
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Nios II Software Developer’s Handbook

NII5V2-1.2

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... ix

About this Handbook ... xi
How to Contact Altera ... xi
Typographic Conventions ... xi

Section I. Nios II Software Development
Revision History ... Section I–1

Chapter 1. Overview
Introduction .. 1–1
Getting Started .. 1–1
Development Environment .. 1–1

Tools ... 1–1
Consistent Development Environment ... 1–3
Consistent Runtime Environment ... 1–3

Third-Party Support .. 1–3
Migrating from the First-Generation Nios Processor ... 1–4
Further Nios II Information ... 1–4

Chapter 2. Tour of the Nios II IDE
Introduction .. 2–1
The Nios II IDE Workbench ... 2–1

Perspectives, Editors & Views .. 2–2
Creating a New Project ... 2–3
Building & Managing Projects ... 2–4
Running & Debugging Programs .. 2–5
Programming Flash ... 2–9
Online Help .. 2–10

Section II. The HAL System Library
Revision History ... Section II–1

Chapter 3. Overview of the HAL System Library
Introduction .. 3–1

iv Altera Corporation
Preliminary

Contents Nios II Software Developer’s Handbook

Getting Started ... 3–1
HAL Architecture .. 3–2

Services .. 3–2
Applications vs. Drivers .. 3–3
Generic Device Models .. 3–3
C Standard Library—Newlib ... 3–4

Supported Peripherals .. 3–5

Chapter 4. Developing Programs using the HAL
Introduction .. 4–1
The Nios II IDE Project Structure .. 4–1
The system.h System Description File .. 4–2
Data Widths & the HAL Type Definitions ... 4–3
UNIX-Style Interface ... 4–4
File System .. 4–5
Using Character-Mode Devices ... 4–6

Standard Input, Standard Output & Standard Error .. 4–7
General Access to Character Mode Devices ... 4–7
C++ Streams .. 4–8
/dev/null .. 4–8

Using File Subsystems .. 4–8
Using Timer Devices ... 4–8

The HAL System Clock ... 4–9
Alarms .. 4–9
High Resolution Time Measurement .. 4–11

Using Flash Devices .. 4–12
Simple Flash Access ... 4–12
Block Erasure or Corruption ... 4–14
Fine-Grained Flash Access .. 4–15

Using DMA Devices .. 4–18
DMA Transmit Channels .. 4–19
DMA Receive Channels ... 4–20
Memory-to-Memory DMA Transactions .. 4–21

Reducing Code Footprint ... 4–23
Enable Compiler Optimizations ... 4–23
Use Small Footprint Device Drivers .. 4–23
Reduce the File Descriptor Pool ... 4–24
Use /dev/null ... 4–24
Use UNIX not ANSI C File I/O .. 4–24
Use the Small Newlib C Library .. 4–25
Eliminate Unused Device Drivers ... 4–27
Use _exit() for No Clean Exit .. 4–27
Disable Instruction Emulation .. 4–27

Boot Sequence and Entry Point ... 4–28
Hosted vs. Free-Standing Applications .. 4–28
Boot Sequence for HAL-Based Programs ... 4–29
Customizing the Boot Sequence ... 4–30

Altera Corporation v
Preliminary

Contents Contents

Memory Usage ... 4–30
Memory Sections .. 4–30
Assigning Code & Data to Memory Partitions .. 4–31
Placement of the Heap & Stack .. 4–32
Boot Modes .. 4–33

Paths to HAL System Library Files ... 4–33
Finding HAL Files .. 4–33
Overriding HAL Functions ... 4–34

Chapter 5. Developing Device Drivers for the HAL
Introduction .. 5–1

Integration into the HAL API ... 5–1
Peripheral-Specific API ... 5–1
Before You Begin .. 5–2

Development Flow for Creating Device Drivers .. 5–2
SOPC Builder Concepts .. 5–2

The Relationship between system.h & SOPC Builder .. 5–2
Using SOPC Builder for Optimal Hardware Configuration .. 5–3
Components, Devices & Peripherals ... 5–3

Accessing Hardware .. 5–3
Creating Drivers for HAL Device Classes ... 5–4

Character-Mode Device Drivers .. 5–5
File Subsystem Drivers .. 5–7
Timer Device Drivers ... 5–8
Flash Device Drivers .. 5–9
DMA Device Drivers ... 5–10
Ethernet Device Drivers .. 5–12

Integrating a Device Driver into the HAL ... 5–15
Directory Structure for HAL Devices .. 5–15
Device Driver Files for the HAL .. 5–15
Summary ... 5–19

Providing Reduced Footprint Drivers .. 5–19
Namespace Allocation .. 5–19
Overriding the Default Device Drivers .. 5–20

Section III. Advanced Programming Topics
Revision History .. Section III–1

Chapter 6. Exception Handling
Introduction .. 6–1
Nios II Exceptions Overview ... 6–1
HAL Implementation .. 6–2

_irq_entry .. 6–2
alt_irq_handler() ... 6–3
software_exception .. 6–4

vi Altera Corporation
Preliminary

Contents Nios II Software Developer’s Handbook

ISRs .. 6–5
HAL API for ISRs ... 6–6
Registering an ISR with alt_irq_register() ... 6–6
Writing an ISR ... 6–7
Enabling and Disabling ISRs .. 6–9
C Example ... 6–9

Fast ISR Processing .. 6–11
ISR Performance Data ... 6–11
Debugging with ISRs .. 6–13
Summary of Suggestions for Writing ISRs .. 6–13

Chapter 7. Cache Memory
Introduction .. 7–1

Nios II Cache Implementation ... 7–1
HAL API Functions for Managing Cache ... 7–2
Further Information ... 7–2

Initializing Cache after Reset ... 7–2
For HAL System Library Users .. 7–4

Writing Device Drivers ... 7–4
For HAL System Library Users .. 7–4

Writing Program Loaders or Self-Modifying Code .. 7–5
For Users of the HAL System Library ... 7–6

Managing Cache in Multi-Master/Multi-CPU Systems .. 7–6
Bit-31 Cache Bypass ... 7–7
For HAL System Library Users .. 7–7

Chapter 8. MicroC/OS-II Real-Time Operating System
Introduction .. 8–1
Overview ... 8–1

Further Information ... 8–1
Licensing .. 8–2

Other RTOS Providers .. 8–2
The Altera Port of MicroC/OS-II ... 8–2

MicroC/OS-II Architecture ... 8–2
MicroC/OS-II Thread-Aware Debugging .. 8–3
MicroC/OS-II Device Drivers .. 8–3
Thread-Safe HAL Drivers ... 8–4
The Newlib ANSI C Standard Library .. 8–6

Implementing MicroC/OS-II Projects in the Nios II IDE .. 8–6
MicroC/OS-II General Options .. 8–7
Event Flags Settings ... 8–8
Mutex Settings .. 8–8
Semaphores Settings .. 8–8
Mailboxes Settings .. 8–9
Queues Settings .. 8–9
Memory Management Settings .. 8–10
Miscellaneous Settings ... 8–10

Altera Corporation vii
Preliminary

Contents Contents

Task Management Settings ... 8–11
Time Management Settings .. 8–11

Chapter 9. Ethernet & Lightweight IP
Introduction .. 9–1

lwIP Port for the Nios II Processor .. 9–1
lwIP Files & Directories ... 9–2
Licensing .. 9–2

Other TCP/IP Stack Providers .. 9–3
Using the lwIP Protocol Stack .. 9–3

Nios II System Requirements ... 9–3
The lwIP Tasks .. 9–4
Initializing the Stack .. 9–4
Calling the Sockets Interface ... 9–9

Configuring lwIP in the Nios II IDE ... 9–9
Lightweight TCP/IP Stack General Settings .. 9–10
IP Options ... 9–10
ARP Options ... 9–10
UDP Options ... 9–11
TCP Options .. 9–11
DHCP Options .. 9–11
Memory Options .. 9–11

Known Limitations .. 9–12

Section IV. Appendices
Revision History .. Section IV–1

Chapter 10. The HAL API Reference
Introduction .. 10–1
Standard Types .. 10–70

Chapter 11. Altera-Provided Development Tools
Introduction .. 11–1
The Nios II IDE Tools .. 11–1
Altera Command-Line Tools ... 11–2
GNU Compiler Tool-chain ... 11–4
Libraries & Embedded Software Components ... 11–5

Chapter 12. Read-Only Zip Filing System
Introduction .. 12–1
Using the Zip File System in a Project .. 12–1

Preparing the Zip File .. 12–2
Programming the Zip File to Flash .. 12–2

viii Altera Corporation
Preliminary

Contents Nios II Software Developer’s Handbook

Index

Altera Corporation ix
Preliminary

Chapter Revision Dates

The chapters in this book, Nios II Software Developer’s Handbook, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

1. Overview
Revised: May 2004
Part number: NII52001-1.0

2. Tour of the Nios II IDE
Revised: September 2004
Part number: NII52002-1.1

3. Overview of the HAL System Library
Revised: May 2004
Part number: NII52003-1.0

4. Developing Programs using the HAL
Revised: December 2004
Part number: NII52004-1.2

5. Developing Device Drivers for the HAL
Revised: December 2004
Part number: NII52005-1.1

6. Exception Handling
Revised: December 2004
Part number: NII52006-1.2

7. Cache Memory
Revised: May 2004
Part number: NII52007-1.0

8. MicroC/OS-II Real-Time Operating System
Revised: December 2004
Part number: NII52008-1.1

9. Ethernet & Lightweight IP
Revised: December 2004
Part number: NII52009-1.2

x Altera Corporation
Preliminary

Chapter Revision Dates Nios II Software Developer’s Handbook

10. The HAL API Reference
Revised: December 2004
Part number: NII52010-1.2

11. Altera-Provided Development Tools
Revised: December 2004
Part number: NII520011-1.1

12. Read-Only Zip Filing System
Revised: May 2004
Part number: NII520012-1.0

Altera Corporation xi
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Nios® II processor software.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com (1) literature@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xii Altera Corporation
Preliminary

Typographic Conventions Nios II Software Developer’s Handbook

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–1
Preliminary

Section I. Nios II Software
Development

This section introduces information for Nios® II software development.

This section includes the following chapters:

■ Chapter 1. Overview

■ Chapter 2. Tour of the Nios II IDE

Revision History The table below shows the revision history for these chapters. These
version numbers track the document revisions; they have no relationship
to the version of the Nios II development kits or Nios II processor cores.

Chapter(s) Date / Version Changes Made

1 May 2004
v1.0

First publication.

2 September 2004
v1.1

Updated screen shots.

May 2004
v1.0

First publication.

Section I–2 Altera Corporation
Preliminary

Nios II Software Development Nios II Software Developer’s Handbook

Altera Corporation 1–1
May 2004 Preliminary

1. Overview

Introduction This chapter provides a high-level overview of the Nios® II processor for
the software developer. This chapter introduces you to the Nios II
software development environment, the tools available to you, and the
process for developing software.

Getting Started Writing software for the Nios II processor is similar to any other
microcontroller family. The easiest way to start designing effectively is to
purchase a development kit from Altera that includes documentation, a
ready-made evaluation board, and all the development tools necessary to
write Nios II programs.

The Nios II Software Developer’s handbook assumes you have a basic
familiarity with embedded processor concepts. You do not need to be
familiar with any specific Altera® technology or with Altera development
tools. Familiarity with Altera hardware development tools may give you
a deeper understanding of the reasoning behind the Nios II software
development environment. However, software developers can develop
and debug applications without further knowledge of Altera technology
beyond the Nios II software development tools.

Modifying existing code is perhaps the most common and comfortable
way that software designers learn to write programs in a new
environment. Nios II development kits provide many example software
designs that you can examine, modify, and use in your own programs.
The provided examples range from a simple “Hello world” program, to a
working real-time operating system (RTOS) example, to a full
transmission control protocol/Internet protocol (TCP/IP) stack running
a web server. Each example is documented and ready to compile.

Development
Environment

This section introduces the Nios II software development environment.

Tools

The Nios II software development environment provided by Altera
consists of the following tools:

■ Nios II IDE
■ GNU Tool Chain
■ Instruction Set Simulator

NII52001-1.0

1–2 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Development Environment

■ Hardware Abstraction Layer System Library
■ RTOS and TCP/IP stack
■ Example Designs

Nios II IDE

The Nios II integrated development environment (IDE) is the software
development graphical user interface (GUI) for the Nios II processor. All
software development tasks can be accomplished within the Nios II IDE,
including editing, building, and debugging programs. The Nios II IDE is
the window through which all other tools can be launched.

The Nios II IDE is based on the popular Eclipse IDE framework and the
Eclipse C development toolkit (CDT) plug-ins. The Nios II IDE is a thin-
user interface that manipulates other tools behind the scenes, shields you
from the details of command-line tools, and presents a unified
development environment. If necessary, software development processes
can be scripted and executed independently of the GUI.

GNU Tool Chain

The Nios II compiler tool chain is based on the standard GNU GCC
compiler, assembler, linker, and makefile facilities.

For more information on GNU, see www.gnu.org.

Instruction Set Simulator

The Nios II instruction set simulator (ISS) allows you to begin developing
programs before the target hardware platform is ready. The Nios II IDE
allows you to run programs on the ISS as easily as running on a real
hardware target.

Hardware Abstraction Layer System Library

The hardware abstraction layer (HAL) system library provides a hosted
C runtime environment based on the ANSI C standard libraries. The HAL
provides generic I/O devices, allowing you to write programs that access
hardware using the C standard library routines, such as printf(). The
HAL minimizes (or eliminates) the need to access hardware registers
directly to control and communicate with peripherals.

RTOS and TCP/IP stack

Altera provides ports of the MicroC/OS-II RTOS and the Lightweight IP
TCP/IP stack. MicroC/OS-II is built on the thread-safe HAL system
library, and implements a simple, well-documented RTOS scheduler. The

Altera Corporation 1–3
May 2004 Nios II Software Developer’s Handbook

Overview

TCP/IP stack is built on MicroC/OS-II, and implements the standard
UNIX Sockets application programming interface (API). Several other
operating systems and stacks are available from third-party vendors.

Example Designs

Documented software examples are provided to demonstrate all
prominent features of the Nios II processor and the development
environment.

Consistent Development Environment

The Nios II IDE provides a consistent development platform that works
for all Nios II processor systems. If you have a PC, an Altera FPGA, and
a Joint Test Action Group (JTAG) download cable (e.g., Altera USB-
Blaster™ download cable), you have everything you need to write
programs for, and communicate with, any Nios II processor system. The
Nios II processor’s JTAG debug module provides a single, consistent
method to communicate with the processor—using a JTAG download
cable. Accessing the processor using Nios II IDE is the same, regardless of
whether a device implements only a Nios II processor system, or whether
the Nios II processor is embedded deeply in a complex multiprocessor
system. Therefore, you do not spend time manually creating interface
mechanisms for the embedded processor.

Consistent Runtime Environment

The HAL system library provides a consistent, hosted C/C++ runtime
environment, regardless of the underlying hardware features in the
embedded system. A custom HAL system library, which serves as the
board-support package, is generated automatically for each unique
Nios II processor system. Therefore, you do not spend time manually
writing drivers and board-support packages.

You can easily pare down the HAL runtime environment to bare
essentials to achieve minimal code footprint. A freestanding C
environment is also available if you want complete control over system
initialization and device drivers for hardware interaction.

Third-Party
Support

Several third-party vendors support the Nios II processor, providing
products such as design services, RTOS or other software libraries, and
development tools.

f For the most up-to-date information on third-party support for the
Nios II processor, visit the Nios II processor homepage at
www.altera.com/nios2.

1–4 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Migrating from the First-Generation Nios Processor

Migrating from
the First-
Generation Nios
Processor

To users of the first-generation Nios processor—thank you! You have
participated first-hand in the soft-core embedded processor revolution,
and your support has made the Nios processor the world's most popular
embedded processor. Altera is proud to offer you the second generation
of configurable embedded processor technology.

If you are a user of the first-generation Nios processor, Altera
recommends that you migrate to the Nios II processor for future designs.
The straightforward migration process is discussed in AN 350: Upgrading
Nios Processor Systems to the Nios II Processor.

Further Nios II
Information

This handbook is one part of the complete Nios II processor
documentation suite. Consult the following references for further Nios II
information:

■ The Nios II Processor Reference Handbook defines the processor
hardware architecture and features, including the instruction set
architecture and peripheral features.

■ The Nios II integrated development environment (IDE) provides
tutorials and complete reference for using the features of the
graphical user interface (GUI). The help system is available after
launching the Nios II IDE.

■ Altera's on-line solutions database, Find Answers, is an Internet
resource that offers solutions to frequently asked questions via an
easy-to-use search engine. Go to the support center on
www.altera.com and click on Find Answers.

■ Altera application notes and tutorials offer step-by-step instructions
on using the Nios II processor for a specific application or purpose.
These documents are often installed with Altera development kits, or
are available from www.altera.com.

Altera Corporation 2–1
September 2004 Preliminary

2. Tour of the Nios II IDE

Introduction This chapter familiarizes you with the main features of the Nios II
integrated development environment (IDE). This chapter is only a brief
introduction to the look-and-feel of the Nios II IDE—it is not a user guide.
The easiest way to get started using the Nios II IDE is to launch the tool
and perform the Nios II software development tutorial, available in the
online help system.

1 Because of evolution and improvement of the software, the
figures in this chapter may not match exactly what you see in the
actual software.

f For more information on all IDE-related topics, refer to the Nios II IDE
online help.

The Nios II IDE
Workbench

The term “workbench” refers to the desktop development environment
for the Nios II IDE. The workbench is where you edit, compile and debug
your programs. Figure 2–1 shows an example of the workbench.

NII52002-1.1

2–2 Altera Corporation
Nios II Software Developer’s Handbook September 2004

The Nios II IDE Workbench

Figure 2–1. The Nios II IDE Workbench

Perspectives, Editors & Views

Each workbench window contains one or more perspectives. Each
perspective provides a set of capabilities aimed at accomplishing a
specific type of task. For example, Figure 2–1 shows the C/C++
development perspective.

Most perspectives in the workbench comprise an editor area and one or
more views. An editor allows you to open and edit a project resource (i.e.,
a file, folder, or project). Views support editors, provide alternative
presentations, and ways to navigate the information in your workbench.
Figure 2–1 shows a C program open in the editor, and the C/C++ Projects
view in the left-hand pane of the workbench. The C/C++ Projects view
displays information about the contents of open projects.

Any number of editors can be open at once, but only one can be active at
a time. The main menu bar and toolbar for the workbench window
contain operations that are applicable to the active editor. Tabs in the
editor area indicate the names of resources that are currently open for
editing. An asterisk (*) indicates that an editor has unsaved changes.
Views also have their own menus. To open the menu for a view, click the

Altera Corporation 2–3
September 2004 Nios II Software Developer’s Handbook

Tour of the Nios II IDE

icon at the left end of the view's title bar. Some views also have their own
toolbars. A view may appear on its own, or stacked with other views in a
tabbed notebook.

Creating a New
Project

The Nios II IDE provides a New Project wizard that guides you through
the steps to create a new C/C++ application project. To start the C/C++
application New Project wizard, choose New (File menu), see Figure 2–2.

Figure 2–2. Starting the C/C++ Application New Project Wizard

The C/C++ application New Project wizard prompts you to specify:

1. A name for your new project.

2. The target hardware.

3. A template for the new project.

Project templates are ready-made, working designs that serve as
examples to show you how to structure your own projects. It is often
easier to start with a working “Hello World” project, than to start a blank
project from scratch.

Figure 2–3 shows the C/C++ application New Project wizard, with the
template for a Dhrystone benchmark design selected.

2–4 Altera Corporation
Nios II Software Developer’s Handbook September 2004

Building & Managing Projects

Figure 2–3. The C/C++ Application New Project Wizard

After you click Finish, the Nios II IDE creates the new project. The IDE
also creates a system library project, *_syslib (for example,
dhrystone_0_syslib for Figure 2–3). These projects show up in the C/C++
Projects view of the workbench.

Building &
Managing
Projects

Right-clicking on any resource (a file, folder, or project) opens a context-
sensitive menu with operations you can perform on the resource. Right-
clicking is usually the quickest way to find the operation you need,
though operations are also available in menus and toolbars.

To compile a project, right-click the project in the C/C++ Projects view,
and choose Build Project. Figure 2–4 shows the context-sensitive menu
for the project dhrystone_0, with the Build Project option chosen.
When building, the Nios II IDE first builds the system library project (and
any other project dependencies), and then compiles the main project. Any
warnings or errors are displayed in the Tasks view.

Altera Corporation 2–5
September 2004 Nios II Software Developer’s Handbook

Tour of the Nios II IDE

Figure 2–4. Building a Project Using the Context-Sensitive (Right-Click) Menu

Right-clicking a project in C/C++ Projects also allows you to access the
following important options for managing the project:

■ Properties—Manage the dependencies on target hardware and other
projects

■ System Library Properties—Manage hardware-specific settings,
such as communication devices and memory partitioning

■ Build Project—i.e., make
■ Rebuild Project—i.e., make all
■ Run As—Run the program on hardware or the ISS
■ Debug As—Debug the program on hardware or the ISS

Running &
Debugging
Programs

Run and debug operations are available by right-clicking the project. The
Nios II IDE allows you to run or debug the project either on a target board
or the Nios II instruction set simulator (ISS). For example, to run the
program on a target board, choose Run As > Nios II Hardware, see
Figure 2–5. Character I/O to stdout and stderr are displayed in the
Console view.

2–6 Altera Corporation
Nios II Software Developer’s Handbook September 2004

Running & Debugging Programs

Figure 2–5. Running a Program on Target Hardware

Starting a debug session is similar to starting a run session. For example,
to debug the program on the ISS, right-click the project in the C/C++
Projects view, and choose Debug As > Nios II Instruction Set Simulator,
see Figure 2–6.

Altera Corporation 2–7
September 2004 Nios II Software Developer’s Handbook

Tour of the Nios II IDE

Figure 2–6. Launching the Instruction Set Simulator

Figure 2–7 shows a debug session in progress for the dhrystone_0
project.

