targeting the actual hardware image configured in the target FPGA. If the
expected ID in the executable does not match the system ID core in the
FPGA, it is possible that the software will not execute correctly.

The system ID core provides a read-only Avalon™ slave interface. There
are two registers, as shown in Table 14-1.

Table 14-1. System ID Core Register Map

Offset | Register Name | R/W Bit Description
31...0
0 id R SOPC Builder System ID (1)
1 timestamp R SOPC Builder Generation Time (1)

Note to Table 14-1:
(1) Return value is constant.

The value of each register is determined at system generation time, and
always returns a constant value. The meaning of the values is:

B id— Aunique 32-bit value that is based on the contents of the SOPC
Builder system. The id is similar to a check-sum value; SOPC Builder
systems with different components and/or different configuration
options produce different id values.

B timestamp—A unique 32-bit value that is based on the system
generation time. The value is equivalent to the number of seconds
after Jan. 1, 1970.

There are two basic ways to use the system ID core:
| Verify the system ID before downloading new software to a system.
This method is used by software development tools, such as the

Nios Il integrated development environment (IDE). There is little
point in downloading a program to a target hardware system, if the
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program is compiled for different hardware. Therefore, the Nios Il
IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or
debug.

B Check system ID after reset. If a program is running on hardware
other than the expected SOPC Builder system, then the program may
fail to function altogether. If the program does not crash, it can
behave erroneously in subtle ways that are difficult to debug. To
protect against this case, a program can compare the expected system
ID against the system ID core, and report an error if they do not
match.

The system ID core supports all device families supported by SOPC
Builder. The system ID core provides a device driver for the Nios Il
hardware abstraction layer (HAL) system library. No software support is
provided for any other processor, including the first-generation Nios
processor.

The System ID core has no user-settable features. The id and t imestamp
register values are determined at system generation time based on the
configuration of the SOPC Builder system and the current time. You can
add only one system ID core to an SOPC Builder system, and its name is
always sysid.

After system generation, you can examine the values stored in the id and
timestamp registers by opening the System ID configuration wizard.
Hovering over the component in SOPC Builder also displays a tool-tip
showing the values.

This section describes the software programming model for the system ID
core. For Nios Il processor users, Altera provides the HAL system library
header file that defines the system ID core registers. Altera provides one
access routine, alt_avalon_sysid test (), that returns a value
indicating whether the system ID expected by software matches the
system ID core.

Altera Corporation
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alt_avalon_sysid_test()

Prototype:

Thread-safe:

Available from ISR:

Include:

Description:

Altera Corporation
September 2004

alt_avalon_sysid_test()

alt_32 alt_avalon sysid test (void)
No.

Yes.

<altera_avalon_sysid.h>

Returns 0 if the values stored in the hardware registers match the values
expected by software. Returns 1 if the hardware timestamp is greater than the
software timestamp. Returns -1 if the software timestamp is greater than the
hardware timestamp.

14-3
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alt_avalon_sysid_test()

Software Files

The System ID core comes with the following software files. These files
provide low-level access to the hardware. Application developers should
not modify these files.

B alt_avalon_sysid_regs.h—Defines the interface to the hardware
registers.

m alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files
defining the hardware access functions.

14-4 Altera Corporation
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The Character LCD (Optrex 16207) Controller with Avalon™ Interface
(“the LCD controller”) provides the hardware interface and software
driver required for a Niose Il processor to display characters on an Optrex
16207 (or equivalent) 16x2-character LCD panel. Device drivers are
provided in the HAL system library for the Nios Il processor. Nios Il
programs access the LCD controller as a character mode device using
ANSI C standard-library routines, such as printf (). The LCD
controller is SOPC Builder-ready, and integrates easily into any SOPC
Builder-generated system.

Nios Il development kits include an Optrex LCD module and provide
several ready-made example designs that display text on the Optrex
16207 via the LCD controller. For details on the Optrex 16207 LCD
module, see the manufacturer's Dot Matrix Character LCD Module User’s
Manual available at http://www.optrex.com.

The LCD controller hardware consists of two user-visible components:

1. Eleven signals that connect to pins on the Optrex 16207 LCD panel —
These signals are defined in the Optrex 16207 data sheet.

E - Enable (output)

RS — Register Select (output)

R/W — Read or Write (output)

DBO through DB7 — Data Bus (bidirectional)

2. An Avalon slave interface that provides access to 4 registers — The
HAL device drivers make it unnecessary for users to access the
registers directly. Therefore, Altera does not provide details on the
register usage. For further details, see “Software Programming
Model” on page 15-2.
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Figure 15-1 shows a block diagram of the LCD controller core.

Figure 15-1. LCD Controller Block Diagram
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The LCD controller hardware supports all Altera FPGA families. The
LCD controller drivers support the Nios Il processor. The drivers do not
support the first-generation Nios processor.

In SOPC Builder, the LCD controller component has the name Character
LCD (16x2, Optrex 16207). The LCD controller does not have any user-
configurable settings. The only choice to make in SOPC Builder is
whether or not to add an LCD controller to the system. For each LCD
controller included in the system, the top-level system module includes
the 11 signals that connect to the LCD module.

This section describes the software programming model for the LCD
controller.

HAL System Library Support

Altera provides HAL system library drivers for the Nios Il processor that
enable you to access the LCD controller using the ANSI C standard
library functions. The Altera-provided drivers integrate into the HAL
system library for Nios Il systems. The LCD driver is a standard
character-mode device, as described in the Nios Il Software Developer's
Handbook. Therefore, using printf () is the easiest was to write
characters to the display.

Altera Corporation
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The LCD driver requires that the HAL system library include the system
clock driver.

Displaying Characters on the LCD

The driver implements VT100 terminal-like behavior on a miniature scale
for the 16x2 screen. Characters written to the LCD controller are stored to
an 80-column x 2-row buffer maintained by the driver. As characters are
written, the cursor position is updated. Visible characters move the cursor
position to the right. Any visible characters written to the right of the
buffer are discarded. The line feed character (\n) moves the cursor down
one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto
the line below the bottom of the buffer. Rows do not scroll as soon as the
cursor moves down to allow the maximum useful information in the
buffer to be displayed.

If the visible characters in the buffer will fit on the display, then all
characters are displayed. If the buffer is wider than the display, then the
display scrolls horizontally to display all the characters. Different lines
scroll at different speeds, depending on the number of characters in each
line of the buffer.

The LCD driver understands a small subset of ANSI and VT100 escape
sequences which can be used to control the cursor position, and clear the
display as shown in Table 15-1.

Table 15-1. Escape Sequence Supported by the LCD Controller

Sequence Meaning

BS (\b) Moves the cursor to the left by one character.

CR (\r) Moves the cursor to the start of the current line.

LF (\n) Moves the cursor to the start of the line and move it down one line.
ESC( (\x1B) Starts a VT100 control sequence.

ESC [ <y>

<xX> H | Moves the cursor to the y, x position specified — positions are counted
from the top left which is 1;1.

ESC [ K

Clears from current cursor position to end of line.

ESC [ 2 J

Clears the whole screen.

Altera Corporation
September 2004

The LCD controller is an output-only device. Therefore, attempts to read
from it will return immediately indicating that no characters have been
received.
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The LCD controller drivers are not included in the system library when
the Reduced device drivers option is enabled for the system library. If

you want to use the LCD controller while using small drivers for other
devices, then add the preprocessor option -DALT USE _LCD 16207 to
the preprocessor options.

Software Files

The LCD controller is accompanied by the following software files. These
files define the low-level interface to the hardware and provide the HAL
drivers. Application developers should not modify these files.

B altera_avalon_lcd_16207_regs.h — This file defines the core’s
register map, providing symbolic constants to access the low-level
hardware.

B altera_avalon_lcd_16207.h,altera_avalon_lcd_16207.c— These files
implement the LCD controller device drivers for the HAL system
library.