2–8 Altera Corporation
Nios II Software Developer’s Handbook September 2004

Running & Debugging Programs

Figure 2–7. Debugging dhrystone_0 on the ISS

Launching the debugger changes the workbench perspective to the
debug perspective. You can easily switch between the debug perspective
and the C/C++ development perspective, by clicking on the perspective
icons on the left-most side of the workbench window.

After you start a debug session, the debugger loads the program, sets a
breakpoint at main(), and begins executing the program. You use the
usual controls to step through the code: Step Into, Step Over, Resume,
Terminate, etc. To set a breakpoint, double click in the left-hand margin of
the code view, or right-click and choose Add Breakpoint.

The Nios II IDE offers many debug views that allow you to examine the
status of the processor while debugging: Variables, Expressions,
Registers, Memory, etc. Figure 2–8 shows the Registers view.

Altera Corporation 2–9
September 2004 Nios II Software Developer’s Handbook

Tour of the Nios II IDE

Figure 2–8. The Registers View While Debugging

Programming
Flash

Many Nios II processor systems use external flash memory to store one or
more of the following items:

■ Program code
■ Program data
■ FPGA configuration data
■ File systems

The Nios II IDE provides a Flash Programmer utility to help you manage
and program the contents of flash memory. Figure 2–9 shows the Flash
Programmer.

2–10 Altera Corporation
Nios II Software Developer’s Handbook September 2004

Online Help

Figure 2–9. The Nios II IDE Flash Programmer

Online Help The Nios II IDE help system provides documentation on all IDE-related
topics. You can launch the online help by choosing Help > Help
Contents, or you can press F1 at any time for a description of the current
screen. Online help also contains hands-on tutorials that guides you step-
by-step through the process of creating, building, and debugging a
project. Figure 2–10 shows the online help system displaying a tutorial.

Altera Corporation 2–11
September 2004 Nios II Software Developer’s Handbook

Tour of the Nios II IDE

Figure 2–10. Online Tutorials in the Online Help System

2–12 Altera Corporation
Nios II Software Developer’s Handbook September 2004

Online Help

Altera Corporation Section II–1
Preliminary

Section II. The HAL
System Library

This section provides information on the hardware abstraction layer
(HAL) system library.

This section includes the following chapters:

■ Chapter 3. Overview of the HAL System Library

■ Chapter 4. Developing Programs using the HAL

■ Chapter 5. Developing Device Drivers for the HAL

Revision History The table below shows the revision history for these chapters. These
version numbers track the document revisions; they have no relationship
to the version of the Nios II development kits or Nios II processor cores.

Chapter(s) Date / Version Changes Made

3 May 2004
v1.0

First publication.

4 December 2004
v1.2

● Added boot modes information.
● Amended compiler optimizations.
● Updated Reducing Code Footprint section.

September 2004
v1.1

Corrected DMA receive channels example
code.

May 2004
v1.0

First publication.

5 December 2004
v1.1

Updated reference to version of lwIP from 0.6.3
to 0.7.2.

May 2004
v1.0

First publication.

Section II–2 Altera Corporation
Preliminary

The HAL System Library Nios II Software Developer’s Handbook

Altera Corporation 3–1
May 2004 Preliminary

3. Overview of the HAL
System Library

Introduction This chapter introduces the hardware abstraction layer (HAL) system
library for the Nios® II processor.

The HAL system library is a lightweight runtime environment that
provides a simple device driver interface for programs to communicate
with the underlying hardware. The HAL application program interface
(API) is integrated with the ANSI C standard library. The HAL API
allows you to access devices and files using familiar C library functions,
such as printf(), fopen(), fwrite(), etc.

The HAL serves as a board-support package for Nios II processor
systems, providing a consistent interface to the peripherals in your
embedded systems. Tight integration between SOPC Builder and Nios II
integrated development environment (IDE) allows the HAL system
library to be generated for you automatically. After SOPC Builder
generates a hardware system, the Nios II IDE can generate a custom HAL
system library to match the hardware configuration. Furthermore,
changes in the hardware configuration automatically propagate to the
HAL device driver configuration, eliminating frustrating bugs that
appear due to subtle changes in the underlying hardware.

HAL device driver abstraction provides a clear distinction between
application and device driver software. This driver abstraction promotes
reusable application code that is resistant to changes in the underlying
hardware. In addition, it is easy to write drivers for new hardware
peripherals that are consistent with existing peripheral drivers.

Getting Started The easiest way to get started using the HAL is to perform the online
tutorials provided with the Nios II IDE. In the process of creating a new
project in the Nios II IDE, you also create a HAL system library. You do
not have to create or copy HAL files, and you should never have to edit
any of the HAL source code. The Nios II IDE generates and manages the
HAL system library automatically for you.

You must base the HAL system library on a specific SOPC Builder system.
An SOPC Builder system refers to the Nios II processor core integrated
with peripherals and memory (which is generated by SOPC Builder). If
you do not have a custom SOPC Builder system, you can base your
project on an Altera-provided example hardware system. In fact, you can

NII52003-1.0

3–2 Altera Corporation
Nios II Software Developer’s Handbook May 2004

HAL Architecture

first start developing projects targeting an Altera® Nios development
board, and later re-target the project to a custom board. It is easy to
change the target SOPC Builder system later.

f For details on starting a new project, refer to the online help in the
Nios II IDE.

HAL Architecture This section describes the fundamental elements of the HAL architecture.

Services

The HAL system library provides the following services:

■ Integration with the newlib ANSI C standard library—provides the
familiar C standard library functions

■ Device drivers—provides access to each device in the system
■ The HAL API—provides a consistent, standard interface to HAL

services, such as device access, interrupt handling, and alarm
facilities

■ System initialization—performs initialization tasks for the processor
and the runtime environment before main()

■ Device initialization—instantiates and initializes each device in the
system before main()

Figure 3–1 shows the layers of a HAL-based system, from the hardware
level up to a user program.

Figure 3–1. The Layers of a HAL-Based System

User Program

C Standard Library

HAL API

Device
Driver

Device
Driver...Device

Driver

Nios II Processor System Hardware

Altera Corporation 3–3
May 2004 Nios II Software Developer’s Handbook

Overview of the HAL System Library

Applications vs. Drivers

Programmers fall into two distinct groups: application developers and
device driver developers. Application developers are the majority of
users, and are responsible for writing the system’s main() routine,
among other routines. Applications interact with system resources either
through the C standard library, or through the HAL system library API.
Device driver developers are responsible for making device resources
available to application developers. Device drivers communicate directly
with hardware through low-level hardware-access macros.

For this reason, the main HAL documentation is separated into the
following two main chapters:

■ Chapter 4, Developing Programs using the HAL describes how to
take advantage of the HAL to write programs without considering
the underlying hardware

■ Chapter 5, Developing Device Drivers for the HAL describes how to
communicate directly with hardware and how to make hardware
resources available via the abstracted HAL API

Generic Device Models

The HAL provides generic device models for classes of peripherals found
in embedded systems, such as timers, Ethernet MAC/PHY chips, and
I/O peripherals that transmit character data. The generic device models
are at the core of the HAL system library’s power. The generic device
models allow you to write programs using a consistent API, regardless of
the underlying hardware.

Device Model Classes

The HAL provides a model for the following classes of devices:

■ Character-mode devices—hardware peripherals that send and/or
receive characters serially, such as a UART.

■ Timer devices—hardware peripherals that count clock ticks and can
generate periodic interrupt requests

■ File subsystems—provide a mechanism for accessing files stored
within physical device(s). Depending on the internal
implementation, the file subsystem driver may access the underlying
device(s) directly or use a separate device driver. For example, you
can write a flash file subsystem driver that accesses flash using the
HAL API for flash memory devices

■ Ethernet devices—provide access to an Ethernet connection for the
Altera-provided lightweight IP protocol stack

3–4 Altera Corporation
Nios II Software Developer’s Handbook May 2004

HAL Architecture

■ DMA devices—peripherals that perform bulk data transactions from
a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection

■ Flash memory devices—nonvolatile memory devices that use a
special programming protocol to store data

Benefits to Application Developers

The HAL system library defines a set of functions that you use to initialize
and access each class of device. The API is consistent, regardless of the
underlying implementation of the device hardware. For example, to
access character-mode devices and file subsystems, you can use the C
standard library functions, such as printf() and fopen(). For
application developers, you do not have to write low-level routines just
to establish basic communication with the hardware for these classes of
peripherals.

Benefits to Device Driver Developers

Each device model defines a set of driver functions necessary to
manipulate the particular class of device. If you are writing drivers for a
new peripheral, you only need to provide this set of driver functions. As
a result, your driver development task is pre-defined and well
documented. In addition, existing HAL functions and applications can be
used to access the device, which saves software development effort. The
HAL system library calls driver functions to access hardware.
Application programmers call the ANSI C or HAL API to access
hardware, rather than calling your driver routines directly. Therefore, the
usage of your driver is already documented as part of the HAL API.

C Standard Library—Newlib

The HAL system library integrates the ANSI C standard library into its
runtime environment. The HAL uses newlib, an open-source
implementation of the C standard library. Newlib is a C library for use on
embedded systems, making it a perfect match for the HAL and the Nios II
processor. Newlib licensing does not require you to release your source
code or pay royalties for projects based on newlib.

The ANSI C standard library is well documented. Perhaps the most well-
known reference is The C Programming Language by B. Kernighan & D.
Ritchie, published by Prentice Hall and available in over 20 languages.
Redhat also provides online documentation for newlib at
http://sources.redhat.com/newlib.

Altera Corporation 3–5
May 2004 Nios II Software Developer’s Handbook

Overview of the HAL System Library

Supported
Peripherals

Altera provides many peripherals for use in Nios II processor systems.
Most Altera peripherals provide HAL device drivers that allow you to
access the hardware via the HAL API. The following Altera peripherals
provide full HAL support:

■ Character mode devices:
● UART core
● JTAG UART core
● LCD 16207 display controller

■ Flash memory devices
● Common flash interface compliant flash chips
● Altera’s EPCS serial configuration device controller

■ File subsystems
● Read-only zip filing system

■ Timer devices
● Timer core

■ DMA devices
● DMA controller core

■ Ethernet devices
● LAN91C111 Ethernet MAC/PHY Controller

f The LAN91C111 component requires the MicroC/OS-II runtime
environment. For more information, see “Ethernet & Lightweight IP” on
page 9–1.

f Third-party vendors offer additional peripherals not listed here. For a
list of other peripherals available for the Nios II processor, refer to the
Altera web site, www.altera.com.

All peripherals (both from Altera and third party vendors) must provide
a header file that defines the peripheral’s low-level interface to hardware.
By this token, all peripherals support the HAL to some extent. However,
some peripherals may not provide device drivers. If drivers are not
available, then you should use only the definitions provided in the header
files to access the hardware. You should never access a peripheral using
hard-coded addresses or other such “magic numbers”.

Inevitably certain peripherals have hardware-specific features with usage
requirements that cannot be captured by a general-purpose API. The
HAL system library handles hardware-specific requirements by
providing the UNIX-style ioctl() function. Because the hardware
features depend on the peripheral, the ioctl() options are documented
in the description for each peripheral.

Some peripherals provide dedicated accessor functions that are not based
on the HAL generic device models. For example, Altera provides a
general-purpose parallel I/O (PIO) core for use in Nios II processor

3–6 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Supported Peripherals

system. The PIO peripheral does not fit into any class of generic device
models provided by the HAL, and so it provides a header file and a few
dedicated accessor functions only.

f For complete details regarding software support for a peripheral, refer to
the peripheral’s description. For further details on Altera-provided
peripherals, see the Nios II Processor Reference Handbook.

Altera Corporation 4–1
December 2004 Preliminary

4. Developing Programs
using the HAL

Introduction This chapter discusses how to develop programs based on the Altera®
hardware abstraction layer (HAL) system library.

The API for HAL-based systems is readily accessible to software
developers who are new to the Nios® II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime
environment, and access hardware resources via the HAL API’s generic
device models. The HAL API is largely defined by the familiar ANSI C
standard library functions, though the ANSI C standard library is
separate from the HAL system library. The close integration of the ANSI
C standard library and the HAL makes it possible to develop useful
programs that never call the HAL system library functions directly. For
example, you can manipulate character mode devices and files using the
ANSI C standard library I/O functions, such as printf(), scanf(),
etc.

This chapter provides a basic reference for using the HAL system library
API. Some topics are covered entirely in other chapters. Refer to the table
of contents to find the following important topics not covered in this
chapter:

■ Writing device drivers and code that interacts directly with hardware
■ Exception handling and interrupt service routines
■ Programming to accommodate cache memory
■ Real-time operating systems (RTOS)
■ Ethernet

1 This document does not cover the ANSI C standard library.

The Nios II IDE
Project Structure

The creation and management of software projects based on the HAL
system library is integrated tightly with the Nios II integrated
development environment (IDE). This section discusses the Nios II IDE
projects as a basis for understanding the HAL.

Figure 4–1 shows the blocks of a Nios II program with emphasis on how
the HAL system library fits in. The label for each block describes what or
who generated that block, and an arrow points to each block’s
dependency.

NII52004-1.2

4–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

The system.h System Description File

Figure 4–1. The Nios II IDE Project Structure

HAL-based systems are constructed using two Nios II IDE projects, see
Figure 4–1. Your program is contained in one project (the user application
project), and it depends on a separate system library project (the HAL
system library project). The application project contains all the code you
develop. The executable image for your program ultimately results from
building this project. The HAL system library project contains all
information related to interfacing to the processor hardware. The system
library project depends on a Nios II processor system, defined by a .ptf
file generated by SOPC Builder.

By virtue of this project dependency structure, if the SOPC Builder
system ever changes (i.e., the .ptf file is updated), the Nios II IDE
manages the HAL system library and updates the driver configurations
to accurately reflect the system hardware. The HAL system library
isolates your program from changes to the underlying hardware, and you
can develop and debug code without having to worry about whether
your program matches the target hardware. In short, programs based on
a HAL system library are always synchronized with the target hardware.

The system.h
System
Description File

The system.h file is the foundation of the HAL system library. The
system.h file provides a complete software description of the Nios II
system hardware. It serves as the hand-off point between the hardware
and software design processes. Not all information in system.h is useful
to you as a programmer, and it is rarely necessary to include it explicitly
in your C source files. Nonetheless, system.h holds the answer to the
fundamental question, “What hardware is present in this system?”

Software Application
Based on HAL

Also know as: Your program, or user project
Described by: .c, .h, .s files
Created by: You

Also know as: HAL, or system library project

Described by: .ptf file

Described by: Nios II IDE project settings

Also know as: Nios II processor system, or the hardware

Created by: SOPC Builder

Created by: Nios II IDE

User Application Project

HAL System Library Project

SOPC Builder System

Altera Corporation 4–3
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

The system.h file describes each peripheral in the system and provides
the following details:

■ The hardware configuration of the peripheral
■ The base address
■ The IRQ priority (if any)
■ A symbolic name for the peripheral

You should never edit the system.h file. The Nios II IDE generates the
system.h file automatically for HAL system library projects. The contents
of system.h depend on both the hardware configuration and the HAL
system library properties you set in the Nios II IDE.

f See the Nios II IDE online help for details.

The following code from a system.h file shows some of the hardware
configuration options it defines.

Example: Excerpts from a system.h File
/*
 * sys_clk_timer configuration
 *
 */

#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0

/*
 * jtag_uart configuration
 *
 */

#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1

Data Widths &
the HAL Type
Definitions

For embedded processors such as the Nios II processor, it is often
important to know the exact width and precision of data. Because the
ANSI C data types do not explicitly define data width, the HAL uses a set
of standard type definitions instead. The ANSI C types are supported, but
their data widths are dependent on the compiler’s convention.

4–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

UNIX-Style Interface

The header file alt_types.h defines the HAL type definitions; Table 4–1
shows the HAL type definitions.

Table 4–2 shows the data widths that the Altera-provided GNU tool-
chain uses.

UNIX-Style
Interface

The HAL API provides a number of UNIX-style functions. The UNIX-
style functions provide a familiar development environment for new
Nios II programmers, and can ease the task of porting existing code to run
under the HAL environment. The HAL primarily uses these functions to
provide the system interface for the ANSI C standard library. For
example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list is the complete list of the available UNIX-style
functions:

■ _exit()
■ close()
■ fstat()
■ getpid()
■ gettimeofday()
■ ioctl()

Table 4–1. The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

Table 4–2. Z. GNU Toolchain Data Widths

Type Meaning

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.

Altera Corporation 4–5
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

■ isatty()
■ kill()
■ lseek()
■ open()
■ read()
■ sbrk()
■ settimeofday()
■ stat()
■ usleep()
■ wait()
■ write()

The most commonly used functions are those that relate to file I/O, see
“File System” on page 4–5.

f For details on the use of these functions, refer to “The HAL API
Reference” on page 10–1.

File System The HAL provides the concept of a file system that you can use to
manipulate character mode devices and data files. You can access files
within this file system by using either the C standard library file I/O
functions provided by newlib (e.g. fopen(), fclose(), fread(), etc.),
or using the UNIX-style file I/O provided by the HAL system library.

The HAL provides the following UNIX style functions for file
manipulation:

■ close()
■ fstat()
■ ioctl()
■ isatty()
■ lseek()
■ open()
■ read()
■ stat()
■ write()

f For more information on these functions, refer to “The HAL API
Reference” on page 10–1.

File subsystems register themselves as mount points within the global
HAL file system. Attempts to access files below that mount point are
directed to that file subsystem. For example, if a zip filing subsystem is
mounted as /mount/zipfs0, a call to fopen() for /mount/zipfs0/myfile
is handled by the associated zipfs file subsystem.

4–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using Character-Mode Devices

Similarly, character mode devices register as nodes within the HAL file
system. By convention, the system.h file defines the name of a device
node as the prefix /dev/ plus the name assigned to the hardware
component in SOPC builder. For example, a UART peripheral uart1 in
SOPC builder is /dev/uart1 in system.h.

There is no concept of a current directory. All files must be accessed using
absolute paths.

The following code shows reading characters from a read-only zip file
subsystem rozipfs that is registered as a node in the HAL file system.

Example: Reading Characters from a File Subsystem
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define BUF_SIZE (10)

int main(void)
{
FILE* fp;
char buffer[BUF_SIZE];

fp = fopen (“/mount/rozipfs/test”, “r”);
if (fp == NULL)
{

 printf (“Cannot open file.\n”);
 exit (1);
}

fread (buffer, BUF_SIZE, 1, fp);

fclose (fp);

return 0;
}

f For more information on the use of these functions, refer to “The HAL
API Reference” on page 10–1.

Using Character-
Mode Devices

Character-mode devices are hardware peripherals that send and/or
receive characters serially, such as a universal asynchronous
receiver/transmitter (UART). Character mode devices are registered as
nodes within the HAL file system. In general, a program associates a file
descriptor to a device’s name, and then writes and reads characters to or
from the file using the ANSI C file operations defined in file.h. The HAL
also supports the concept of standard input, standard output, and
standard error, allowing programs to call the stdio.h I/O functions.

Altera Corporation 4–7
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

Standard Input, Standard Output & Standard Error

Using standard input (stdin), standard output (stdout), and standard
error (stderr) is the easiest way to implement simple console I/O. The
HAL system library manages stdin, stdout, and stderr behind the
scenes, which allows you to send and receive characters through these
channels without explicitly managing file descriptors. For example, the
system library directs the output of printf() to standard out, and
perror() to standard error.

You associate each channel to a specific hardware device by setting
system library properties in the Nios II IDE.

f For more information, see the Nios II IDE online help.

The following code shows the classic Hello World program. This program
sends characters to whatever device is associated with stdout when
compiled in Nios II IDE.

Example: Hello World
#include <stdio.h>
int main ()
{
 printf (“Hello world!”);
 return 0;
}

When using the UNIX-style API, you can use the file descriptors:
STDIN_FILENO, STDOUT_FILENO and STDERR_FILENO defined in
unistd.h, to access stdin, stdout, and stderr, respectively.

General Access to Character Mode Devices

Accessing a character-mode device (besides stdin, stdout, or stderr)
is as easy as opening and writing to a file. The following code
demonstrates writing a message to a UART called uart1.

Example: Writing Characters to a UART
#include <stdio.h>
#include <string.h>

int main (void)
{
 char* msg = “hello world”;
 FILE* fp;

 fp = fopen (“/dev/uart1”, “w”);
 if (fp)
 {
 fprintf(fp, “%s”,msg);

4–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using File Subsystems

 fclose (fp);
 }
 return 0;
}

C++ Streams

HAL-based systems can use the C++ streams API for manipulating files
from C++.

/dev/null

All systems include the device /dev/null. Writing to /dev/null has no
effect, and the data is discarded. /dev/null is used for safe I/O redirection
during system startup. This device may also be useful for applications
that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any
physical hardware device within the system.

Using File
Subsystems

The HAL generic device model for file subsystems allows access to data
stored in an associated media using the C standard library file I/O
functions. For example the Altera zip read-only file system provides read-
only access to a file system stored in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a
given mount point. For example, if a file subsystem is registered with the
mount point /mnt/rozipfs, all file access beneath this directory, such as
fopen(“/mnt/rozipfs/myfile”, “r”), are directed to that file
subsystem.

Similar to character mode devices, you can manipulate files within a file
subsystem using the C file I/O functions defined in file.h, such as
fopen() and fread(). For more information on the use of these
functions, refer to “The HAL API Reference” on page 10–1.

Using Timer
Devices

Timer devices are hardware peripherals that count clock ticks and can
generate periodic interrupt requests. You can use a timer device to
provide a number of time-related facilities, such as the HAL system clock,
alarms, the time-of-day, and time measurement. To use the timer facilities,
the Nios II processor system must include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers: a system clock
driver that allows alarm facilities, and a timestamp driver that allows for
high-resolution time measurement. A particular timer peripheral can
behave as one or the other, but not both.

Altera Corporation 4–9
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

The HAL provides implementations of the following standard UNIX
functions: gettimeofday(), settimeofday(), and times().

f The HAL-specfic API functions for accessing timer devices are defined in
sys/alt_alarm.h and sys/alt_timestamp.h.

f For more information on the use of these functions, refer to “The HAL
API Reference” on page 10–1.

The HAL System Clock

The HAL system clock driver provides a periodic “heartbeat”, causing
the system clock to increment on each beat. The system clock facilities can
be used to execute functions at specified times, and to obtain timing
information. You associate a specific hardware timer peripheral as the
system clock device by setting system library properties in the Nios II
IDE.

f For more information, see the Nios II IDE online help.

The system clock measures time in units of “ticks”. For embedded
engineers who deal with both hardware and software, do not confuse the
HAL system clock with the clock signal used to synchronize the Nios II
processor hardware. The period of a HAL system clock tick is much
longer than the hardware system clock.

You can obtain the current value of the system clock by calling the
alt_nticks()function. This function returns the elapsed time in
system clock ticks since reset. The system clock rate, in ticks per second,
can be obtained using the function alt_ticks_per_second().The
HAL timer driver initializes the tick frequency when it creates the
instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the
current time. You must first calibrate the time of day by calling
settimeofday(). In addition, you can use the times() function to
obtain information on the number of elapsed ticks. These are defined in
times.h.

Alarms

You can register functions to be executed at a specified time using the
HAL alarm facility. An alarm is registered by calling the function
alt_alarm_start():

int alt_alarm_start (alt_alarm* alarm,
 alt_u32 nticks,

4–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using Timer Devices

 alt_u32 (*callback) (void* context),
 void* context);

The function callback is called after nticks have elapsed. The input
argument context is passed as the input argument to callback when
the call occurs. The structure pointed to by the input argument alarm is
initialized by the call to alt_alarm_start(). You do not have to
initialize it.

The callback function can reset the alarm. The return value of the
registered callback function is the number of ticks until the next call to
callback. A return value of zero indicates that the alarm should be
stopped. You can manually cancel an alarm by calling
alt_alarm_stop().

Take care when writing alarm callback functions. These functions are
likely to execute in interrupt context, which imposes certain restrictions
on functionality, see “Exception Handling” on page 6–1.

The following code shows a code fragment that demonstrates how an
alarm can be registered for a periodic callback every second.

Example: Using a Periodic Alarm Callback Function
#include <stddef.h>
#include <stdio.h>
#include “sys/alt_alarm.h”
#include “alt_types.h”

/*
 * The callback function.
 */

alt_u32 my_alarm_callback (void* context)
{
 /* This function will be called once/second */
 return alt_ticks_per_second();
}

...

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

...

 if (alt_alarm_start (&alarm,
 alt_ticks_per_second(),
 my_alarm_callback,
 NULL) < 0)
 {
 printf (“No system clock available\n”);
 }

Altera Corporation 4–11
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

High Resolution Time Measurement

Sometimes you want to measure time intervals with a greater degree of
accuracy than is provided by HAL system clock ticks. The HAL provides
high resolution timing functions using a timestamp driver. A timestamp
driver provides a monotonically increasing counter that you can sample
to obtain timing information. The HAL only supports one timestamp
driver in the system.

If a timestamp driver is present, the functions
alt_timestamp_start() and alt_timestamp() become available.
The Altera-provided timestamp driver uses the timer, which you select
on the system library properties page in the Nios II IDE.

Calling the function alt_timestamp_start() starts the counter
running. Subsequent calls to alt_timestamp()then returns the current
value of the timestamp counter. Calling alt_timestamp_start()
again resets the counter to zero. The behavior of the timestamp driver is
undefined when the counter reaches (232 – 1).

You can obtain the rate at which the timestamp counter increments by
calling the function alt_timestamp_freq(). This rate is typically the
hardware frequency that the Nios II processor system runs at—usually
millions of cycles per second. The timestamp drivers are defined in the
alt_timestamp.h header file.

The following code fragment shows how you can use the timestamp
facility to measure code execution time.

Example: Using the Timestamp to Measure Code Execution Time
#include <stdio.h>
#include “sys/alt_timestamp.h”
#include “alt_types.h”

int main (void)
{
 alt_u32 time1;
 alt_u32 time2;
 alt_u32 time3;

 if (alt_timestamp_start() < 0)
 {
 printf (“No timestamp device available\n”);
 }
 else
 {
 time1 = alt_timestamp();
 func1(); /* first function to monitor */
 time2 = alt_timestamp();
 func2(); /* second function to monitor */
 time3 = alt_timestamp();

4–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using Flash Devices

 printf (“time in func1 = %u ticks\n”,
(unsigned int) (time2 – time1));

 printf (“time in func2 = %u ticks\n”,
(unsigned int) (time3 – time2));

 printf (“Number of ticks per second = %u\n”,
(unsigned int)alt_timestamp_freq());

}
 return 0;
}

Using Flash
Devices

The HAL provides a generic device model for nonvolatile flash memory
devices. Flash memories use special programming protocols to store data.
The HAL API provides functions to write data to flash. For example, you
can use these functions to implement a flash-based filing subsystem.

The HAL API also provides functions to read flash, although it is
generally not necessary. For most flash devices, programs can treat the
flash memory space as simple memory when reading, and do not need to
call special HAL API functions. If the flash device has a special protocol
for reading data, such as the Altera EPCS serial configuration device, you
must use the HAL API to both read and write data.

This section describes the HAL API for the flash device model. The
following two APIs provide a different level of access to the flash:

■ Simple flash access—a simple API for writing buffers into flash and
reading them back, which does not preserve the prior contents of
other flash erase blocks.

■ Fine-grained flash access—finer-grained functions for programs that
need control over writing or erasing individual blocks. This
functionality is generally required for managing a file subsystem.

The API functions for accessing flash devices are defined in
sys/alt_flash.h.

f For more information on the use of these functions, refer to “The HAL
API Reference” on page 10–1.

Simple Flash Access

This interface comprises: alt_flash_open_dev(),
alt_write_flash(), alt_read_flash(), and
alt_flash_close_dev(). The code “Example: Using the Simple Flash
API Functions” on page 4–13 shows the usage of all of these functions in
one code example. You open a flash device by calling

Altera Corporation 4–13
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

alt_flash_open_dev(), which returns a file handle to a flash device.
This function takes a single argument that is the name of the flash device,
as defined in system.h.

Once you have obtained a handle, you can use the alt_write_flash()
function to write data to the flash device. The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

A call to this function writes to the flash device identified by the handle
fd, offset bytes from the beginning of the flash device. The data written
comes from the address pointed to by src_addr, the amount of data
written is length.

There is also an alt_read_flash() function to read data from the flash
device. The prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

A call to this function reads from the flash device with the handle fd,
offset bytes from the beginning of the flash device. The data is written
to the location pointed to by dest_addr, the amount of data read is
length. For most flash devices, you can access the contents as standard
memory, making it unnecessary to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the
device. The prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The following code shows the usage of simple flash API functions to
access a flash device named /dev/ext_flash, as defined in system.h.

Example: Using the Simple Flash API Functions
#include <stdio.h>
#include <string.h>
#include “sys/alt_flash.h”
#define BUF_SIZE1024

int main ()
{
alt_flash_fd* fd;
int ret_code;

 char source[BUF_SIZE];
 char dest[BUF_SIZE];

4–14 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using Flash Devices

 /* Initialize the source buffer to all 0xAA */
 memset(source, 0xa, BUF_SIZE);

fd = alt_flash_open_dev(“/dev/ext_flash”);
 if (fd)
 {
 ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
 if (!ret_code)
 {
 ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
 if (!ret_code)
 {
 /*

* Success.
* At this point, the flash is be all 0xa and we
* should have read that all back into dest
*/

 }
 }
 alt_flash_close_dev(fd);
 }
 else
 {
 printf(“Can’t open flash device\n”);
 }
return 0;

}

Block Erasure or Corruption

Generally, flash memory is divided into blocks. alt_write_flash()
may need to erase the content of a block before it can write data to it. In
this case, it makes no attempt to preserve the existing contents of a block.
This action can lead to unexpected data corruption (erasure), if you are
performing writes that do not fall on block boundaries. If you wish to
preserve existing flash memory contents, use the finer-granularity flash
functions, see “Fine-Grained Flash Access” on page 4–15.

Table 4–3 shows how you can cause unexpected data corruption by
writing using the simple flash-access functions. Table 4–3 shows the
example of an 8 Kbyte flash memory comprising two 4 Kbyte blocks. First
write 5 Kbytes of all 0xAA into flash memory at address 0x0000, and
then write 2 Kbytes of all 0xBB to address 0x1400. After the first write
succeeds (at time t(2)), the flash memory contains 5 Kbyte of 0xAA, and
the rest is empty (i.e., 0xFF). Then the second write begins, but before
writing into the second block, the block is erased. At this point, t(3), the

Altera Corporation 4–15
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

flash contains 4 Kbyte of 0xA and 4 Kbyte of 0xFF. After the second write
finishes, at time t(4), the 2 Kbyte of 0xFF at address 0x1000 is
unexpectedly corrupt.

Fine-Grained Flash Access

There are three additional functions that provide complete control over
writing flash contents at the highest granularity:
alt_get_flash_info(), alt_erase_flash_block(), and
alt_write_flash_block().

By the nature of flash memory, you cannot erase a single address within
a block. You must erase (i.e., set to all ones) an entire block at a time.
Writing to flash memory can only change bits from 1 to 0; to change any
bit from 0 to 1, you must erase the entire block along with it. Therefore, to
alter a specific location within a block while leaving the surrounding
contents unchanged, you must read out the entire contents of the block to
a buffer, alter the value(s) in the buffer, erase the flash block, and finally
write the whole block-sized buffer back to flash memory. The fine-
grained flash access functions allow you to perform this process at the
flash block level.

alt_get_flash_info() gets the number of erase regions, the number
of erase blocks within each region, and the size of each erase block. The
prototype is:

Table 4–3. Example of Writing Flash & Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before First
Write

First Write Second Write

After Erasing
Block(s)

After Writing
Data 1

After Erasing
Block(s)

After Writing
Data 2

0x0000 1 ?? FF AA AA AA

0x0400 1 ?? FF AA AA AA

0x0800 1 ?? FF AA AA AA

0x0C00 1 ?? FF AA AA AA

0x1000 2 ?? FF AA FF FF (1)

0x1400 2 ?? FF FF FF BB

0x1800 2 ?? FF FF FF BB

0x1C00 2 ?? FF FF FF FF

Notes to Table 4–3:
(1) Unexpectedly cleared to FF during erasure for second write.

4–16 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using Flash Devices

int alt_get_flash_info(alt_flash_fd* fd,
 flash_region** info,
 int* number_of_regions)

If the call is successful, upon return the address pointed to by
number_of_regions contains the number of erase regions in the flash
memory, and info points to the address of the first flash_region
description.

The flash_region structure is defined in sys/alt_flash_types.h, and
the typedef is:

typedef struct flash_region
{
 int offset;/* Offset of this region from start of the flash */
 int region_size;/* Size of this erase region */
 int number_of_blocks;/* Number of blocks in this region */
 int block_size;/* Size of each block in this erase region */
}flash_region;

With the information obtained by calling alt_get_flash_info(), you
are in a position to erase or program individual blocks of the flash.

alt_erase_flash() erases a single block in the flash memory. The
prototype is:

int alt_erase_flash_block(alt_flash_fd* fd,
 int offset,

 int length)

The flash memory is identified by the handle fd. The block is identified
as being offset bytes from the beginning of the flash memory, and the
block size is passed in length.

alt_write_flash_block()writes to a single block in the flash
memory. The prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
 int block_offset,
 int data_offset,
 const void *data,
 int length)

This function writes to the flash memory identified by the handle fd. It
writes to the block located block_offset bytes from the start of the
flash. The function writes length bytes of data from the location pointed
to by data to the location data_offset bytes from the start of the flash
device.

Altera Corporation 4–17
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

1 These program and erase functions do not perform address
checking, and do not verify whether a write operation spans into
the next block. You must pass in valid information about the
blocks to program or erase.

The following code demonstrates the usage of the fine-grained flash
access functions.

Example: Using the Fine-Grained Flash Access API Functions
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 100

int main (void)
{
 flash_region* regions;
 alt_flash_fd* fd;
 int number_of_regions;
 int ret_code;
 char write_data[BUF_SIZE];

 /* Set write_data to all 0xa */
 memset(write_data, 0xA, BUF_SIZE);

 fd = alt_flash_open_dev(EXT_FLASH_NAME);

 if (fd)
 {
 ret_code = alt_get_flash_info(fd,

®ions,
&number_of_regions);

 if (number_of_regions && (regions->offset == 0))
 {
 /* Erase the first block */
 ret_code = alt_erase_flash_block(fd,

regions->offset,
 regions->block_size);
 if (ret_code)
 {

/*
* Write BUF_SIZE bytes from write_data 100 bytes into
* the first block of the flash
*/

 ret_code = alt_write_flash_block(fd,
regions->offset,

 regions->offset+0x100,
 write_data,

BUF_SIZE);
 }
 }
 }
return 0;

}

4–18 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using DMA Devices

Using DMA
Devices

The HAL provides a device abstraction model for direct memory access
(DMA) devices. These are peripherals that perform bulk data transactions
from a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

In the HAL DMA device model, DMA transactions fall into one of two
categories: transmit or receive. As a result, the HAL provides two device
drivers to implement transmit channels and receive channels. A transmit
channel takes data in a source buffer and transmits it to a destination
device. A receive channel receives data from a device and deposits it into
a destination buffer. Depending on the implementation of the underlying
hardware, software may have access to only one of these two endpoints.

Figure 4–2 shows the three basic types of DMA transactions. Copying
data from memory to memory involves both receive and transmit DMA
channels simultaneously.

Figure 4–2. Three Basic Types of DMA Transactions

The API for access to DMA devices is defined in sys/alt_dma.h.

f For more information on the use of these functions, refer to “The HAL
API Reference” on page 10–1.

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Recieve
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory

Altera Corporation 4–19
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

DMA devices operate on the contents of physical memory, therefore
when reading and writing data you must consider cache interactions, see
“Cache Memory” on page 7–1.

DMA Transmit Channels

DMA transmit requests are queued up using a handle to a DMA transmit
device. A handle is obtained using the function
alt_dma_txchan_open(). This function takes a single argument, the
name of a device to use, as defined in system.h.

The following code shows how to obtain a handle for a DMA transmit
device dma_0.

Example: Obtaining a File Handle for a DMA Device
#include <stddef.h>
#include “sys/alt_dma.h”

int main (void)
{
 alt_dma_txchan tx;

 tx = alt_dma_txchan_open (“/dev/dma_0”);
 if (tx == NULL)
 {
 /* Error */
 }
 else
 {
 /* Success */
 }
 return 0;
}

You can use this handle to post a transmit request using
alt_dma_txchan_send(). The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
 const void* from,
 alt_u32 length,
 alt_txchan_done* done,
 void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel
dma, for length bytes of data to be transmitted from address from. The
function returns before the full DMA transaction completes. The return
value indicates whether the request was successfully queued. A negative

4–20 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using DMA Devices

return value indicates that the request failed. When the transaction
completes, the user-supplied function done is called with argument
handle to provide notification.

Two additional functions are provided for manipulating DMA transmit
channels: alt_dma_txchan_space(), and
alt_dma_txchan_ioctl(). The alt_dma_txchan_space()
function returns the number of additional transmit requests that can be
queued to the device. The alt_dma_txchan_ioctl() function
performs device-specific manipulation of the transmit device.

DMA Receive Channels

DMA receive channels operate in a similar manner to DMA transmit
channels. A handle for a DMA receive channel can be obtained using the
alt_dma_rxchan_open() function. You can then use the
alt_dma_rxchan_prepare() function to post receive requests. The
prototype for alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
 void* data,
 alt_u32 length,
 alt_rxchan_done* done,
 void* handle);

A call to this function posts a receive request to channel dma, for up to
length bytes of data to be placed at address data. This function returns
before the DMA transaction completes. The return value indicates
whether the request was successfully queued. A negative return value
indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide
notification and a pointer to the receive data.

Two additional functions are provided for manipulating DMA receive
channels: alt_dma_rxchan_depth() and
alt_dma_rxchan_ioctl().

alt_dma_rxchan_depth() returns the maximum number of receive
requests that can be queued to the device. alt_dma_rxchan_ioctl()
performs device-specific manipulation of the receive device.

The following code shows a complete example application that posts a
DMA receive request, and blocks in main() until the transaction
completes.

Altera Corporation 4–21
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

Example: A DMA Transaction on a Receive Channel
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include “sys/alt_dma.h”
#include “alt_types.h”

/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;

/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
{
 dma_complete = 1;
}

int main (void)
{
 alt_u8 buffer[1024];
 alt_dma_rxchan rx;

 /* Obtain a handle for the device */
 if ((rx = alt_dma_rxchan_open (“/dev/dma_0”)) == NULL)
 {
 printf (“Error: failed to open device\n”);
 exit (1);
 }
 else
 {
 /* Post the receive request */
 if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL)

< 0)
 {
 printf (“Error: failed to post receive request\n”);
 exit (1);
 }

 /* Wait for the transaction to complete */
 while (!dma_complete);
 printf (“Transaction complete\n”);
 alt_dma_rxchan_close (rx);
 }
 return 0;
}

Memory-to-Memory DMA Transactions

Copying data from one memory buffer to another buffer involves both
receive and transmit DMA drivers. The following code shows the process
of queuing up a receive request followed by a transmit request to achieve
a memory-to-memory DMA transaction.

Example: Copying Data from Memory to Memory
#include <stdio.h>
#include <stdlib.h>

4–22 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using DMA Devices

#include "sys/alt_dma.h"
#include "system.h"

static volatile int rx_done = 0;

/*
 * Callback function that obtains notification that the data has
 * been received.
 */

static void done (void* handle, void* data)
{
 rx_done++;
}

/*
 *
 */

int main (int argc, char* argv[], char* envp[])
{
 int rc;

 alt_dma_txchan txchan;
 alt_dma_rxchan rxchan;

 void* tx_data = (void*) 0x901000; /* pointer to data to send */
 void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

 /* Create the transmit channel */

 if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)
 {
 printf ("Failed to open transmit channel\n");
 exit (1);
 }

 /* Create the receive channel */

 if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
 {
 printf ("Failed to open receive channel\n");
 exit (1);
 }

 /* Post the transmit request */

 if ((rc = alt_dma_txchan_send (txchan,

 tx_data,
128,
NULL,
NULL)) < 0)

 {
 printf ("Failed to post transmit request, reason = %i\n", rc);
 exit (1);
 }

Altera Corporation 4–23
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

 /* Post the receive request */

 if ((rc = alt_dma_rxchan_prepare (rxchan,

rx_buffer,
128,
done,
NULL)) < 0)

 {
 printf ("Failed to post read request, reason = %i\n", rc);
 exit (1);
 }

 /* wait for transfer to complete */

 while (!rx_done);

 printf ("Transfer successful!\n");

 return 0;
}

Reducing Code
Footprint

Code size is always of concern for system developers, because there is a
cost associated with the memory device that stores code. The ability to
control and reduce code size is important in controlling this cost.

The HAL environment is designed so that in general only those features
requested by you contribute to the total code footprint. If your Nios II
hardware system contains exactly the peripherals used by your program,
the HAL should contain only the drivers necessary to control the
hardware, and nothing more.

The following sections describe options to consider when you need to
reduce code size to the absolute minimum.

Enable Compiler Optimizations

Use the -O3 compiler optimization level for the nios2-elf-gcc
compiler. The code is then compiled with the maximum optimization
available—for both size and speed. You must do this action for both the
system library and the application project.

Use Small Footprint Device Drivers

Some devices provide two driver variants, a fully featured “fast” variant,
and a lightweight “small” variant. Which features are provided by these
two variants is device specific. By default the HAL system library always
uses the fast driver variants. You can choose the small footprint drivers
by turning on the Use Small Footprint Drivers option for your HAL

4–24 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Reducing Code Footprint

system library in the Nios II IDE. Alternately, you can use the
preprocessor option –DALT_USE_SMALL_DRIVERS when building the
HAL system library.

Table 4–4 lists the Nios II peripherals produced by Altera that provide
small footprint drivers. Other peripherals may also be affected by the
small footprint option. Refer to each peripheral datasheet for complete
details regarding the behavior of its small footprint driver.

Reduce the File Descriptor Pool

The file descriptors that access character mode devices and files are
allocated from a pool of available file descriptors. The size of this pool is
defined by the compile time constant ALT_MAX_FD, which can be
controlled as a system library property within the Nios II IDE. The default
is 32, and if, for example, your program only requires 10, you can reduce
memory footprint by reducing the value of ALT_MAX_FD.

Use /dev/null

At boot time, standard input, standard output and standard error are all
directed towards the null device, i.e., /dev/null. This direction ensures
that calls to printf() during driver initialization do nothing and
therefore are harmless. Once all drivers have been installed, these streams
are then redirected towards the channels configured in the HAL. The
footprint of the code that performs this redirection is small, but it can be
avoided entirely by selecting null for stdin, stdout, and stderr. This
selection assumes that you want to discard all data transmitted on
standard out or standard error, and your program never receives input
via stdin. You can control the stdin, stdout, and stderr channels as
a system library property in the Nios II IDE.

Use UNIX not ANSI C File I/O

There is a per-access performance overhead associated with accessing
device and files using the UNIX-style file I/O functions. To improve
performance, the ANSI C file I/O provides buffered access, thereby

Table 4–4. P. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven.

JTAG UART Polled operation, rather than IRQ-driven.

Common flash interface controller Driver is excluded in small footprint mode.

LCD module controller Driver is excluded in small footprint mode

Altera Corporation 4–25
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

reducing the total number of hardware I/O accesses performed. Also the
ANSI C API is more flexible and therefore easier to use. These benefits are
gained at the expense of code footprint. You can minimize code footprint
by using the UNIX style I/O API directly, see “UNIX-Style Interface” on
page 4–4.