Register Map

The HAL device drivers make it unnecessary for you to access the
registers directly. Therefore, Altera does not publish details on the
register map. For more information, the altera_avalon_lcd_16207_regs.h
file describes the register map, and the Dot Matrix Character LCD Module
User’s Manual from Optrex describes the register usage.

Interrupt Behavior

The LCD controller does not generate interrupts. However, the LCD
driver's text scrolling feature relies on the HAL system clock driver,
which uses interrupts for timing purposes.

15-4 Altera Corporation
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Multiprocessor environments can use the mutex core with Avalon™
interface (the mutex core) to coordinate accesses to a shared resource. The
mutex core provides a protocol to ensure mutually exclusive ownership
of a shared resource.

The mutex core provides a hardware-based atomic test-and-set operation,
allowing software in a multiprocessor environment to determine which
processor owns the mutex. The mutex core can be used in conjunction
with shared memory to implement additional interprocessor
coordination features, such as mailboxes and software mutexes.

The mutex core is designed for use in Avalon-based processor systems,
such as a Niose® |l processor system. Altera provides device drivers for the
Nios Il processor to enable use of the hardware mutex.

The mutex core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system.

The mutex core has a simple Avalon slave interface that provides access
to two memory-mapped, 32-bit registers. Table 16—1 shows the registers.

Table 16-1. Mutex Core Register Map

; Bit Description
Offset Rﬁg Ister R/IW
ame 31...16 | 15...1 0
0 mutex RW OWNER VALUE
1 reset RW - - RESET

The mutex core has the following basic behavior. This description
assumes there are multiple processors accessing a single mutex core, and
each processor has a unique identifier (ID).

B When the VALUE field is 0x0000, the mutex is available (i.e,
unlocked). Otherwise, the mutex is unavailable (i.e., locked).

B The mutex register is always readable. A processor (or any Avalon
master peripheral) can read the mutex register to determine its
current state.

161




Device & Tools Support

Device & Tools
Support

Instantiating the
Core in SOPC
Builder

Software
Programming
Model

16-2

B The mutex register is writeable only under specific conditions. A
write operation changes the mut ex register only if one or both of the
following conditions is true:

e The VALUE field of the mutex register is zero.
e The OWNER field of the mutex register matches the OWNER
field in the data to be written.

B A processor attempts to acquire the mutex by writing its ID to the
OWNER field, and writing a non-zero value to VALUE. The
processor then checks if the acquisition succeeded by verifying the
OWNER field.

B After system reset, the RESET bit in the reset register is high.
Writing a one to this bit clears it.

The mutex core supports all Altera device families supported by SOPC
Builder, and provides device drivers for the Nios Il hardware abstraction
layer (HAL) system library.

Hardware designers use the mutex core's SOPC Builder configuration
wizard to specify the core's hardware features. The configuration wizard
provides the following settings:

B Initial Value—the initial contents of the VALUE field after reset. If
the Initial Value setting is non-zero, you must also specify Initial
Owner.

B Initial Owner—the initial contents of the OWNER field after reset.
When Initial Owner is specified, this owner must release the mutex
before it can be acquired by another owner.

The following sections describe the software programming model for the
mutex core, such as the software constructs used to access the hardware.
For Nios Il processor users, Altera provides routines to access the mutex
core hardware. These functions are specific to the mutex core and directly
manipulate low-level hardware. The mutex core cannot be accessed via
the HAL API or the ANSI C standard library. In Nios Il processor systems,
a processor locks the mutex by writing the value of its cpuid control
register to the OWNER field of the mutex register.

Software Files

Altera provides the following software files accompanying the mutex
core:

B altera_avalon_mutex_regs.h—this file defines the core’s register
map, providing symbolic constants to access the low-level hardware.
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B altera_avalon_mutex.h—this file defines data structures and
functions to access the mutex core hardware.

B altera_avalon_mutex.c—this file contains the implementations of
the functions to access the mutex core

Hardware Mutex

This section describes the low-level software constructs for manipulating
the mutex core hardware.