Use the Small Newlib C Library

The full ANSI C standard library is often unnecessary for embedded
systems. The HAL provides a reduced implementation of the newlib
ANSI C standard library to remove features of newlib that are generally
superfluous for embedded systems. The small newlib implementation
requires a smaller code footprint. You can control the newlib
implementation as a system library property in the Nios II IDE. This
option is also controlled by the -msmallc command-line option for
nios2-elf-gcc.

f For complete details of which function is supported by the small newlib
C library, refer to the newlib documentation installed with the Nios II
development kit, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

4–26 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Reducing Code Footprint

Table 4–5 summarizes the limitations of the small newlib C library
implementation.

Table 4–5. Limitations of the Small Newlib C Library

Limitation Functions Affected

No floating-point support for printf() family of routines. The functions listed
are implemented, but %f and%g options are not supported.

asprintf()
fiprintf()
fprintf()
iprintf()
printf()
siprintf()
snprintf()
sprintf()
vasprintf()
vfiprintf()
vfprintf()
vprintf()
vsnprintf()
vsprintf()

No support for scanf() family of routines. The functions listed are not
supported.

fscanf()
scanf()
sscanf()
vfscanf()
vscanf()
vsscanf()

No support for seeking. The functions listed are not supported. fseek()
ftell()

No support for opening/closing FILE *. Only pre-opened stdout, stderr,
and stdin are available. The functions listed are not supported.

fopen()
fclose()
fdopen()
fcloseall()
fileno()

No buffering of FILE * routines (i.e., all stdio.h routines). All routines defined in
stdio.h.

These functions are
supported, but no buffering is
provided.

setbuf() and
setvbuf() are not
supported.

No support for locale. setlocale()
localeconv()

No support for C++, because the above functions are not supported.

Altera Corporation 4–27
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

Eliminate Unused Device Drivers

If a hardware device is present in the system, the Nios II IDE assumes the
device needs drivers, and configures the HAL system library accordingly.
If an appropriate driver can be found, the HAL creates an instance of this
driver. If your program never actually accesses the device, resources are
being used unnecessarily to initialize the device driver.

If a device is included in hardware but your program never uses it, you
should examine the option of removing the device entirely. This reduces
both code footprint and FPGA resource. However, there are some
inescapable cases when a device is present, but software does not require
a driver.

The most common example is flash memory. In this case, user programs
often do not require write access to the flash memory, and therefore do
not need a flash driver. For this case, specifying the option
–DALT_NO_CFI_FLASH to the preprocessor prevents the HAL from
including the flash driver in the system library.

Further control of the device driver initialization process can be achieved
by using the free-standing environment, see “Boot Sequence and Entry
Point” on page 4–28.

Use _exit() for No Clean Exit

The HAL calls the exit() function at system shutdown to provide a
clean exit from the program. exit() flushes all of the C library internal
I/O buffers and calls any functions registered with atexit(). In
particular, exit() is called upon return from main().

In general, embedded systems never exit, and so this code is redundant.
To avoid the overhead associated with providing a clean exit, your
program can use the function _exit() in place of exit(). This function
does not require you to change source code. You can control exit behavior
as a system library property in the Nios II IDE, or by specifying the
preprocessor option -Dexit=_exit.

Disable Instruction Emulation

The HAL software exception handler can emulate multiply and divide
instructions when they are not supported by the processor. This feature
can be disabled by defining the C preprocessor macro:
ALT_NO_INSTRUCTION_EMULATION for the system library project.

4–28 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Boot Sequence and Entry Point

You can disable this feature, if you are using a core that supports
hardware multiply/divide and in most cases, even if your processor does
not support hardware multiply/divide. System library projects and
application projects built for systems that do not have support for
hardware multiple/divide instructions, are compiled and linked with the
-mno-hw-mul option. Therefore, code compiled as a part of these
projects does not require multiply instruction emulation. Divide
instruction emulation is only required if you explicitly compile your code
with the –mhw-div option.

Boot Sequence
and Entry Point

The discussion so far has assumed that the entry point for your program
is the function main(). There is an alternate entry point available,
alt_main(), that you can use to gain greater control of the boot
sequence. The notion of entering at main() or alt_main() is the
difference between hosted and free-standing applications.

Hosted vs. Free-Standing Applications

The ANSI C standard defines a hosted application as one that calls
main() to begin execution. At the start of main(), a hosted application
presumes the runtime environment and all system services are initialized
and ready to use. This presumption is the case with the HAL system
library. In fact, the hosted environment is one of the HAL’s greatest
benefits to new Nios II programmers, because you don’t have to consider
what devices exist in the system or how to initialize each one; the HAL
automatically initializes the whole system.

The ANSI C standard also provides for an alternate entry point that
avoids automatic initialization, and assumes that the Nios II programmer
manually initializes any hardware that is used. The alt_main()
function provides a free-standing environment, giving you complete
control over the initialization of the system. The free-standing
environment places upon the programmer the burden of manually
initializing any system feature used in the program. For example, calls to
printf() do not function correctly in the free-standing environment,
unless alt_main() first instantiates a character-mode device driver, and
redirects stdout to the device.

1 Using the freestanding environment increases the complexity of
writing Nios II programs, because you give up the benefits of the
HAL and assume full responsibility for initializing the system. If
your main interest in the freestanding environment is to reduce
code footprint, you should use the suggestions described in
“Reducing Code Footprint” on page 4–23. It is easier to reduce
the HAL system library footprint by using options available in
the Nios II IDE, rather than using the freestanding mode.

Altera Corporation 4–29
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

The Nios II development kit provides examples of both free-standing and
hosted programs.

f For more information, refer to the Nios II IDE online help.

Boot Sequence for HAL-Based Programs

The HAL provides system initialization code that performs the following
boot sequence:

■ Flushes the instruction and data cache
■ Configures the stack pointer
■ Configures the global pointer
■ Zero initializes the BSS region using the linker supplied symbols

__bss_start and __bss_end. These are pointers to the beginning
and the end of the BSS region

■ Copies the .rwdata, .rodata, and/or exceptions sections to RAM,
if there is no boot loader present in the system (see “Boot Modes” on
page 4–33)

■ Calls alt_main()

If you do not provide an alt_main() function, a default
implementation performs the following steps:

■ Calls ALT_OS_INIT() to perform any necessary operating system
specific initialization. For a system that does not include an OS
scheduler, this macro has no effect

■ If the HAL is used with an operating system, initialize the
alt_fd_list_lock semaphore, which controls access to the HAL
file systems.

■ Initializes the interrupt controller, and enable interrupts
■ Calls the alt_sys_init() function, which initializes all device

drivers and software components in the system. The Nios II IDE
automatically creates and manages the file alt_sys_init.c for
each HAL system library

■ Redirects the C standard I/O channels (stdin, stdout, and
stderr) to use the appropriate devices

■ Calls the C++ constructors, using the _do_ctors() function
■ Register the C++ destructors to be called at system shutdown
■ Calls main()
■ Calls exit(), passing the return code of main() as the input

argument for exit()

This default implementation is provided in the file alt_main.c located in
the Nios II development kit install directory.

4–30 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Memory Usage

Customizing the Boot Sequence

You can provide your own implementation of the start-up sequence by
simply defining alt_main() in your Nios II IDE project. This gives you
complete control of the boot sequence, and gives you the power to
selectively enable HAL services. If your application requires an
alt_main() entry point, you can copy the default implementation as a
starting point and customize it to your needs.

This function should never return. The prototype for alt_main() is:

void alt_main (void)

A feature of the HAL build environment is that all source and include
files are located using a search path. Your project always checks first,
which allows you to override the default device drivers and system code
with your own implementation. For example, if you wish to supply your
own alternative to alt_sys_init.c, you can by placing it in your system
project directory. Your alternative is used in preference to the auto-
generated version.

f For more information on alt_sys_init(), see “Developing Device
Drivers for the HAL” on page 5–1.

Memory Usage This section describes the way that the HAL uses memory and how the
HAL arranges code, data, stack, etc., in memory.

Memory Sections

By default, HAL-based systems are linked using an automatically-
generated linker script that is created and managed by the Nios II IDE.
This linker script controls the mapping of code and data within the
available memory sections. The auto-generated linker script creates a
section for each physical memory device in the system. For example, if
there is a memory component named on_chip_memory defined in the
system.h file, there is a memory section named .on_chip_memory.

The memory device that contains the Nios II processor’s reset address or
exception address is a special case. If a memory device includes one of
these addresses, all memory below that address is excluded from the
section associated with that memory device. A 32-byte reset section is
constructed starting at the reset address, and the reset section is reserved
exclusively for the use of the reset handler.

1 The unavailable regions that this memory scheme can create can
be used by other processes in multi-processor systems.

Altera Corporation 4–31
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

Figure 4–3 shows an example of how physical memory is divided into
memory sections. For demonstration purposes only, this example
artificially creates unusable regions of memory due to placement of the
reset and exception addresses. By default, Altera tools map the reset and
exception addresses into memory so that there is no inaccessible memory.
In a system using the default memory map, the reset address is at offset
0x0 in either an device memory or a flash memory, and the exception
address is at offset 0x20 in the memory specified in SOPC Builder at
system generation time.

Figure 4–3. HAL Memory Partitions

Assigning Code & Data to Memory Partitions

This section describes how to control the placement of program code and
data in specific memory sections. In general, the Nios II development
tools automatically choose a sensible default partitioning. For example, to
enhance performance, it is a common technique to place performance-
critical code and data in device RAM with fast access time. It is also
common during the debug phase to reset (i.e., boot) the processor from a
location in RAM, but then boot from flash memory in release version of
the system. In these cases, you have to specify manually which code
belongs in which section.

Physical Memory:
on_chip_ram

0x0

Section
".on_chip_ram"

Physical Memory:
sdram

Unavailable

Section
".reset"

Unavailable

 Section
".sdram"

0x0

Reset Address

Reset Address + 0x10

Exception Address

4–32 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Memory Usage

Simple Placement Options

The reset handler code is always placed in the .reset partition. The
exception handler code is always the first code within the section that
contains the exception address. By default, the remaining code and data
are then divided into the following three output sections:

■ .text—all remaining code
■ .rodata—the read only data
■ .rwdata—read and write data, including zero initialized data

You can control the placement of .text, .rodata, and .rwdata as a
system library property in the Nios II IDE.

f For more information, see the Nios II IDE online help.

Advanced Placement Options

Within your program source code, you can specify a target memory
section for a specific piece of code. To do this action in C or C++, you can
use the section attribute. The following code shows placing a variable
foo within the memory named .on_chip_memory, and the function
bar() in the memory named .sdram.

Example: Manually Assigning C Code to a Specific Memory Section
/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".on_chip_memory"))) = 0;

void bar __attribute__ ((section (".sdram"))) (void)
{
 foo++;
}

In assembly you do this using the .section directive. For example, all
code after the following line is placed in the memory device named
on_chip_memory:

.section .on_chip_memory

f For details of the usage of these features, refer to the GNU compiler and
assembler documentation.

Placement of the Heap & Stack

Both the heap and stack are always placed so that they are in the same
memory partition as the .rwdata section. The stack grows downwards
(toward lower addresses) from the end of the section. The heap grows
upwards from the last used memory within the .rwdata section.

Altera Corporation 4–33
December 2004 Nios II Software Developer’s Handbook

Developing Programs using the HAL

The HAL does not check that there is sufficient space for the heap and
stack during run-time. You must ensure that your program operates
within the limits of available memory for its heap and stack.

Boot Modes

The memory device that contains the reset vector is the boot device for the
processor. This device may be an external flash or an Altera EPCS serial
configuration device, or it may be an on-chip RAM. Regardless of the
nature of the boot device, all HAL-based systems are constructed so that
all code and data sections are initially stored within it. These sections are
copied to the execution locations specified on the system library
properties page at boot time.

If the .text section is not located in the boot device, the Altera flash
programmer in the Nios II IDE automatically places a boot loader at the
reset address that is responsible for loading all code and data sections
before the call to _start. When booting from an EPCS device, the role of
this loader is provided by the hardware.

However, if the .text section is located in the boot device, there is no
separate loader present in the system. Instead the _reset entry point
within the HAL executable is called directly. The function _reset
initializes the instruction cache and then calls _start, which allows
applications to be developed that boot and execute directly from flash
memory.

When running in this mode, the HAL executable must take responsibility
for loading any sections that require loading to RAM. The sections:
.rwdata, .rodata, and the exceptions section are automatically loaded
before the call to alt_main(), as required. This loading is performed by
the function alt_load().

Paths to HAL
System Library
Files

In general, you should never need to edit a HAL system library file.
However, you may wish to view, for example, header files for reference.

Finding HAL Files

HAL system library files are in several separate directories because of the
custom nature of Nios II systems. Each Nios II system may include
different peripherals, and therefore the HAL system library for each
system is different. HAL-related files can be found in one of the following
locations:

■ Most HAL system library files are located in the <Nios II kit
path>/components directory

4–34 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Paths to HAL System Library Files

■ Header files that define the HAL generic device models are located
in <Nios II kit path>/components/altera_hal/HAL/inc/sys. For
#include directives, these files are referenced with respect to
<Nios II kit path>/components/altera_hal/HAL/inc/. For example, to
include the DMA drivers, use #include sys/alt_dma.h

■ The system.h file is located in the Nios II IDE project directory for a
specific HAL system library project

■ The newlib ANSI C library header files are located in <Nios II kit
path>/bin

Overriding HAL Functions

To provide your own implementation of a function, include the file in
your Nios II IDE application project. When building the executable,
Nios II IDE finds your function first, and uses it in place of the HAL
version.

Altera Corporation 5–1
December 2004 Preliminary

5. Developing Device Drivers
for the HAL

Introduction Embedded systems typically have application-specific hardware features
that require custom device drivers. This chapter describes how to develop
device drivers and integrate them with the hardware abstraction layer
(HAL) system library.

Direct interaction with the hardware should be confined to device driver
code. In general, most of your program code should be free of low-level
access to the hardware. Wherever possible, you should use the high-level
HAL application programming interface (API) functions to access
hardware. This makes your code more consistent and more portable to
other Nios® II systems that may have different hardware configurations.

When you create a new driver, you can integrate the driver into the HAL
framework at one of the following two levels:

■ Integration into the HAL API
■ Peripheral-specific API

Integration into the HAL API

Integration into the HAL API is the preferred option for a peripheral that
belongs to one of the HAL generic device model classes, such as
character-mode or DMA devices. For integration into the HAL API, you
write device accessor functions as specified in this chapter, and the device
becomes accessible to software via the standard HAL API. For example,
if you have a new LCD screen device that displays ASCII characters, you
write a character-mode device driver. With this driver in place, programs
can call the familiar printf() function to stream characters to the LCD
screen.

Peripheral-Specific API

If the peripheral does not belong to one of the HAL generic device model
classes, you need to provide a device driver with an interface that is
specific to the hardware implementation, and the API to the device is
separate from the HAL API. Programs access the hardware by calling the
functions you provide, not the HAL API.

The up-front effort to implement integration into the HAL API is higher,
but you gain the benefit of the HAL and C standard library API to
manipulate devices.

NII52005-1.1

5–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Development Flow for Creating Device Drivers

f For details on integration into the HAL API, see “Integrating a Device
Driver into the HAL” on page 5–15.

All the other sections in this chapter apply to integrating drivers into the
HAL API and creating drivers with a peripheral-specific API.

1 Although C++ is supported for programs based on the HAL,
HAL drivers should not be written in C++. Restrict your driver
code to either C or assembler, and preferably C for portability.

Before You Begin

This chapter assumes that you are familiar with C programming for the
HAL. You should be familiar with the information in “Developing
Programs using the HAL” on page 4–1, before reading this chapter.

Development
Flow for
Creating Device
Drivers

The steps to develop a new driver for the HAL are very much dependent
on your device details. However, the following generic steps apply to all
device classes.

1. Create the device header file that describes the registers. This header
file may be the only interface required.

2. Implement the driver functionality.

3. Test from main().

4. Proceed to the final integration of the driver into the HAL
environment.

5. Integrate the device driver into the HAL framework.

SOPC Builder
Concepts

This section discusses concepts about Altera’s SOPC Builder hardware
design tool that enhance your understanding of the driver development
process. You need not use SOPC Builder to develop Nios II device drivers.

The Relationship between system.h & SOPC Builder

The system.h header file provides a complete software description of the
Nios II system hardware, and is a fundamental part of developing
drivers. Because drivers interact with hardware at the lowest level, it is
worth mentioning the relationship between system.h and SOPC Builder
that generates the Nios II processor system hardware. Hardware
designers use SOPC Builder to specify the architecture of the Nios II
processor system and integrate the necessary peripherals and memory.

Altera Corporation 5–3
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

Therefore, the definitions in system.h, such as the name and
configuration of each peripheral, are a direct reflection of design choices
made in SOPC Builder.

f For more information on the system.h header file, see “Developing
Programs using the HAL” on page 4–1.

Using SOPC Builder for Optimal Hardware Configuration

If you find less-than-optimal definitions in system.h, remember that the
contents of system.h can be modified by changing the underlying
hardware with SOPC Builder. Before you write a device driver to
accommodate imperfect hardware, it is worth considering whether the
hardware can be improved easily with SOPC Builder.

Components, Devices & Peripherals

SOPC Builder uses the term “component” to describe hardware modules
included in the system. In the context of Nios II software development,
SOPC Builder components are devices, such as peripherals or memories.
In the following sections, “component” is used interchangeably with
“device” and “peripheral” when the context is closely related to SOPC
Builder.

Accessing
Hardware

Software accesses the hardware via macros that abstract the memory-
mapped interface to the device. This section describes the macros that
define the hardware interface for each device.

All SOPC Builder components provide a directory that defines the device
hardware and software. For example, each component included in the
Nios II development kit has its own directory located in the <Nios II kit
path>/components directory. Many components provide a header file that
defines their hardware interface. The header file is <name of
component>_regs.h and is included in the inc subdirectory for the specific
component. For example, the Altera-provided JTAG UART component
defines its hardware interface in the file <Nios II kit
path>/components/altera_avalon_jtag_uart/inc/altera_avalon_jtag_uart
_regs.h.

The _regs.h header file defines the following access:

■ Register accessor macros that provide a read and/or write macro for
each register within the device that supports the operation. The
macros are IORD_<name_of_component>_<name_of_register>, and
IOWR_<name_of_component>_<name_of_register>, see “Cache
Memory” on page 7–1

5–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

■ Bit-field masks and offsets that provide access to individual bit-fields
within a register. These macros have the following names:
● <name_of_component>_<name_of_register>_<name_of_field>_MSK,

for a bit-mask of the field
● <name_of_component>_<name_of_register>_<name_of_field>_OFST,

for the bit offset of the start of the field
● ALTERA_AVALON_UART_STATUS_PE_MSK and

ALTERA_AVALON_UART_STATUS_PE_OFST, for accessing the
PE field of the status register.

Only use the macros defined in the _regs.h file to access a device’s
registers. You must use the register accessor functions to ensure that the
processor bypasses the data cache when reading and or writing the
device. Furthermore, you should never use hard-coded constants,
because this action makes your software susceptible to changes in the
underlying hardware.

If you are writing the driver for a completely new hardware device, you
have to prepare the _regs.h header file.

f For more information on the effects of cache management and device
access, see “Cache Memory” on page 7–1. For a complete example of the
_regs.h file, see the component directory for any of the Altera-supplied
SOPC Builder components.

Creating Drivers
for HAL Device
Classes

The HAL supports a number of generic device model classes, see
“Overview of the HAL System Library” on page 3–1. By writing a device
driver as described in this section, you describe to the HAL an instance of
a specific device that falls into one of its known device classes. This
section defines a consistent interface for driver functions so that the HAL
can access the driver functions uniformly.

The following sections define the API for the following classes of devices:

■ Character-mode devices
■ File subsystems
■ DMA devices
■ Timer devices used as system clock
■ Timer devices used as timestamp clock
■ Flash memory devices
■ Ethernet devices

The following sections describe how to implement device drivers for each
class of device, and how to register them for use within HAL-based
systems.

Altera Corporation 5–5
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

Character-Mode Device Drivers

This section describes how to create a device instance and register a
character device.

Create a Device Instance

For a device to be made available as a character mode device, it must
provide an instance of the alt_dev structure. The following code defines
the alt_dev structure:

typedef struct {
 alt_llist llist; /* for internal use */
 const char* name;
 int (*open) (alt_fd* fd, const char* name, int flags, int mode);
 int (*close) (alt_fd* fd);
 int (*read) (alt_fd* fd, char* ptr, int len);
 int (*write) (alt_fd* fd, const char* ptr, int len);
 int (*lseek) (alt_fd* fd, int ptr, int dir);
 int (*fstat) (alt_fd* fd, struct stat* buf);
 int (*ioctl) (alt_fd* fd, int req, void* arg);
} alt_dev;

The structure is essentially a collection of function pointers. These
functions are called in response to user accesses to the HAL file system.
For example, if you call the function open() with a file name that
corresponds to this device, the result is a call to the open() function
provided in this structure.

f For more information on open(), close(), read(), write(),
lseek(), fstat(), and ioctl(), see “The HAL API Reference” on
page 10–1.

None of these functions directly modify the global error status, errno.
Instead, the return value is the negation of the appropriate error code
provided in errno.h.

For example, the ioctl() function returns –ENOTTY if it cannot handle
a request rather than set errno to ENOTTY directly. The HAL system
routines that call these functions ensure that errno is set accordingly.

The function prototypes for these functions differ from their application
level counterparts in that they each take an input file descriptor argument
of type alt_fd* rather than int.

A new alt_fd structure is created upon a call to open(). This structure
instance is then passed as an input argument to all function calls made for
the associated file descriptor.

5–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

The following code defines the alt_fd structure.

typedef struct
{
 alt_dev* dev;
 void* priv;
 int fd_flags;
} alt_fd;

where:

■ dev is a pointer to the device structure for the device being used
■ fd_flags is the value of flags passed to open()
■ priv is an opaque value that is unused by the HAL system code
■ priv is available for drivers to store any per file descriptor

information that they require for internal use.

A driver is not required to provide all of the functions within the
alt_dev structure. If a given function pointer is set to NULL, a default
action is used instead. Table 5–1 shows the default actions for each of the
available functions.

In addition to the function pointers, the alt_dev structure contains two
other fields: llist and name. llist is for internal use, and should
always be set to the value ALT_LLIST_ENTRY. name is the location of the
device within the HAL file system and is the name of the device as
defined in system.h.

Table 5–1. Default Behavior for Functions Defined in alt_dev

Function Default Behavior

open Calls to open() for this device succeed, unless the device has been previously locked by a
TIOCEXCL ioctl() request.

close Calls to close() for a valid file descriptor for this device always succeed.

read Calls to read() for this device always fail.

write Calls to write() for this device always fail.

lseek Calls to lseek() for this device always fail.

fstat The device identifies itself as a character mode device.

ioctl ioctl() requests that cannot be handled without reference to the device fail.

Altera Corporation 5–7
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

Register a Character Device

Having created an instance of the alt_dev structure, the device must be
made available to the system by registering it with the HAL and by
calling the following function:

int alt_dev_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure
to register. A return value of zero indicates success. A negative return
value indicates that the device can not be registered.

Once a device has been registered with the system, you can access it via
the HAL API and the ANSI C standard library, see “Developing Programs
using the HAL” on page 4–1. The node name for the device is the name
specified in the alt_dev structure.

File Subsystem Drivers

A file subsystem device driver is responsible for handling file accesses
beneath a specified mount point within the global HAL file system.

Create a Device Instance

Creating and registering a file system is very similar to creating and
registering a character-mode device. To make a file system available,
create an instance of the alt_dev structure see “Character-Mode Device
Drivers” on page 5–5. The only distinction is that the name field of the
device represents the mount point for the file subsystem. Of course, you
must also provide any necessary functions to access the file subsystem,
such as read() and write(), similar to the case of the character-mode
device.

1 If you do not provide an implementation of fstat(), the
default behavior returns the value for a character-mode device,
which is incorrect behavior for a file subsystem.

Register a File Subsystem Device

You can register a file subsystem using the following function:

int alt_fs_reg (alt_dev* dev)

This function takes a single input argument, which is the device structure
to register. A negative return value indicates that the file system can not
be registered.

5–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

Once a file subsystem has been registered with the HAL file system, you
can access it via the HAL API and the ANSI C standard library, see
“Developing Programs using the HAL” on page 4–1. The mount point for
the file subsystem is the name specified in the alt_dev structure.

Timer Device Drivers

This section describes the system clock and timestamp drivers.

System Clock Driver

A system clock device model requires a driver to generate the periodic
“tick”, see “Developing Programs using the HAL” on page 4–1. There can
be only one system clock driver in a system. You implement a system
clock driver as an interrupt service routine (ISR) for a timer peripheral
that generates a periodic interrupt. The driver must provide periodic calls
to the following function:

void alt_tick (void)

The expectation is that alt_tick() is called in interrupt context.

To register the presence of a system clock driver, call the following
function:

int alt_sysclk_init (alt_u32 nticks)

The input argument nticks is the number of system clock ticks per
second, which is determined by your system clock driver. The return
value of this function is zero upon success, and non-zero otherwise.

f For more information on writing interrupt service routines, see
“Exception Handling” on page 6–1.

Timestamp Driver

A timestamp driver provides implementations for the three timestamp
functions: alt_timestamp_start(), alt_timestamp(), and
alt_timestamp_freq(). The system can only have one timestamp
driver.

f For more information on using these functions, see the chapters
“Developing Programs using the HAL” on page 4–1 and “The HAL API
Reference” on page 10–1.

Altera Corporation 5–9
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

Flash Device Drivers

This section describes how to create a flash driver and register a flash
device.

Create a Flash Driver

Flash device drivers must provide an instance of the alt_flash_dev
structure, defined in sys/alt_flash_dev.h. The following code shows the
structure:

struct alt_flash_dev
{
 alt_llist llist; // internal use only
 const char* name;
 alt_flash_open open;
 alt_flash_close close;
 alt_flash_write write;
 alt_flash_read read;
 alt_flash_get_flash_info get_info;
 alt_flash_erase_block erase_block;
 alt_flash_write_block write_block;
 void* base_addr;
 int length;
 int number_of_regions;
 flash_region region_info[ALT_MAX_NUMBER_OF_FLASH_REGIONS];
};

The first parameter llist is for internal use, and should always be set to
the value ALT_LLIST_ENTRY. name is the location of the device within
the HAL file system and is the name of the device as defined in system.h.

The eight fields open to write_block are function pointers that
implement the functionality behind the user API calls to:

■ alt_flash_open_dev()
■ alt_flash_close_dev()
■ alt_flash_write()
■ alt_write_flash()
■ alt_read_flash()
■ alt_get_flash_info()
■ alt_erase_flash_block()
■ alt_write_flash_block()

where:

■ the base_addr parameter is the base address of the flash memory
■ length is the size of the flash in bytes

5–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

■ number_of_regions is the number of erase regions in the flash
■ region_info contains information about the location and size of

the blocks in the flash device

f For more information on the format of the flash_region structure,
“Using Flash Devices” on page 4–12.

Some flash devices such as common flash interface (CFI) compliant
devices allow you to read out the number of regions and their
configuration at run time. Otherwise, these two fields must be defined at
compile time.

Register a Flash Device

After creating an instance of the alt_flash_dev structure, you must
make the device available to the HAL system by calling the following
function:

int alt_flash_device_register(alt_flash_fd* fd)

This function takes a single input argument, which is the device structure
to register. A return value of zero indicates success. A negative return
value indicates that the device could not be registered.

DMA Device Drivers

The HAL models a DMA transaction as being controlled by two endpoint
devices: a receive channel and a transmit channel. This section describes
the drivers for each type of DMA channel separately.

For a complete description of the HAL DMA device model, “Using DMA
Devices” on page 4–18

The DMA device driver interface is defined in sys/alt_dma_dev.h.

DMA Transmit Channel

A DMA transmit channel is constructed by creating an instance of the
alt_dma_txchan structure:

typedef struct alt_dma_txchan_dev_s alt_dma_txchan_dev;
struct alt_dma_txchan_dev_s
{
 alt_llist llist;
 const char* name;
 int (*space) (alt_dma_txchan dma);
 int (*send) (alt_dma_txchan dma,

 const void* from,
 alt_u32 len,

Altera Corporation 5–11
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

 alt_txchan_done* done,
 void* handle);

 int (*ioctl) (alt_dma_txchan dma, int req, void* arg);
};
Table 5–2 shows the available fields and their functions.

Both the space and send functions need to be defined. If the ioctl field
is set to null, calls to alt_dma_txchan_ioctl() return –ENOTTY for
this device.

After creating an instance of the alt_dma_txchan structure, you must
register the device with the HAL system to make it available by calling
the following function:

int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

The input argument dev is the device to register. The return value is zero
upon success, or negative if the device cannot be registered.

DMA Receive Channel

A DMA receive channel is constructed by creating an instance of the
alt_dma_rxchan structure:

typedef alt_dma_rxchan_dev_s alt_dma_rxchan;
struct alt_dma_rxchan_dev_s
{
 alt_llist list;
 const char* name;
 alt_u32 depth;
 int (*prepare) (alt_dma_rxchan dma,
 void* data,

Table 5–2. Fields in the alt_dma_txchan Structure

Field Function

llist This field is for internal use, and should always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_txchan_open(). name is the
name of the device as defined in system.h.

space A pointer to a function that returns the number of additional transmit requests that can be queued
to the device. The input argument is a pointer to the alt_dma_txchan_dev structure.

send A pointer to a function that is called as a result of a call to the user API function
alt_dma_txchan_send().This function posts a transmit request to the DMA device. The
parameters passed to alt_txchan_send() are passed directly to send(). For a description
of parameters and return values, see “alt_dma_txchan_send()” on page 10–20.

ioctl This function provides device specific I/O control. See sys/alt_dma_dev.h for a list of the generic
options that a device may wish to support.

5–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

 alt_u32 len,
 alt_rxchan_done* done,
 void* handle);
 int (*ioctl) (alt_dma_rxchan dma, int req, void* arg);
};

Table 5–3 shows the available fields and their functions.

The prepare() function is required to be defined. If the ioctl field is
set to null, calls to alt_dma_rxchan_ioctl() return –ENOTTY for this
device.

After creating an instance of the alt_dma_rxchan structure, you must
register the device driver with the HAL system to make it available by
calling the following function:

int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

The input argument dev is the device to register. The return value is zero
upon success, or negative if the device cannot be registered.

Ethernet Device Drivers

The HAL generic device model for Ethernet devices provides access to
the lightweight IP (lwIP) TCP/IP stack running on the MicroC/OS-II
operating system. You can provide support for a new Ethernet device by
supplying the driver functions that this section defines.

Before you consider writing a device driver for a new Ethernet device,
you need a basic understanding of the Altera port of lwIP and its usages,
see “Ethernet & Lightweight IP” on page 9–1.

Table 5–3. Fields in the alt_dma_rxchan Structure

Field Function

llist This function is for internal use and should always be set to the value ALT_LLIST_ENTRY.

name The name that refers to this channel in calls to alt_dma_rxchan_open(). name is the name
of the device as defined in system.h.

depth The total number of receive requests that can be outstanding at any given time.

prepare A pointer to a function that is called as a result of a call to the user API function
alt_dma_rxchan_prepare(). This function posts a receive request to the DMA device. The
parameters passed to alt_dma_rxchan_prepare() are passed directly to prepare(). For
a description of parameters and return values, see “alt_dma_rxchan_prepare()” on page 10–14.

ioctl This is a function that provides device specific I/O control. See sys/alt_dma_dev.h for a list of the
generic options that a device may wish to support.

Altera Corporation 5–13
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

The easiest way to write a new Ethernet device driver is to start with
Altera’s implementation for the SMSC lan91c111 device, and modify it to
suit your Ethernet media access controller (MAC). This section assumes
you will take this approach, which only requires you to modify a known-
working example, rather than learn the details of the lwIP stack
implementation. Therefore, this section focuses minimally on the internal
implementation of Altera’s port of the lwIP stack.

f For more information on the lwIP implementation, see
www.sics.se/~adam/lwip/doc/lwip.pdf.

The source code for the lan91c111 driver is provided with Nios II
development kits in <Nios II kit
path>/components/altera_avalon_lan91c111/UCOSII/ in the src and inc
directories. The Ethernet device driver interface is defined in <lwIP
component path>/UCOSII/inc/alt_lwip_dev.h.

The following sections describe how to provide a driver for a new
Ethernet device.

Provide an Instance of alt_lwip_dev_list

The following code shows an instance of the alt_lwip_dev_list
structure that each device driver must provide:

typedef struct
{
 alt_llist llist; /* for internal use */
 alt_lwip_dev dev;
} alt_lwip_dev_list;

struct alt_lwip_dev
{
 /* The netif pointer MUST be the 1st element in the structure */
 struct netif* netif;
 const char* name;
 err_t (*init_routine)(struct netif*);
 void (*rx_routine)();
};

The name parameter is the name of the device, as defined in system.h.

The lwIP system code uses the netif structure internally to define its
interface to device drivers. The netif structure is defined in netif.h, in
<lwIP component path>/UCOSII/src/downloads/lwip-
0.7.2/src/include/lwip. Among other things, the netif structure contains
the following things:

■ A field for the MAC address of the interface
■ A field for the IP address of the interface

5–14 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Creating Drivers for HAL Device Classes

■ Function pointer to a low-level function to initialize the MAC device
■ Function pointers to low-level functions to send packets
■ Function pointer to a low-level function to receive packets

Provide init_routine()

init_routine in the alt_lwip_dev structure is a pointer to a function
that sets up the netif structure, and initializes the hardware. You must
provide this function for your target Ethernet device. This function has
the prototype:

err_t init_routine(struct netif* netif)

init_routine()fills in the netif fields for the MAC and IP addresses,
by calling the routines get_mac_addr() and get_ip_addr(). These
functions are defined in “Ethernet & Lightweight IP” on page 9–1.
Furthermore, init_routine() must perform any necessary low-level
register access to configure the hardware.

Provide output() & linkoutput()

Your init_routine() function also needs to fill in the netif fields for
pointers to two send functions, output() and link_output().

link_output() is responsible for sending packets on the Ethernet
hardware. The link_output() function has the prototype:

link_output(struct netif *netif, struct pbuf *p)

link_output() is responsible for sending IP packets on the Ethernet
interface. It is responsible for issuing ARP requests for the MAC address
associated with the IP address and then calling link_output() to send
the packet. The link_output() function has the prototype:

output(struct netif *netif,
struct pbuf *p,
struct ip_addr *ipaddr)

Provide rx_routine()

rx_routine in the alt_lwip_dev structure is a function pointer to a
routine that is called to receive incoming packets into the TCP/IP stack.

When a new packet arrives, an interrupt request (IRQ) is generated. The
associated interrupt service routine (ISR) clears the interrupt, and posts a
message onto a message queue called rx_mbox. This message box is
defined in the file <lwIP component path>/UCOSII/src/alt_lwip_dev.c.

Altera Corporation 5–15
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

When the rx_thread detects a new message in rx_mbox, it calls
rx_routine(). rx_routine() is responsible for receiving the packet
from the hardware and passing it to the TCP/IP stack.

The prototype for this function is:

void rx_func()

Integrating a
Device Driver
into the HAL

This section discusses how to take advantage of the HAL’s ability to
automatically instantiate and register device drivers during system
initialization. You can take advantage of this service, whether you created
a device driver for one of the HAL generic device models, or you created
a peripheral-specific device driver. Taking advantage of the automation
provided by the HAL is mainly a process of placing files in the
appropriate place in the HAL directory structure.

Directory Structure for HAL Devices

Each peripheral is defined by files provided in a specific SOPC Builder
component directory, see “Accessing Hardware ” on page 5–3. This
section uses the example of Altera’s JTAG UART component to
demonstrate the location of files. Figure 5–1 shows the directory structure
of the JTAG UART component directory, which is located in the <Nios II
kit path>/components directory.

Figure 5–1. HAL Peripheral’s Directory Structure

Device Driver Files for the HAL

This section describes how to provide appropriate files to integrate your
device driver into the HAL.

altera_avalon_jtag_uart

HAL
Contains software files required to integrate the device with the HAL system
library. Files in this directory pertain specifically to the HAL system library.

inc
Contains header file(s) that define the device driver

src
Contains source code and makefiles to build the device driver.

inc
Contains header file(s) that defines the device's hardware interfaces. Contents in
this directory are not HAL-specific, and apply to a driver, regardless of whether
it is based on the HAL, MicroC/OS-II, or any other RTOS environment.

5–16 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Integrating a Device Driver into the HAL

A Device’s HAL Header File & alt_sys_init.c

At the heart of the HAL is the auto-generated source file, alt_sys_init.c.
alt_sys_init.c contains the source code that the HAL uses to initialize the
device drivers for all supported devices in the system. In particular, this
file defines the alt_sys_init() function, which is called before
main() to initialize all devices and make them available to the program.

The following code shows excerpts from an alt_sys_init.c file.

Example: Excerpt from an alt_sys_init.c File Performing Driver
Initialization
#include "system.h"
#include "sys/alt_sys_init.h"

/*
 * device headers
 */
#include "altera_avalon_timer.h"
#include "altera_avalon_uart.h"

/*
 * Allocate the device storage
 */
ALTERA_AVALON_UART_INSTANCE(UART1, uart1);
ALTERA_AVALON_TIMER_INSTANCE(SYSCLK, sysclk);

/*
 * Initialise the devices
 */
void alt_sys_init(void)
{
 ALTERA_AVALON_UART_INIT(UART1, uart1);
 ALTERA_AVALON_TIMER_INIT(SYSCLK, sysclk);
}

When you create a new software project, the Nios II integrated
development environment (IDE) automatically generates the contents of
alt_sys_init.c to match the specific hardware contents of the SOPC
Builder system. The Nios II IDE calls the generator utility gtf-
generate to create alt_sys_init.c.

1 You do not need to call gtf-generate explicitly; it is
mentioned here only because you may find references to gtf-
generate in the low-level workings of the HAL.

For each device visible to the processor, the generator utility searches for
an associated header file in the device’s HAL/inc directory. The name of
the header file depends on the SOPC Builder component name. For
example, for Altera’s JTAG UART component, the generator finds the file

Altera Corporation 5–17
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

altera_avalon_jtag_uart/HAL/inc/altera_avalon_jtag_uart.h. If the
generator utility finds such a header file, it inserts code into alt_sys_init.c
to perform the following actions:

■ Include the device’s header file, see the /* device headers */
in “Example: Excerpt from an alt_sys_init.c File Performing Driver
Initialization” on page 5–16

■ Call the macro <name of device>_INSTANCE to allocate storage for the
device, see the /* Allocate the device storage */ section
in “Example: Excerpt from an alt_sys_init.c File Performing Driver
Initialization” on page 5–16

■ Call the macro <name of device>_INIT inside the alt_sys_init()
function to initialize the device, see the /* Initialize the
devices */ section in “Example: Excerpt from an alt_sys_init.c File
Performing Driver Initialization” on page 5–16

These *_INSTANCE and *_INIT macros must be defined in the
associated device header file. For example, altera_avalon_jtag_uart.h
must define the macros ALTERA_AVALON_JTAG_UART_INSTANCE and
ALTERA_AVALON_JGAT_UART_INIT. The *_INSTANCE macro
performs any per-device static memory allocation that the driver
requires. The *_INIT macro performs runtime initialization of the
device. Both macros take two input arguments: The first argument is the
capitalized name of the device instance; the second is the lower case
version of the device name. The name is the name given to the component
in SOPC Builder at system generation time. You can use these input
parameters to extract device-specific configuration information from the
system.h file.

f For a complete example, see any of the Altera-supplied device drivers.

1 To improve project rebuild time, the peripheral header file
should not include system.h directly—it is already included in
alt_sys_init.c.

To publish a device driver for an SOPC builder component, you provide
the file HAL/inc/<component_name>.h within the components directory.
This file is then required to define the macros
<COMPONENT_NAME>_INSTANCE and
<COMPONENT_NAME>_INIT, as described above. With this
infrastructure in place for your device, the HAL system library
automatically instantiates and registers your device driver before calling
main().

5–18 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Integrating a Device Driver into the HAL

Device Driver Source Code

In general, a device driver cannot be defined entirely by the header, see
“A Device’s HAL Header File & alt_sys_init.c” on page 5–16. The
component almost certainly also needs to provide additional source code,
which is to be built into the system library.

You should place any required source code in the HAL/src directory. In
addition, you should include a makefile fragment, component.mk. The
component.mk file lists the source files to include in the system library.
You can list multiple files by separating filenames with a space. The
following code shows an example makefile for Altera’s JTAG UART
device.

Example: An Example component.mk Makefile
C_LIB_SRCS += altera_avalon_uart.c
ASM_LIB_SRCS +=
INCLUDE_PATH +=

The Nios II IDE automatically includes the component.mk file into the
top-level makefile when compiling system library projects and
application projects. component.mk can modify any of the available
make variables, but is restricted to C_LIB_SRCS, ASM_LIB_SRCS, and
INCLUDE_PATH. Table 5–4 shows these variables.

component.mk can add additional make rules and macros as required,
but for interoperability macro names should conform to the namespace
rules, see “Namespace Allocation” on page 5–19

Table 5–4. Make Variables Defined in component.mk

Make Variable Meaning

C_LIB_SRCS The list of C source files to build into the system library.

ASM_LIB_SRCS The list of assembler source files to build into the system library (these are preprocessed
with the C preprocessor).

INCLUDE_PATH A list of directories to add to the include search path. The directory <component>/HAL/inc
is added automatically and so does not need to be explicitly defined by the component.

Altera Corporation 5–19
December 2004 Nios II Software Developer’s Handbook

Developing Device Drivers for the HAL

Summary

In summary, to integrate a device driver into the HAL framework, you
must perform the following actions:

■ Create an include file that defines the *_INSTANCE and *_INIT
macros and place it in the device’s HAL/inc directory

■ Create source code files that manipulates the device, and place the
files into the device’s HAL/src directory

■ Write a makefile fragment, component.mk, and place it in the
HAL/src directory

Providing
Reduced
Footprint Drivers

The HAL defines a C preprocessor macro named
ALT_USE_SMALL_DRIVERS that you can use in driver source code to
provide alternate behavior for systems that require minimal code
footprint. An option in the Nios II IDE allows you to enable reduced
device drivers. If ALT_USE_SMALL_DRIVERS is not defined, driver
source code implements a fully featured version of the driver. If the macro
is defined, the source code may provide a driver with restricted
functionality. For example a driver may implement interrupt-driven
operation by default, but polled (and presumable smaller) operation if
ALT_USE_SMALL_DRIVERS is defined.

When writing a device driver, if you choose to ignore the value of
ALT_USE_SMALL_DRIVERS, the same version of the driver is used
regardless of the definition of this macro.

Namespace
Allocation

To avoid conflicting names for symbols defined by devices in the SOPC
Builder system, all global symbols need a defined prefix. Global symbols
include global variable and function names. For device drivers, the prefix
is the name of the SOPC Builder component followed by an underscore.
Because this naming can result in long strings, an alternate short form is
also permitted. This short form is based on the vendor name, for example
alt_ is the prefix for components published by Altera. It is expected that
vendors will test the interoperability of all components they supply.

For example, for the altera_avalon_jtag_uart component, the
following function names are valid:

■ altera_avalon_jtag_uart_init()
■ alt_jtag_uart_init()

The following names are invalid:

■ avalon_jtag_uart_init()
■ jtag_uart_init()

5–20 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Overriding the Default Device Drivers

As source files are located using search paths, these namespace
restrictions also apply to filenames for device driver source and header
files.

Overriding the
Default Device
Drivers

All SOPC Builder components can elect to provide a HAL device driver,
see “Integrating a Device Driver into the HAL” on page 5–15. However,
if the driver supplied with a component is inappropriate for your
application, you can override the default driver by supplying a different
one in the system library project directory in the Nios II IDE.

The Nios II IDE locates all include and source files using search paths, and
the system library project directory is always searched first. For example,
if a component provides the header file alt_my_component.h, and the
system library project directory also contains a file alt_my_component.h,
the version provided in the system library project directory is used at
compile time. This same mechanism can override C and assembler source
files.