The file altera_avalon_mutex.h declares a structure alt mutex dev
that represents an instance of a mutex device. It also declares functions for
accessing the mutex hardware structure, listed in Table 16-2.

Table 16-2. Hardware Mutex Functions

Function Name Description

altera avalon mutex open/() Claims a handle to a mutex, enabling all the other functions to
access the mutex core.

altera_avalon mutex_trylock () Tries to lock the mutex. Returns immediately if it fails to lock
the mutex.

altera_avalon mutex lock() Locks the mutex. Will not return until it has successfully
claimed the mutex.

altera_avalon mutex unlock () Unlocks the mutex.

altera avalon mutex is mine () Determines if this CPU owns the mutex.

altera avalon mutex first lock() |Tests whetherthe mutex has been released since reset.

These routines coordinate access to the software mutex structure using a
hardware mutex core. For a complete description of each function, see
section “Mutex API” on page 16-5.
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The following code demonstrates opening a mutex device handle and
locking a mutex:

Example: Opening and locking a mutex
#include <altera_avalon mutex.h>

/* get the mutex device handle */
alt_mutex dev* mutex = altera_avalon mutex_open( “/dev/mutex” );

/* acquire the mutex, setting the value to one */
altera_avalon mutex lock( mutex, 1 );

/*
* Access a shared resource here.

*/

/* release the lock */
altera_avalon_mutex unlock( mutex );
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Mutex API This section describes the application programming interface (API) for
the mutex core.
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altera_avalon_mutex_is_mine()

altera_avalon_mutex_is_mine()

Prototype: int altera_avalon mutex is mine (alt_mutex dev* dev)

Thread-safe: Yes.

Available from ISR:  No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon mutex is mine () determines if this CPU owns the mutex.
16-6 Altera Corporation
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altera_avalon_mutex_first_lock()

altera_avalon_mutex_first_lock()

Prototype: int altera_avalon mutex first lock(alt _mutex dev* dev)
Thread-safe: Yes.

Available from ISR:  No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.
Description: altera_avalon mutex first lock () determines whetherthis mutex has been

released since reset.

Altera Corporation 16-7
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altera_avalon_mutex_lock()

Prototype: void altera avalon mutex lock(alt mutex dev* dev,
alt_u32 value)
Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>
Parameters: dev—the mutex device to acquire.
value—the new value to write to the mutex.
Returns: -
Description: altera_avalon mutex_lock () is a blocking routine that acquires a hardware
mutex, and at the same time, loads the mutex with the value parameter.
16-8 Altera Corporation
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altera_avalon_mutex_open()

Prototype: alt mutex dev* alt hardware mutex open(const char* name)

Thread-safe: Yes.

Available from ISR:  No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if
no corresponding mutex device structure was found.

Description: altera_avalon mutex open () retrieves a pointer to a hardware mutex device
structure.
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altera_avalon_mutex_trylock()

Prototype: int altera_avalon mutex trylock(alt mutex dev* dev,
alt_u32 value)

Thread-safe: Yes.
Available from ISR: No.
Include: <altera_avalon_mutex.h>
Parameters: dev—the mutex device to lock.

value—the new value to write to the mutex.
Returns: Zero if the mutex was successfully locked, or non zero if the mutex was not locked.
Description: altera_avalon mutex_trylock () tries once to lock the hardware mutex, and

returns immediately.
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altera_avalon_mutex_unlock()

Prototype:

Thread-safe:

Available from ISR:

Include:
Parameters:
Returns:

Description:

Altera Corporation
December 2004

altera_avalon_mutex_unlock()

void altera_avalon mutex unlock(alt mutex dev* dev)
Yes.

No.

<altera_avalon_mutex.h>

dev—the mutex device to unlock.

altera_avalon mutex unlock () releases a hardware mutex device. Upon
release, the value stored in the mutex is set to zero. If the caller does not hold the mutex,
the behavior of this function is undefined.
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