Altera Corporation Section III–1
Preliminary

Section III. Advanced
Programming Topics

This section provides information on advanced programming topics.

This section includes the following chapters:

■ Chapter 6. Exception Handling

■ Chapter 7. Cache Memory

■ Chapter 8. MicroC/OS-II Real-Time Operating System

■ Chapter 9. Ethernet & Lightweight IP

Revision History The table below shows the revision history for these chapters. These
version numbers track the document revisions; they have no relationship
to the version of the Nios II development kits or Nios II processor cores.

Chapter(s) Date / Version Changes Made

6 December 2004
v1.2

Corrected the “Registering the Button PIO ISR
with the HAL” example.

September 2004
v1.1

● Changed examples.
● Added ISR performance data.

May 2004
v1.0

First publication.

7 May 2004
v1.0

First publication.

8 December 2004
v1.1

Added thread-aware debugging paragraph.

May 2004
v1.0

First publication.

9 December 2004
v1.2

Updated references to version of lwIP from 0.6.3
to 0.7.2.

September 2004
v1.1

Documented a change to the lwIP
implementation, which eliminated a timer task.

May 2004
v1.0

First publication.

Section III–2 Altera Corporation
Preliminary

Advanced Programming Topics Nios II Software Developer’s Handbook

Altera Corporation 6–1
December 2004 Preliminary

6. Exception Handling

Introduction This chapter discusses how to write programs to handle exceptions in the
Nios® II processor architecture. Emphasis is placed on how to process
hardware interrupt requests by registering a user-defined interrupt
service routine (ISR) with the hardware abstraction layer (HAL).

This chapter covers the following topics:

■ Nios II Exceptions Overview
■ HAL Implementation
■ ISRs

● HAL application programming interface (API) for ISRs
● Writing an ISR
● Enabling and Disabling ISRs
● C Example

■ Fast ISR Processing
■ Debugging with ISRs
■ Summary of Suggestions for Writing ISRs

f For details on the low-level details of handling exceptions and interrupts
on the Nios II architecture, see the Programming Model chapter in the
Nios II Processor Reference Handbook.

Nios II
Exceptions
Overview

Nios II exception handling is implemented in classic RISC fashion, i.e., all
exception types are handled by a single exception handler. As such, all
exceptions (hardware and software) are handled by code residing at a
single location called the “exception address”.

The Nios II processor provides the following exception types:

■ Hardware interrupt exceptions
■ Software exceptions, which fall into the following categories:

● Unimplemented instructions
● Software traps
● Other exceptions

NII52006-1.2

6–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

HAL Implementation

When an exception is generated, the processor performs the following
steps automatically:

■ Copies the contents of the status register (ctl0) to the estatus
register (ctl1), saving the pre-exception status of the processor

■ Clears the PIE bit of the status register, disabling further hardware
interrupts

■ Stores the address of the instruction after the exception to the ea
register (r29), providing the return address for the exception
handler to return to

■ Vectors to the exception address

HAL
Implementation

This section describes the exception handler implementation that the
HAL system library uses. This detail is provided for your reference. A
complete understanding is not required to take advantage of the HAL ISR
services.

f For details on how to install ISRs using the HAL advanced programming
interface (API), see “ISRs” on page 6–5.

The exception handler provided with the HAL system library is located
at the exception address. It implements the following algorithm to
distinguish between hardware interrupts and software exceptions:

■ Determines if the EPIE bit of the estatus register is enabled:
● If it is not enabled, the exception is a software exception
● If it is enabled, continue with next step

■ Determines if ipending is non-zero:
● If any bit of ipending is non-zero, the exception is a hardware

Interrupt—process the hardware interrupt
● If all bits are zero, the exception is a software exception

This algorithm uses the following three routines:

■ _irq_entry()
■ alt_irq_handler()
■ software_exception()

_irq_entry

If the Nios II system contains hardware interrupts, a top-level assembly
routine, _irq_entry, is placed at the exception address. This assembly
routine checks to see what type of exception has occurred, and calls an
appropriate routine. In case of software exceptions, it calls a routine
software_exception; in the case of hardware interrupts, it calls a
routine alt_irq_handler.

Altera Corporation 6–3
December 2004 Nios II Software Developer’s Handbook

Exception Handling

To view the assembly code for the routine, refer to the <Nios II Kit
Path>/components/altera_nios2/HAL/inc/sys/alt_irq_entry.h file.
Alternatively, you can examine the linked assembly in the objdump after
building a project that has hardware interrupts.

The following code shows an example of a pseudocode representation of
the _irq_entry routine.

Example: A pseudocode representation of _irq_entry
_irq_entry:
if EPIE = 0

// Software Exception
goto software_exception handler assembly.

else if ipending = 0
// Software Exception
goto software_exception handler assembly.

else
// Hardware Interrupt
store pre-exception processor state
// Call alt_irq_handler to dispatch the appropriate ISR.
call the alt_irq_handler routine
restore the pre-exception processor state
// return from exception
issue the exception return instruction, eret. .

alt_irq_handler()

The function alt_irq_handler() determines the cause of the
interrupt (i.e., the interrupt number associated with the device that
caused the interrupt) and executes the function that is registered with the
HAL for that interrupt. Because of the order in which the loop is written,
the highest interrupt request (IRQ) priority is given to IRQ0 and the
lowest to IRQ31.

The following code shows an example of shows a pseudocode
representation of alt_irq_handler().

Example: Pseudocode Representation of alt_irq_handler()
alt_irq_handler(void)

// Loop through all IRQs from 0 to 31.
// Execute user-defined function
// when first ‘1’ is reached in ipending.
for i from 0 to 31:

//Check to see which bit of ipending is a ‘1’.
if ipending[i] == ‘1’:

// Execute user-defined function.
// Note: alt_irq_arg[i] and i map to void*
// context and id
// in the user’s function prototype, respectively.
// alt_irq[] is an array of function pointers to ISRs
alt_irq[i](alt_irq_arg[i], i)
// Stop checking after the first active

6–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

HAL Implementation

// interrupt is found.
break;

The source code is in the <Nios II Kit
Path>/components/altera_hal/HAL/src/alt_irq_register.c file.

software_exception

The software_exception routine determines the cause of the
software exception. At present, the software_exception routine
primarily determines which unimplemented instruction caused the
exception, and calls the appropriate instruction emulation routine.

If the Nios II system does not contain any peripherals with hardware
interrupts, the software_exception routine is placed directly at the
exception address. Also, _irq_entry and alt_irq_handler are not
linked into the project.

Determining the cause of a software exception involves examining the OP
and OPX fields within the instruction word.

f For details on the OP and OPX fields, see the Instruction Set Reference in
the Nios II Processor Reference Handbook.

The following code shows an example of a pseudo-code representation of
the software_exception assembly routine.

Example: Pseudo-code representation of software_exception
software_excetion:
if encoding = trap instruction
 // Software Trap
 // Currently, not implemented (i.e. behaves like a nop).
 goto trap_handler
else
 // Instruction emulation.
 case op / opx
 muli: goto mul_immed //multiply immediate.
 mul: goto multiply // multiply.
 mulxss: goto mulxss // multiply signed-signed.
 mulxsu: goto mulxsu // multiply signed-unsigned.
 mulxuu: goto mulxuu // multiply unsigned-unsigned.
 div: goto divide // signed divide.
 divu: goto unsigned_division // unsigned divide.
return from exception

For the full source assembly code, see the <Nios II Kit
Path>/components/altera_nios2/HAL/src/alt_exceptions.S file

f The pseudo-code above does not match the code in alt_exceptions.S
exactly. For exact implementation details, see the assembly source code

Altera Corporation 6–5
December 2004 Nios II Software Developer’s Handbook

Exception Handling

Unimplemented Instructions

software_exception defines an emulation routine for each of the
potential unimplemented instructions. In this way, the full Nios II
instruction set is always supported, even if a particular Nios II core does
not implement all instructions in hardware. On the other hand, if a Nios II
core implements a particular instruction in hardware, its corresponding
exception never occurs. The emulation routines are small enough that
there is little incentive to remove them even when targeting a Nios II core
that does not require them.

f For details on unimplemented instructions, see the Processor
Architecture chapter in the Nios II Processor Reference Handbook.

1 An exception routine must never issue an unimplemented
instruction, because the emulation routines execute in exception
context. “unimplemented instruction” does not mean “invalid
instruction.” For current Nios II core implementations, if the OP
and OPX fields do not contain a valid instruction encoding, the
result is undefined. Therefore, the software_exception
routine cannot detect or respond to an invalid instruction.
Processor behavior for undefined OP and OPX encoding is
dependent on the Nios II core.

f For more information, see the Nios II Core Implementation Details
chapter in the Nios II Processor Reference Handbook.

Software Trap Exception Handling

software_exception currently implements a null operation for the
software trap exception. The code in alt_exceptions.S does detect the OP
and OPX encoding for a software trap, but branches to an empty
trap_handler routine.

Other Exception Types

Future Nios II processor core implementations may define new exception
types, creating the possibility that software_exception completes
without ever determining the exact cause of an exception. The HAL
implementation does not account for currently undefined exception
types.

ISRs Communication with peripheral devices is often achieved using
interrupts. When a peripheral asserts its IRQ, it causes an exception to the
processor’s normal execution flow. When such an interrupt occurs, an

6–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

ISRs

appropriate ISR must handle this interrupt and return the processor to its
pre-interrupt state upon completion. This section describes the
framework provided by the HAL system library for handling interrupts.

HAL API for ISRs

The HAL system library provides an API to help ease the creation and
maintenance of ISRs. This API also applies to programs based on
MicroC/OS-II, because the full HAL API is available to MicroC/OS-II
programs. The HAL API defines the following functions to manage
interrupts:

■ alt_irq_register()
■ alt_irq_disable_all()
■ alt_irq_enable_all()
■ alt_irq_interruptible()
■ alt_irq_non_interruptible()
■ alt_irq_enabled()

Using the HAL API to implement ISRs is a two step process. First, you
write your interrupt service routine that handles interrupts for a specific
device. Next, your program must register the ISR with the HAL by using
the alt_irq_register() function. During the course of execution,
your program can enable or disable interrupts using the
alt_irq_enable_all() and alt_irq_disable_all() functions.

1 Disabling interrupts affects interrupt latency and therefore
affects system performance.

Registering an ISR with alt_irq_register()

The HAL registers this function pointer in a lookup table. When a specific
IRQ occurs, the HAL looks up the IRQ in the lookup table and dispatches
the registered ISR.

The prototype for alt_irq_register() is:

int alt_irq_register (alt_u32 id,
 void* context,
 void (*isr)(void*, alt_u32));

Altera Corporation 6–7
December 2004 Nios II Software Developer’s Handbook

Exception Handling

The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in
system.h. Interrupt priority corresponds inversely to the IRQ
number. Therefore, IRQ 0 represents the highest priority interrupt
and IRQ 31 is the lowest.

■ context is a pointer used to pass context-specific information to the
ISR, and can point to any sort of ISR-specific information. The
context value is opaque to the HAL; it is provided entirely for the
benefit of the user-defined ISR

■ isr is the function that is called in response to IRQ number id. The
two input arguments provided to this function are the context
pointer and id. Registering a null pointer for isr results in the
interrupt being disabled

If your ISR is successfully registered, the associated interrupt (as defined
by id) is enabled on return from alt_irq_register().

f For details on alt_irq_register(), see “The HAL API Reference”
on page 10–1.

Writing an ISR

The ISR you write must match the prototype that
alt_irq_register() expects to see. The prototype for your ISR
function should match the prototype:

void isr (void* context, alt_u32 id)

The parameter definitions of context and id are the same as for the
alt_irq_register() function.

The function of an ISR is to clear , or mask out, the associated interrupt
condition, and then return back to the interrupt handler.

Restricted Environment

ISRs run in a restricted environment. A large number of the HAL API
calls are not available from ISRs. For example, accesses to the HAL file
system are not permitted. As a general rule, when writing your own ISR,
never include function calls that can block waiting for an interrupt.

In addition, you should be careful when calling ANSI C standard library
functions inside of an ISR. No calls should be made using the C standard
library I/O API, because calling these functions can result in deadlock
within the system, i.e., the system can become permanently blocked
within the ISR. In particular, you should not call printf() from within

6–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

ISRs

an ISR without careful consideration. If stdout is mapped to a device
driver that uses interrupts for proper operation, the printf() call can
deadlock the system waiting for an interrupt that never occurs because
interrupts are disabled. You can use printf() from within ISRs safely,
but only if the device driver does not use interrupts.

ISR Performance

In the interests of performance, ISRs are normally executed with
interrupts disabled. This action reduces the system overhead associated
with interrupt processing, and simplifies ISR development, because the
ISR does not need to be reentrant. However, if an ISR takes a long time to
process, it can have a detrimental effect on the responsiveness of the
system. In particular, it impacts the real-time behavior (interrupt latency)
of other ISRs in the system. For this reason, you should make your ISRs
as efficient as possible. They should do the minimum necessary work to
clear the interrupt condition, and then return.

Slow Interrupt Handlers

If an interrupt handler takes a long time to execute, it can have adverse
effects on system performance and function. If it is impossible to
restructure an interrupt handler to reduce its execution time, higher
priority interrupts can be allowed to interrupt the slow interrupt handler,
which is known as nested interrupt handlers.

The use of nested interrupt handlers increases the interrupt latency of
lower priority interrupts (i.e., lower priority than the interrupt handler
that reenables interrupts) so consideration is necessary when taking this
approach.

1 Allowing nested interrupts when the slowest path through the
ISR is less than about 70 instructions increases the interrupt
latency of higher priority interrupts. Such an interrupt handler
should not reenable interrupts.

If nested interrupts are desired, the alt_irq_interruptible() and
alt_irq_non_interruptible() functions should be used to bracket
code within a slow ISR that can be interrupted by higher priority
interrupts. Using these functions can improve the interrupt latency of
higher priority ISRs. The functions must be used as a pair, if you use only
one of the functions, the system may lock up.

Altera Corporation 6–9
December 2004 Nios II Software Developer’s Handbook

Exception Handling

Minimize Slow Operations

In general, ISRs provide rapid, low latency response to changes in the
state of hardware. They should not perform slow activities, such as bulk
data transfers, which do not require this low latency feature. Slow
activities should be deferred to execute outside of the interrupt context.

Deferring a task is simple in systems based on a real-time operating
system (RTOS) such as the MicroC/OS-II scheduler. In this case, you can
create a thread to handle the slow processing, and the ISR can
communicate with this thread using any of the MicroC/OS II
communication mechanisms, such as event flags or message queues.

The same method can be used in single-threaded HAL based-systems,
but is slightly more cumbersome. The slow code needs to be called
periodically from within the main program. The program polls a global
variable managed by the ISR to determine whether it needs to call the
slow processing routine.

Enabling and Disabling ISRs

The HAL provides the functions alt_irq_disable_all(),
alt_irq_enable_all(), and alt_irq_enabled() to allow a
program to disable interrupts for certain sections of code, and re-enable
them later. alt_irq_disable_all() disables all interrupts, and
returns a context value. To re-enable interrupts, you call
alt_irq_enable_all() and pass in the context parameter. In this
way, interrupts are returned to their state prior to the call to
alt_irq_disable_all(). alt_irq_enabled() returns non-zero if
interrupts are enabled, allowing a program to check on the status of
interrupts.

1 Interrupts should be disabled for as short a time as possible
because the maximum interrupt latency is increased by the time
for which interrupts are disabled.

C Example

The following C code example familiarizes you with the process you
must follow to use the HAL API for ISRs.

The following example is based on a Nios II system with a 4-bit PIO
peripheral connected to push-buttons. In this case, an IRQ is generated
any time a button is pushed. The ISR code reads the PIO peripheral’s
edge-capture register and stores the value to a global variable. The
address of the global variable is passed to the ISR via the context pointer.

6–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

ISRs

The following code shows an example of the ISR that services an interrupt
from the button PIO.

Example: An ISR to Service a Button PIO IRQ
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

static void handle_button_interrupts(void* context, alt_u32 id)
{
/* cast the context pointer to an integer pointer. */
volatile int* edge_capture_ptr = (volatile int*) context;
/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);
/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);
/* reset interrupt capability for the Button PIO. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

}

The following code shows an example of the code for the main program
that registers the ISR with the HAL.

Example: Registering the Button PIO ISR with the HAL
#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...
/* Register the interrupt handler. */
alt_irq_register(BUTTON_PIO_IRQ,

(void*) &edge_capture,
handle_button_interrupts);

Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The HAL exception handler is invoked and dispatches the
handle_button_interrupts() ISR.

3. handle_button_interrupts() services the interrupt and
returns.

4. Normal program operation continues with an updated value of
edge_capture.

Altera Corporation 6–11
December 2004 Nios II Software Developer’s Handbook

Exception Handling

f Further software examples that demonstrate implementing ISRs are
installed with the Nios II development kit, such as the count_binary
example project template.

Fast ISR
Processing

To maximize the performance of ISRs, use the following guidelines:

■ For the fastest execution of exception code, map the exception
address to a fast memory device. For example, an on-chip RAM with
zero waitstates is preferable to a slow SDRAM. This preference is not
a software choice, because exception address is determined at system
generation time. However, the exception address is an easily-
modified property of the Nios II CPU hardware.

■ ISR functions should also be mapped to a fast memory section, see
“Memory Usage” on page 4–30.

■ In general, avoid performing long computations within an ISR.

The HAL ISR services provide an easy-to-use, general-purpose
framework for registering ISRs, which is appropriate for most
applications. If your application has critical performance needs, you may
be able to improve your system performance by replacing
alt_irq_entry or alt_irq_handler, for example to implement a
different interrupt prioritization scheme. However, replacing these
routines requires a high degree of expertize and effort.

1 It may require less effort to implement hardware design changes
that make the system more tolerant of interrupt latency.

ISR
Performance
Data

This section provides performance data related to ISR processing on the
Nios II processor. The following three key metrics determine ISR
performance:

■ Interrupt latency—the time from when an interrupt is first generated
to when the processor runs the first instruction at the exception
address.

■ Interrupt response time—the time from when an interrupt is first
generated to when the processor runs the first instruction in the ISR.

■ Interrupt recovery time—the time taken from the last instruction in
the ISR to return to normal processing.

Because the Nios II processor is highly configurable, there is no single
typical number for each metric. This section provides data points for each
of the Nios II cores under the following assumptions:

■ All code and data is stored in on-chip memory.

6–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

ISR Performance Data

■ The ISR code does not reside in the instruction cache.
■ The software under test is based on the exception handler routine in

the Altera-provided HAL system library.
■ The code was compiled using compiler optimization level "–O3", or

high optimization.

Table 6–1 lists the interrupt latency, response time, and recovery time for
each Nios II core.

The results you experience could vary significantly based on the
following key factors:

■ The memory where the exception address and the ISR code reside.
The numbers in Table 6–1 are based on using on-chip memory; using
slower, off-chip memory produces slower results.

■ The compiler optimization level. The results above are based on level
"–O3". Level “–O2” produces similar results. However, removing
optimization altogether significantly increases interrupt response
time.

■ The Nios II core. The Nios II/f core (designed for high performance)
performs better than the Nios II/e core (designed for small size).

■ The exception handler routine. The HAL system library provides a
general-purpose IRQ handler that is written in C and designed to
suit the broadest range of applications. It is possible to reduce
response time dramatically by designing an IRQ handler tailored to
the exact needs of the application.

Interrupt latency can vary depending on where the interrupt is inserted
in the CPU’s pipeline. If the ISR code is resident in instruction cache, the
ISR performance improves.

1 By default the HAL system library disables interrupts when it
dispatches an ISR, which can have a significant impact on ISR
performance in systems that generate frequent interrupts.

Table 6–1. Interrupt Performance Data

Core Latency Response Time Recovery Time

Nios II/f 8 129 78

Nios II/s 8 146 165

Nios II/e 15 362 260

Note to Table 6–1:
(1) The numbers indicate time measured in CPU clock cycles.

Altera Corporation 6–13
December 2004 Nios II Software Developer’s Handbook

Exception Handling

Debugging with
ISRs

You can debug an ISR with the Nios II IDE by setting breakpoints within
the ISR. The debugger completely halts the processor upon reaching a
breakpoint. In the meantime, however, the hardware in your system
continues to operate. Therefore, it is inevitable that other IRQs are
ignored while the processor is halted. You can use the debugger to step
through the ISR code, but the status of other interrupt-driven device
drivers is generally invalid by the time you return the processor to normal
execution. You have to reset the processor to return the system to a known
state.

The ipending register (ctl4) is masked to all zeros during single
stepping. This masking prevents the processor from servicing IRQs that
are asserted while you single-step through code. As a result, if you try to
single step through the parts of the exception handler code (i.e.
_irq_entry or alt_irq_handler()) that reads the ipending
register, the code does not detect any pending IRQs. This breakpoint does
not affect debugging software exceptions. You can set breakpoints within
your ISR code (and single step through it), because the exception handler
has already used ipending to determine which IRQ caused the
exception.

Summary of
Suggestions for
Writing ISRs

This section summarizes suggestions for writing ISRs for the HAL
framework:

■ Register your ISR using the alt_irq_register() function
provided by the HAL API.

■ Write your ISR function to match the prototype: void isr (void*
context, alt_u32 id)

■ Minimize the amount of processing performed inside an ISR
■ Defer slow processing tasks until after the return from the ISR. The

ISR can use a message-passing mechanism to notify the outside
world to perform the slow processing task

■ Do not use the C standard library I/O functions, such as printf()
inside of an ISR.

■ You can enable (and disable) higher-priority ISRs during portions of
your ISR code using the alt_irq_interruptible() and
alt_irq_non_interruptible() functions. If your ISR is very
short, it may not be worth the overhead to re-enable higher-priority
interrupts

■ For fastest execution performance, place the exception handler and
any ISR code in a memory section that is in a fast memory device.

6–14 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Summary of Suggestions for Writing ISRs

Altera Corporation 7–1
May 2004 Preliminary

7. Cache Memory

Introduction Nios® II processor cores may contain instruction and data caches. This
chapter discusses cache-related issues that you need to consider to
guarantee that your program executes correctly on the Nios II processor.
Fortunately, most software based on the HAL system library works
correctly without any special accommodations for caches. However,
some software must manage the cache directly. For code that needs direct
control over the cache, the Nios II architecture provides facilities to
perform the following actions:

■ Initialize lines in the instruction and data caches
■ Flush lines in the instruction and data caches
■ Bypass the data cache during load and store instructions

This chapter discusses the following common cases when you need to
manage the cache:

■ Initializing cache after reset
■ Writing device drivers
■ Writing program loaders or self-modifying code
■ Managing cache in multi-master or multi-processor systems

Nios II Cache Implementation

Depending on the Nios II core implementation, a Nios II processor
system may or may not have data or instruction caches. You can write
programs generically so that they function correctly on any Nios II
processor, regardless of whether it has cache memory. For a Nios II core
without one or both caches, cache management operations are benign
and have no effect.

In all current Nios II cores, there is no hardware cache coherency
mechanism. Therefore, if there are multiple masters accessing shared
memory, software must explicitly maintain coherency across all masters.

f For complete details on the features of each Nios II core implementation,
see the chapter Nios II Core Implementation Details in the Nios II
Processor Reference Handbook.

NII52007-1.0

7–2 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Initializing Cache after Reset

The details for a particular Nios II processor system are defined in the
system.h file. The following code shows an excerpt from the system.h file,
defining the cache properties, such as cache size and the size of a single
cache line.

Example: An excerpt from system.h that defines the Cache Structure
#define NIOS2_ICACHE_SIZE 4096
#define NIOS2_DCACHE_SIZE 0
#define NIOS2_ICACHE_LINE_SIZE 32
#define NIOS2_DCACHE_LINE_SIZE 0

This system has a 4 Kbyte instruction cache with 32 byte lines, and no
data cache.

HAL API Functions for Managing Cache

The HAL API provides the following functions for managing cache
memory.:

■ alt_dcache_flush()
■ alt_dcache_flush_all()
■ alt_icache_flush()
■ alt_icache_flush_all()
■ alt_uncached_malloc()
■ alt_uncached_free()
■ alt_remap_uncached()
■ alt_remap_cached()

f For details on API functions, see “The HAL API Reference” on
page 10–1.

Further Information

This chapter covers only cache management issues that affect Nios II
programmers. It does not discuss the fundamental operation of caches.
The Cache Memory Book by Jim Handy is a good text that covers general
cache management issues.

Initializing
Cache after
Reset

After reset, the contents of the instruction cache and data cache are
unknown. They must be initialized at the start of the software reset
handler for correct operation.

The Nios II caches cannot be disabled by software; they are always
enabled. To allow proper operation, a processor reset causes the
instruction cache to invalidate the one instruction cache line that
corresponds to the reset handler address. This forces the instruction cache

Altera Corporation 7–3
May 2004 Nios II Software Developer’s Handbook

Cache Memory

to fetch instructions corresponding to this cache line from memory. The
the reset handler address is required to be aligned to the size of the
instruction cache line.

It is the responsibility of the first eight instructions of the reset handler to
initialize the remainder of the instruction cache. The Nios II initi
instruction is used to initialize one instruction cache line. Do not use the
flushi instruction because it may cause undesired effects when used to
initialize the instruction cache in future Nios II implementations.

Place the initi instruction in a loop that executes initi for each
instruction cache line address. The following code shows an example of
assembly code to initialize the instruction cache.

Example: Assembly code to initialize the instruction cache
mov r4, r0
movhi r5, %hi(NIOS2_ICACHE_SIZE)
ori r5, r5, %lo(NIOS2_ICACHE_SIZE)

icache_init_loop:
initi r4
addi r4, r4, NIOS2_ICACHE_LINE_SIZE
bltu r4, r5, icache_init_loop

After the instruction cache is initialized, the data cache must also be
initialized. The Nios II initd instruction is used to initialize one data
cache line. Do not use the flushd instruction for this purpose, because it
writes dirty lines back to memory. The data cache is undefined after reset,
including the cache line tags. Using flushd can cause unexpected writes
of random data to random addresses. The initd instruction does not
write back dirty data.

Place the initd instruction in a loop that executes initd for each data
cache line address. The following code shows an example of assembly
code to initialize the data cache:

Example: Assembly code to initialize the data cache
mov r4, r0
movhi r5, %hi(NIOS2_DCACHE_SIZE)
ori r5, r5, %lo(NIOS2_DCACHE_SIZE)

dcache_init_loop:
initd 0(r4)
addi r4, r4, NIOS2_DCACHE_LINE_SIZE
bltu r4, r5, dcache_init_loop

It is legal to execute instruction and data cache initialization code on
Nios II cores that don’t implement one or both of the caches. The initi
and initd instructions are simply treated as nop instructions if there is
no cache of the corresponding type present.

7–4 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Writing Device Drivers

For HAL System Library Users

Programs based on the HAL do not have to manage the initialization of
cache memory. The HAL C run-time code (crt0.S) provides a default
reset handler that performs cache initialization before alt_main() or
main() are called.

Writing Device
Drivers

Device drivers typically access control registers associated with their
device. These registers are mapped into the Nios II address space. When
accessing device registers, the data cache must be bypassed to ensure that
accesses are not lost or deferred due to the data cache.

For device drivers, the data cache should be bypassed by using the
ldio/stio family of instructions. On Nios II cores without a data cache,
these instructions behave just like their corresponding ld/st
instructions, and therefore are benign.

For C programmers, note that declaring a pointer as volatile does not
cause accesses using that volatile pointer to bypass the data cache. The
volatile keyword only prevents the compiler from optimizing out
accesses using the pointer.

1 This volatile behavior is different from the methodology for
the first-generation Nios processor.

For HAL System Library Users

The HAL provides the C-language macros IORD and IOWR that expand to
the appropriate assembly instructions to bypass the data cache. The IORD
macro expands to the ldwio instruction, and the IOWR macro expands to
the stwio instruction. These macros should be used by HAL device
drivers to access device registers.

Altera Corporation 7–5
May 2004 Nios II Software Developer’s Handbook

Cache Memory

Table 7–1 shows the available macros. All of these macros bypass the data
cache when they perform their operation. In general, your program
passes values defined in system.h as the BASE and REGNUM parameters.
These macros are defined in the file <Nios II kit
path>/components/altera_nios2/HAL/inc/io.h.

Writing Program
Loaders or Self-
Modifying Code

Software that writes instructions into memory, such as program loaders
or self-modifying code, needs to ensure that old instructions are flushed
from the instruction cache and CPU pipeline. This flushing is
accomplished with the flushi and flushp instructions, respectively.
Additionally, if new instruction(s) are written to memory using store
instructions that do not bypass the data cache, you must use the flushd
instruction to flush the new instruction(s) from the data cache into
memory.

The following code shows assembly code that writes a new instruction to
memory.

Example: Assembly Code That Writes a New Instruction to Memory
/*
* Assume new instruction in r4 and
* instruction address already in r5.

Table 7–1. HAL I/O Macros to Bypass the Data Cache

Macro Use

IORD(BASE, REGNUM) Read the value of the register at offset REGNUM within a
device with base address BASE. Registers are assumed to
be offset by the address width of the bus.

IOWR(BASE, REGNUM, DATA) Write the value DATA to the register at offset REGNUM within
a device with base address BASE. Registers are assumed to
be offset by the address width of the bus.

IORD_32DIRECT(BASE, OFFSET) Make a 32-bit read access at the location with address
BASE+OFFSET.

IORD_16DIRECT(BASE, OFFSET) Make a 16-bit read access at the location with address
BASE+OFFSET.

IORD_8DIRECT(BASE, OFFSET) Make an 8-bit read access at the location with address
BASE+OFFSET.

IOWR_32DIRECT(BASE, OFFSET, DATA) Make a 32-bit write access to write the value DATA at the
location with address BASE+OFFSET.

IOWR_16DIRECT(BASE, OFFSET, DATA) Make a 16-bit write access to write the value DATA at the
location with address BASE+OFFSET.

IOWR_8DIRECT(BASE, OFFSET, DATA) Make an 8-bit write access to write the value DATA at the
location with address BASE+OFFSET.

7–6 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Managing Cache in Multi-Master/Multi-CPU Systems

*/
stw r4, 0(r5)
flushd 0(r5)
flushi r5
flushp

The stw instruction writes the new instruction in r4 to the instruction
address specified by r5. If a data cache is present, the instruction is
written just to the data cache and the associated line is marked dirty. The
flushd instruction writes the data cache line associated with the address
in r5 to memory and invalidates the corresponding data cache line. The
flushi instruction invalidates the instruction cache line associated with
the address in r5. Finally, the flushp instruction ensures that the CPU
pipeline has not prefetched the old instruction at the address specified by
r5.

Notice that the above code sequence used the stw/flushd pair instead
of the stwio instruction. Using a stwio instruction doesn’t flush the
data cache so could leave stale data in the data cache.

This code sequence is correct for all Nios II implementations. If a Nios II
core doesn’t have a particular kind of cache, the corresponding flush
instruction (flushd or flushi) is executed as a nop.

For Users of the HAL System Library

The HAL API does not provide functions for this cache management case.

Managing Cache
in Multi-
Master/Multi-
CPU Systems

The Nios II architecture does not provide hardware cache coherency.
Instead, software cache coherency must be provided when
communicating through shared memory. The data cache contents of all
processors accessing the shared memory must be managed by software to
ensure that all masters read the most-recent values and do not overwrite
new data with stale data. This management is done by using the data
cache flushing and bypassing facilities to move data between the shared
memory and the data cache(s) as needed.

The flushd instruction is used to ensure that the data cache and memory
contain the same value for one line. If the line contains dirty data, it is
written to memory. The line is then invalidated in the data cache.

Consistently bypassing the data cache is of utmost importance. The
processor does not check if an address is in the data cache when
bypassing the data cache. If software cannot guarantee that a particular
address is in the data cache, it must flush the address from the data cache

Altera Corporation 7–7
May 2004 Nios II Software Developer’s Handbook

Cache Memory

before bypassing it for a load or store. This actions guarantees that the
processor does not bypass new (dirty) data in the cache, and mistakenly
access old data in memory.

Bit-31 Cache Bypass

The ldio/stio family of instructions explicitly bypass the data cache.
Bit-31 provides an alternate method to bypass the data cache. Using the
bit-31 cache bypass, the normal ld/st family of instructions may be used
to bypass the data cache if the most-significant bit of the address (bit 31)
is set to one. The value of bit 31 is only used internally to the CPU; bit 31
is forced to zero in the actual address accessed. This limits the maximum
byte address space to 31 bits.

Using bit 31 to bypass the data cache is a convenient mechanism for
software because the cacheability of the associated address is contained
within the address. This usage allows the address to be passed to code
that uses the normal ld/st family of instructions, while still
guaranteeing that all accesses to that address consistently bypass the data
cache.

Bit-31 cache bypass is only explicitly provided in the Nios II/f core, and
should not be used for other Nios II cores. The other Nios II cores that do
not support bit-31 cache bypass limit their maximum byte address space
to 31 bits to ease migration of code from one implementation to another.
They effectively ignore the value of bit 31, which allows code written for
a Nios II/f core using bit 31 cache bypass to run correctly on other current
Nios II implementations. In general, this feature is dependent on the Nios
II core implementation. Future Nios II cores may use bit 31 for other
purposes.

f For details, refer to the Nios II Core Implementation Details chapter in
the Nios II Processor Reference Handbook.

For HAL System Library Users

The HAL provides the C-language IORD_*DIRECT macros that expand
to the ldio family of instructions and the IOWR_*DIRECT macros that
expand to the stio family of instructions, see Table 7–1. These macros
are provided to access non-cacheable memory regions.

The HAL provides the alt_uncached_malloc(),
alt_uncached_free(), alt_remap_uncached(), and
alt_remap_cached() routines to allocate and manipulate regions of
uncached memory. These routines are available on Nios II cores with or
without a data cache—code written for a Nios II core with a data cache is
completely compatible with a Nios II core without a data cache.

7–8 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Managing Cache in Multi-Master/Multi-CPU Systems

The alt_uncached_malloc()and alt_remap_uncached()
routines guarantee that the allocated memory region isn’t in the data
cache and that all subsequent accesses to the allocated memory regions
bypass the data cache.

Altera Corporation 8–1
December 2004 Preliminary

8. MicroC/OS-II Real-Time
Operating System

Introduction This chapter describes the MicroC/OS-II real-time kernel for the Nios® II
processor.

Overview MicroC/OS-II is a popular real-time kernel produced by Micrium Inc.,
and is documented in the book MicroC/OS-II - The Real Time Kernel by Jean
J. Labrosse (CMP Books). The book describes MicroC/OS-II as a portable,
ROMable, scalable, preemptive, real-time, multitasking kernel.
MicroC/OS-II has been used in hundreds of commercial applications
since its release in 1992, and has been ported to over 40 different processor
architectures in addition to the Nios II processor. MicroC/OS-II provides
the following services:

■ Tasks (threads)
■ Event flags
■ Message passing
■ Memory management
■ Semaphores
■ Time management

The MicroC/OS-II kernel operates on top of the hardware abstraction
layer (HAL) system library for the Nios II processor. Because of the HAL,
programs based on MicroC/OS-II are more portable to other Nios II
hardware systems, and are resistant to changes in the underlying
hardware. Furthermore, MicroC/OS-II programs have access to all HAL
services, and can call the familiar HAL advanced programming interface
(API) functions.

Further Information

This chapter discusses the details of how to use MicroC/OS-II for the
Nios II processor only. For complete reference of MicroC/OS-II features
and usage, refer to MicroC/OS-II - The Real-Time Kernel. Further
information is also available on the Micrium website,
www.micrium.com.

NII52008-1.1

8–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Other RTOS Providers

Licensing

Altera distributes MicroC/OS-II in Nios II development kits for
evaluation purposes only. If you plan to use MicroC/OS-II in a
commercial product, you must contact Micrium to obtain a license at
Licensing@Micrium.com or http://www.micrium.com

1 Micrium offers free licensing for universities and students.
Contact Micrium for details.

Other RTOS
Providers

Altera distributes MicroC/OS-II to provide you with immediate access to
an easy-to-use real-time operating system (RTOS). In addition to
MicroC/OS-II, many other RTOSs are available from third-party vendors.

f For a complete list of RTOSs that support the Nios II processor, visit the
Nios II homepage at www.altera.com/nios2.

The Altera Port
of MicroC/OS-II

Altera ported MicroC/OS-II to the Nios II processor. Altera distributes
MicroC/OS-II in Nios II development kits, and supports the Nios II port
of the MicroC/OS-II kernel. Ready-made, working examples of
MicroC/OS-II programs are installed with the Nios II development kit. In
fact, Nios development boards are pre-programmed with a web server
reference design based on MicroC/OS-II and the Lightweight IP TCP/IP
stack.

The Altera® port of MicroC/OS-II is designed to be easy-to-use from
within the Nios II IDE. Using the Nios II IDE, you can control the
configuration for all the RTOS’s modules. You need not modify source
files directly to enable or disable kernel features. Nonetheless, Altera
provides the Nios II processor-specific source code if you ever wish to
examine it. The code is provided in directory <Nios II kit
path>/components/altera_nios/UCOSII. The processor-independent
code resides in <Nios II kit path>/components/micrium_uc_osii. The
MicroC/OS-II software component behaves like the drivers for SOPC
Builder hardware components: When MicroC/OS-II is included in a
Nios II integrated development environment (IDE) project, the header
and source files from components/micrium_uc_osii are included in the
project path, causing the MicroC/OS-II kernel to compile and link into
the project.

MicroC/OS-II Architecture

The Altera port of MicroC/OS-II for the Nios II processor is essentially a
superset of the HAL. It is the HAL environment extended by the inclusion
of the MicroC/OS-II scheduler and the associated MicroC/OS-II API. The
complete HAL API is available from within MicroC/OS-II projects.

Altera Corporation 8–3
December 2004 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Figure 8–1 shows the architecture of a program based on MicroC/OS-II
and the relationship to the HAL.

Figure 8–1. Architecture of MicroC/OS-II Programs

The multi-threaded environment affects certain HAL functions.

f For details of the consequences of calling a particular HAL function
within a multi-threaded environment, see “The HAL API Reference” on
page 10–1.

MicroC/OS-II Thread-Aware Debugging

When debugging a MicroC/OS-II application, the debugger can display
the current state of all threads within the application, including
backtraces and register values. You cannot use the debugger to change
the current thread, so it is not possible to use the debugger to change
threads or to single step a different thread.

1 Thread-aware debugging does not change the behaviour of the
target application in any way.

MicroC/OS-II Device Drivers

Each peripheral (i.e., an SOPC Builder component) can provide include
files and source files within the inc and src subdirectories of the
component’s HAL directory, see “Developing Device Drivers for the
HAL” on page 5–1. In addition to the HAL directory, a component may
elect to provide a UCOSII directory that contains code specific to the
MicroC/OS-II environment. Similar to the HAL directory, the UCOSII

User Program

C Standard
 Library

HAL API

Device
Driver

Device
Driver

...Device
Driver

Nios II Processor System Hardware

MicroC/OS-II
API

8–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

The Altera Port of MicroC/OS-II

directory contains inc and src subdirectories. These directories are
automatically added to the source and include search paths when
building MicroC/OS-II projects in the Nios II IDE.

You can use the UCOSII directory to provide code that is used only in a
multi-threaded environment. Other than these additional search
directories, the mechanism for providing MicroC/OS-II device drivers is
identical to the process described in “Developing Device Drivers for the
HAL” on page 5–1.

The HAL system initialization process calls the MicroC/OS-II function
OSInit()before alt_sys_init(), which instantiates and initializes
each device in the system. Therefore, the complete MicroC/OS-II API is
available to device drivers, although the system is still running in single-
threaded mode until the program calls OSStart() from within main().

Thread-Safe HAL Drivers

To allow the same driver to be portable across the HAL and MicroC/OS-II
environments, Altera defines a set of OS-independent macros that
provide access to operating system facilities. When compiled for a
MicroC/OS-II project, the macros expand to a MicroC/OS-II API call.
When compiled for a single-threaded HAL project, the macros expand to
benign empty implementations. These macros are used in Altera-
provided device driver code, and you can use them if you need to write a
device drivers with similar portability.

Table 8–1 lists the available macros and their function.

f For more information on the functionality in the MicroC/OS-II
environment, see MicroC/OS-II – The Real-Time Kernel.

The path listed for the header file is relative to the <Nios II kit
path>/components/micrium_uc_osii/UCOSII/inc directory.

Table 8–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 1 of 3)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

ALT_FLAG_GRP(group) os/alt_flag.h Create a pointer to a flag
group with the name group.

Empty statement.

ALT_EXTERN_FLAG_GRP(group) os/alt_flag.h Create an external reference
to a pointer to a flag group
with name group.

Empty statement.

Altera Corporation 8–5
December 2004 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

ALT_STATIC_FLAG_GRP(group) os/alt_flag.h Create a static pointer to a
flag group with the name
group.

Empty statement.

ALT_FLAG_CREATE(group,
flags)

os/alt_flag.h Call OSFlagCreate() to
initialize the flag group
pointer, group, with the
flags value flags. The error
code is the return value of
the macro.

Return 0 (success).

ALT_FLAG_PEND(group, flags,
wait_type, timeout)

os/alt_flag.h Call OSFlagPend() with
the first four input arguments
set to group, flags,
wait_type, and timeout
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_FLAG_POST(group, flags,
opt)

os/alt_flag.h Call OSFlagPost() with
the first three input
arguments set to group,
flags, and opt
respectively. The error code
is the return value of the
macro.

Return 0 (success).

ALT_SEM(sem) os/alt_sem.h Create an OS_EVENT
pointer with the name sem.

Empty statement.

ALT_EXTERN_SEM(sem) os/alt_sem.h Create an external reference
to an OS_EVENT pointer
with the name sem.

Empty statement.

ALT_STATIC_SEM(sem) os/alt_sem.h Create a static OS_EVENT
pointer with the name sem.

Empty statement.

ALT_SEM_CREATE(sem, value) os/alt_sem.h Call OSSemCreate() with
the argument value to
initialize the OS_EVENT
pointer sem. The return
value is zero upon success,
or negative otherwise.

Return 0 (success).

Table 8–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 2 of 3)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

8–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Implementing MicroC/OS-II Projects in the Nios II IDE

The Newlib ANSI C Standard Library

Programs based on MicroC/OS-II can also call the ANSI C standard
library functions. Some consideration is necessary in a multi-threaded
environment to ensure that the C standard library functions are thread
safe. The newlib C library stores all global variables within a single
structure referenced through the pointer _impure_ptr. However, the
Altera MicroC/OS-II port creates a new instance of the structure for each
task. Upon a context switch, the value of _impure_ptr is updated to
point to the current task’s version of this structure. In this way, the
contents of the structure pointed to by _impure_ptr are treated as
thread local. For example, through this mechanism each task has its own
version of errno.

This thread-local data is allocated at the top of the task’s stack. Therefore,
you need to make allowance when allocating memory for stacks. In
general, the _reent structure consumes approximately 900 bytes of data
for the normal C library, or 90 bytes for the reduced-footprint C library.

f For further details on the contents of the _reent structure, see the
newlib documentation, click Programs > Altera > Nios II Development
Kit > Nios II Documentation (Windows Start menu).

In addition, the MicroC/OS-II port provides appropriate task locking to
ensure that heap accesses, i.e., calls to malloc() and free() are also
thread safe.

Implementing
MicroC/OS-II
Projects in the
Nios II IDE

To create a program based on MicroC/OS-II, you must first set the
properties for the system library to a MicroC/OS-II project. From there,
the Nios II IDE offers RTOS options that allow you to control the
configuration of the MicroC/OS-II kernel.

ALT_SEM_PEND(sem, timeout) os/alt_sem.h Call OSSemPend() with the
first two argument set to sem
and timeout respectively.
The error code is the return
value of the macro.

Return 0 (success).

ALT_SEM_POST(sem) os/alt_sem.h Call OSSemPost() with the
input argument sem.

Return 0 (success).

Table 8–1. OS-Independent Macros for Thread-Safe HAL Drivers (Part 3 of 3)

Macro Defined in
Header

MicroC/OS-II
Implementation

Single-Threaded HAL
Implementation

Altera Corporation 8–7
December 2004 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Traditionally, you had to configure MicroC/OS-II using #define
directives in the file OS_CFG.h. Instead, the Nios II IDE provides a GUI
that allows you to configure each option. Therefore, you do not need to
edit header files or source code to configure the MicroC/OS-II features.
The GUI settings are reflected in the system library’s system.h file;
OS_CFG.h simply includes system.h.

The following sections define the MicroC/OS-II settings available from
the Nios II IDE. The meaning of each setting is defined fully in
MicroC/OS-II – The Real-Timer Kernel, Chapter 17 “MicroC/OS-II
Configuration Manual”.

f For step-by-step instructions on how to create a MicroC/OS-II project in
the Nios II IDE, refer to Using the MicroC/OS-II RTOS with the Nios II
Processor Tutorial.

MicroC/OS-II General Options

Table 8–2 shows the general options.

Table 8–2. General Options

Option Description

Maximum number of tasks Maps onto the #define OS_MAX_TASKS. Must be at least 2

Lowest assignable priority Maps on the #define OS_LOWEST_PRIO. Maximum allowable value
is 63.

Enable code generation for event
flags

Maps onto the #define OS_FLAG_EN. When disabled, event flag
settings are also disabled, see “Event Flags Settings” on page 8–8.

Enable code generation for mutex
semaphores

Maps onto the #define OS_MUTEX_EN. When disabled, mutual
exclusion semaphore settings are also disabled, see “Mutex Settings” on
page 8–8

Enable code generation for
semaphores

Maps onto the #define OS_SEM_EN. When disabled, semaphore
settings are also disabled, see “Semaphores Settings” on page 8–8.

Enable code generation for mailboxes Maps onto the #define OS_MBOX_EN. When disabled, mailbox
settings are also disabled, see “Mailboxes Settings” on page 8–9.

Enable code generation for queues Maps onto the #define OS_Q_EN. When disabled, queue settings are
also disabled, see “Queues Settings” on page 8–9.

Enable code generation for memory
management

Maps onto the #define OS_MEM_EN. When disabled, memory
management settings are also disabled, see “Memory Management
Settings” on page 8–10.

8–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Implementing MicroC/OS-II Projects in the Nios II IDE

Event Flags Settings

Table 8–3 shows the event flag settings.

Mutex Settings

Table 8–4 shows the mutex settings.

Semaphores Settings

Table 8–5 shows the semaphores settings.

Table 8–3. Event Flags Settings

Setting Description

Include code for wait on clear event
flags

Maps on #define OS_FLAG_WAIT_CLR_EN.

Include code for OSFlagAccept() Maps on #define OS_FLAG_ACCEPT_EN.

Include code for OSFlagDel() Maps on #define OS_FLAG_DEL_EN.

Include code for OSFlagQuery() Maps onto the #define OS_FLAG_QUERY_EN.

Maximum number of event flag
groups

Maps onto the #define OS_MAX_FLAGS.

Size of name of event flags group Maps onto the #define OS_FLAG_NAME_SIZE.

Table 8–4. Mutex Settings

Setting Description

Include code for
OSMutexAccept()

Maps onto the #define OS_MUTEX_ACCEPT_EN.

Include code for OSMutexDel() Maps onto the #define OS_MUTEX_DEL_EN.

Include code for OSMutexQuery() Maps onto the #define OS_MUTEX_QUERY_EN.

Table 8–5. Semaphores Settings

Setting Description

Include code for OSSemAccept() Maps onto the #define OS_SEM_ACCEPT_EN.

Include code for OSSemSet() Maps onto the #define OS_SEM_SET_EN.

Include code for OSSemDel() Maps onto the #define OS_SEM_DEL_EN.

Include code for OSSemQuery() Maps onto the #define OS_SEM_QUERY_EN.

Altera Corporation 8–9
December 2004 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Mailboxes Settings

Table 8–6 shows the mailbox settings.

Queues Settings

Table 8–7 shows the queues settings.

Table 8–6. Mailboxes Settings

Setting Description

Include code for OSMboxAccept() Maps onto #define OS_MBOX_ACCEPT_EN.

Include code for OSMBoxDel() Maps onto #define #define OS_MBOX_DEL_EN.

Include code for OSMboxPost() Maps onto #define OS_MBOX_POST_EN.

Include code for
OSMboxPostOpt()

Maps onto #define OS_MBOX_POST_OPT_EN.

Include code fro OSMBoxQuery() Maps onto #define OS_MBOX_QUERY_EN.

Table 8–7. Queues Settings

Setting Description

Include code for OSQAccept() Maps onto #define OS_Q_ACCEPT_EN.

Include code for OSQDel() Maps onto #define OS_Q_DEL_EN.

Include code for OSQFlush() Maps onto #define OS_Q_FLUSH_EN.

Include code for OSQPost() Maps onto #define OS_Q_POST_EN.

Include code for OSQPostFront() Maps onto #define OS_Q_POST_FRONT_EN.

Include code for OSQPostOpt() Maps onto #define OS_Q_POST_OPT_EN.

Include code for OSQQuery() Maps onto #define OS_Q_QUERY_EN.

Maximum number of Queue Control
blocks

Maps onto #define OS_MAX_QS.

8–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Implementing MicroC/OS-II Projects in the Nios II IDE

Memory Management Settings

Table 8–8 shows the memory management settings.

Miscellaneous Settings

Table 8–9 shows the miscellaneous settings.

Table 8–8. Memory Management Settings

Setting Description

Include code for OSMemQuery() Maps onto #define OS_MEM_QUERY_EN.

Maximum number of memory
partitions

Maps onto #define #define OS_MAX_MEM_PART.

Size of memory partition name Maps onto #define OS_MEM_NAME_SIZE.

Table 8–9. Miscellaneous Settings

Setting Description

Enable argument checking Maps onto #define OS_ARG_CHK_EN.

Enable uCOS-II hooks Maps onto #define OS_CPU_HOOKS_EN.

Enable debug variables Maps onto #define OS_DEBUG_EN.

Include code for OSSchedLock()
and OSSchedUnlock()

Maps onto #define OS_SCHED_LOCK_EN.

Enable tick stepping feature for
uCOS-View

Maps onto #define OS_TICK_STEP_EN.

Enable statistics task Maps onto #define OS_TASK_STAT_EN.

Check task stacks from statistics task Maps onto #define OS_TASK_STAT_STK_CHK_EN.

Statistics task stack size Maps onto #define OS_TASK_STAT_STK_SIZE.

Idle task stack size Maps onto #define OS_TASK_IDLE_STK_SIZE.

Maximum number of event control
blocks

Maps onto #define OS_MAX_EVENTS 60.

Size of semaphore, cutex, cailbox, or
queue name

Maps onto #define OS_EVENT_NAME_SIZE.

Altera Corporation 8–11
December 2004 Nios II Software Developer’s Handbook

MicroC/OS-II Real-Time Operating System

Task Management Settings

Table 8–10 shows the task management settings.

Time Management Settings

Table 8–11 shows the time management settings.

Table 8–10. Task Management Settings

Setting Description

Include code for
OSTaskChangePrio()

Maps onto #define OS_TASK_CHANGE_PRIO_EN.

Include code for OSTaskCreate() Maps onto #define OS_TASK_CREATE_EN.

Include code for
OSTaskCreateExt()

Maps onto #define OS_TASK_CREATE_EXT_EN.

Include code for OSTaskDel() Maps onto #define OS_TASK_DEL_EN.

Include variables in OS_TCB for
profiling

Maps onto #define OS_TASK_PROFILE_EN.

Include code for OSTaskQuery() Maps onto #define OS_TASK_QUERY_EN.

Include code for
OSTaskSuspend() and
OSTaskResume()

Maps onto #define OS_TASK_SUSPEND_EN.

Include code for OSTaskSwHook() Maps onto #define OS_TASK_SW_HOOK_EN.

Size of task name Maps onto #define OS_TASK_NAME_SIZE.

Table 8–11. Time Management Settings

Setting Description

Include code for
OSTimeDlyHMSM()

Maps onto #define OS_TIME_DLY_HMSM_EN.

Include code
OSTimeDlyResume()

Maps onto #define OS_TIME_DLY_RESUME_EN.

Include code for OSTimeGet() and
OSTimeSet()

Maps onto #define OS_TIME_GET_SET_EN.

Include code for
OSTimeTickHook()

Maps onto #define OS_TIME_TICK_HOOK_EN.

8–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Implementing MicroC/OS-II Projects in the Nios II IDE

Altera Corporation 9–1
December 2004 Preliminary

9. Ethernet & Lightweight IP

Introduction Lightweight IP (lwIP) is a small-footprint implementation of the
transmission control protocol/Internet protocol (TCP/IP) suite. The
focus of the lwIP TCP/IP implementation is to reduce resource usage
while providing a full scale TCP/IP. lwIP is designed for use in
embedded systems with small memory footprints, making it suitable for
Nios® II processor systems.

lwIP includes the following features:

■ IP including packet forwarding over multiple network interfaces
■ Internet control message protocol (ICMP) for network maintenance

and debugging
■ User datagram protocol (UDP)
■ TCP with congestion control, RTT estimation and fast recovery and

fast retransmit
■ Dynamic host configuration protocol (DHCP)
■ Address resolution protocol (ARP) for Ethernet
■ Standard sockets for application programming interface (API)

lwIP Port for the Nios II Processor

Altera provides the Nios II port of lwIP, including source code, in the
Nios II development kits. lwIP provides you with immediate, open-
source access to a stack for Ethernet connectivity for the Nios II processor.
The Altera® port of lwIP includes a sockets API wrapper, providing the
standard, well-documented socket API.

Nios II development kits include several working examples of programs
using lwIP for your reference. In fact, Nios development boards are pre-
programmed with a web server reference design based on lwIP and the
MicroC/OS-II real-time operating system (RTOS). Full source code is
provided.

Altera’s port of lwIP uses the MicroC/OS-II RTOS multi-threaded
environment. Therefore, to use lwIP, you must base your C/C++ project
on the MicroC/OS-II RTOS. Naturally, the Nios II processor system must
also contain an Ethernet interface. At present, the Altera-provided lwIP
driver supports only the SMSC lan91c111 MAC/PHY device, which is the
same device that is provided on Nios development boards. The lwIP
driver is interrupt-driven, so you must ensure that interrupts for the
Ethernet component are connected.

NII52009-1.2

9–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Introduction

Altera’s port of lwIP is based on the hardware abstraction layer (HAL)
generic Ethernet device model. By virtue of the generic device model, you
can write a new driver to support any target Ethernet media access
controller (MAC), and maintain the consistent HAL and sockets API to
access the hardware.

For details on writing an Ethernet device driver see “Developing Device
Drivers for the HAL” on page 5–1.

This chapter discusses the details of how to use lwIP for the Nios II
processor only.

f The standard sockets interface is well-documented, and there are a
number of books on the topic of programming with sockets. Two good
texts are Unix Network Programming by Richard Stevens or
Internetworking with TCP/IP Volume 3 by Douglas Comer.

lwIP Files & Directories

You need not edit the source code to use lwIP in a C/C++ program using
the Nios II IDE. Nonetheless, Altera provides the source code for your
reference. By default the files are installed with the Nios II development
kit in the <Nios II kit path>/components/altera_lwip/UCOSII directory.

The directory format of the stack tries to maintain the original open-
source code as much as possible under the UCOSII/src/downloads
directory to make upgrades smoother to a more recent version of lwIP.
The UCOSII/src/downloads/lwip-0.7.2 directory contains the original
lwIP v0.7.2 source code; the UCOSII/src/downloads/lwip4ucosii
directory contains the source code of the port for MicroC/OS-II.

Altera’s port of lwIP is based on version 0.7.2 of the protocol stack, with
wrappers placed around the code to integrate it to the HAL system
library. More recent versions of lwIP are available, but newer versions
have not been tested with the HAL system library wrappers.

Licensing

lwIP is an open-source TCP/IP protocol stack created by Adam Dunkels
at the Computer and Networks Architectures (CNA) lab at the Swedish
Institute of Computer Science (SICS), and is available under a modified
BSD license. The lwIP project is hosted by Savannah at
http://savannah.nongnu.org/projects/lwip/. Refer to the Savannah
website for complete background information on lwIP and licensing
details.

Altera Corporation 9–3
December 2004 Nios II Software Developer’s Handbook

Ethernet & Lightweight IP

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

■ Redistributions of source code must retain the copyright notice and
disclaimer shown in the file <lwIP component
path>/UCOSII/src/downloads/lwIP-0.7.2/COPYING.

■ Redistributions in binary form must reproduce the copyright notice
shown in the file <lwIP component
path>/UCOSII/src/downloads/lwIP-0.7.2/COPYING.

Other TCP/IP
Stack Providers

Other third-party vendors also provide Ethernet support for the Nios II
processor. Notably, third-party RTOS vendors often offer Ethernet
modules for their particular RTOS framework.

f For up-to-date information on products available from third-party
providers, visit the Nios II homepage at www.altera.com/nios2.

Using the lwIP
Protocol Stack

This section discusses how to include the lwIP protocol stack in a Nios II
program.

The primary interface to the lwIP protocol stack is the standard sockets
interface. In addition to the sockets interface, you call the following
functions to initialize the stack and drivers:

■ lwip_stack_init()
■ lwip_devices_init()

You must also provide the following simple functions that are called by
HAL system code to set the MAC address and IP address:

■ init_done_func()
■ get_mac_addr()
■ get_ip_addr()

Nios II System Requirements

To use lwIP, your Nios II system must meet the following requirements:

■ The system hardware must include an Ethernet interface with
interrupts enabled

■ The system library must be based on MicroC/OS-II

9–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using the lwIP Protocol Stack

The lwIP Tasks

The Altera-provided lwIP protocol uses the following two fundamental
tasks. These tasks run continuously in addition to the tasks that your
program creates.

1. The main task is used by the protocol stack. There is a task for
receiving packets. The main function of this task blocks waiting for a
message box. When a new packet arrives, an interrupt request (IRQ)
is generated and an interrupt service routine (ISR) clears the IRQ
and posts a message to the message box.

2. The new message then activates the receive task. This design allows
the ISR to execute as quickly as possible, reducing the impact on
system latency.

These tasks are started automatically when the initialization process
succeeds. You set the task priorities, based on the criticality compared to
other tasks in the system.

Initializing the Stack

To initialize the stack, call the function lwip_stack_init() before
calling OSStart to start the MicroC/OS-II scheduler. The following code
shows an example of a main().

Example: Instantiating the lwIP Stack in main()
#include <includes.h>
#include <alt_lwip_dev.h>

int main ()
{
...
 lwip_stack_init(TCPIP_THREAD_PRIO, init_done_func, 0);
...
 OSStart();
...
 return 0;
}

lwip_stack_init()

lwip_stack_init() performs setup for the protocol stack. The
prototype for lwip_stack_init() is:

void lwip_stack_init(int thread_prio,
void (* init_done_func)(void *), void *arg)

Altera Corporation 9–5
December 2004 Nios II Software Developer’s Handbook

Ethernet & Lightweight IP

lwip_stack_init() returns nothing and has the following
parameters:

■ thread_prio—the priority of the main TCP/IP thread
■ init_done_func—a pointer to a function that is called once the

stack is initialized
■ arg—an argument to pass to init_done_func(). arg is usually

set to zero.

init_done_func()

You must provide the function init_done_func(), which is called
after the stack has been initialized. The init_done_func() function
must call lwip_devices_init(), which initializes all the installed
Ethernet device drivers, and then creates the receive task.

The prototype for init_done_func() is:

void init_done_func(void* arg)

The following code shows an example of the tcpip_init_done()
function, which is an example of an implementation of an
init_done_func() function.

Example: An implementation of init_done_func()
#include <stdio.h>
#include <lwip/sys.h>
#include <alt_lwip_dev.h>
#include <includes.h>
/*
* This function is called once the IP stack is alive
*/
static void tcpip_init_done(void *arg)
{
 int temp;

 if (lwip_devices_init(ETHER_PRIO))
{

 /* If initialization succeeds, start a user task */
temp = sys_thread_new(user_thread_func,

NULL,
USER_THREAD_PRIO);

if (!temp)

{
perror("Can't add the application threads
OSTaskDel(OS_PRIO_SELF);

}
}

 else
{

 /*
* May not be able to add an Ethernet interface if:

9–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using the lwIP Protocol Stack

 * 1. There is no Ethernet hardware
 * 2. Your hardware cannot initialize (e.g.
 * not connected to a network, or can’t get
 * a mac address)
 */
 perror("Can't initialize any interface. Closing down.\n");
 OSTaskDel(OS_PRIO_SELF);
 }

 return;
}

You must use sys_thread_new() to create any new task that talks to
the IP stack using the sockets protocol.

f For more information, see “Calling the Sockets Interface” on page 9–9.

lwip_devices_init()

lwip_devices_init() iterates through the list of all installed Ethernet
device drivers defined in system.h, and registers each driver with the
stack. lwip_devices_init() returns a non-zero value to indicate
success. Upon success, the TCP/IP stack is available, and you can then
create the task(s) for your program.

The prototype for lwip_devices_init() is:

int lwip_devices_init(int rx_thread_prio)

The parameter to this function is the priority of the receive thread.
lwip_devices_init() calls the functions get_mac_addr() and
get_ip_address(), which you must provide.

get_mac_addr() & get_ip_addr()

get_mac_addr() and get_ip_addr() are called by the lwIP system
code during the devices initialization process. These functions are
necessary for the lwIP system code to set the MAC and IP addresses for a
particular device. By writing these functions yourself, your system has
the flexibility to store the MAC address and IP address in an arbitrary
location, rather than a fixed location hard-coded in the device driver. For
example, some systems may store the MAC address in flash memory,
while others may have the MAC address in on-chip embedded memory.

Both functions take as parameters device structures used internally by the
lwIP. However, you do not need to know the details of the structures. You
only need to know enough to fill in the MAC and IP addresses.

The prototype for get_mac_addr() is:

Altera Corporation 9–7
December 2004 Nios II Software Developer’s Handbook

Ethernet & Lightweight IP

err_t gat_mac_addr(alt_lwip_dev* lwip_dev);

Inside the function, you must fill in the following fields of the
alt_lwip_dev structure that define the MAC address:

■ unsigned char lwip_dev->netif->hwaddr_len—the length
of the MAC address, which should be 6

■ unsigned char lwIP_dev->netif->hwaddr[0-5]—the MAC
address of the device.

Your code can also verify the name of the device being initialized.

The prototype for get_mac_addr() is in the header file
UCOSII/inc/alt_lwip_dev.h. The netif structure is defined in the
UCOSII/src/downloads/lwip-0.7.2/src/include/lwip/netif.h file.

The following code shows an example implementation of
get_mac_addr(). For demonstration purposes only, the MAC address
is stored at address 0x7f0000 in this example.

Example: An implementation of get_mac_addr()
#include <alt_lwip_dev.h>
#include <lwip/netif.h>
#include <io.h>
err_t get_mac_addr(alt_lwip_dev* lwip_dev)
{
 err_t ret_code = ERR_IF;
 /*
 * The name here is the device name defined in system.h
 */
 if (!strcmp(lwip_dev->name, "/dev/lan91c111"))
 {

/* Read the 6-byte MAC address from wherever it is stored */
lwip_dev->netif->hwaddr[0] = IORD_8DIRECT(0x7f0000, 4);
lwip_dev->netif->hwaddr[1] = IORD_8DIRECT(0x7f0000, 5);
lwip_dev->netif->hwaddr[2] = IORD_8DIRECT(0x7f0000, 6);
lwip_dev->netif->hwaddr[3] = IORD_8DIRECT(0x7f0000, 7);
lwip_dev->netif->hwaddr[4] = IORD_8DIRECT(0x7f0000, 8);
lwip_dev->netif->hwaddr[5] = IORD_8DIRECT(0x7f0000, 9);
ret_code = ERR_OK;

 }
 return ret_code;
}

The function get_ip_addr() assigns the IP address of the protocol
stack. Your program can either request for DHCP to automatically find an
IP address, or assign a static address. The function prototype for
get_ip_addr() is:

int get_ip_addr(alt_lwip_dev* lwip_dev,
struct ip_addr* ipaddr,

9–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Using the lwIP Protocol Stack

 struct ip_addr* netmask,
struct ip_addr* gw,

 int* use_dhcp);

To enable DHCP, include the line:

*use_dhcp = 1;

To assign a static IP address, include the lines:

IP4_ADDR(ipaddr, IPADDR0,IPADDR1,IPADDR2,IPADDR3);
IP4_ADDR(gw, GWADDR0,GWADDR1,GWADDR2,GWADDR3);
IP4_ADDR(netmask, MSKADDR0,MSKADDR1,MSKADDR2,MSKADDR3);
*use_dhcp = 0;

IP_ADDR0-3 are the bytes 0-3 of the IP address. GWADDR0-3 are the bytes
of the gateway address. MSKADDR0-3 are the bytes of the network mask.

The prototype for get_ip_addr() is in the header file
UCOSII/inc/alt_lwip_dev.h.

The following code shows an example implementation of
get_ip_addr() and shows a list of the necessary include files.

Example: An implementation of get_ip_addr()
#include <lwip/tcpip.h>
#include <alt_lwip_dev.h>
int get_ip_addr(alt_lwip_dev* lwip_dev,

struct ip_addr* ipaddr,
 struct ip_addr* netmask,

struct ip_addr* gw,
 int* use_dhcp)
{
int ret_code = 0;
/*
* The name here is the device name defined in system.h
*/

 if (!strcmp(lwip_dev->name, "/dev/lan91c111"))
 {
#if LWIP_DHCP == 1
 *use_dhcp = 1;
#else

/* Assign Static IP Addresses */
 IP4_ADDR(&ipaddr, 10,1 ,1 ,3);
 /* Assign the Default Gateway Address */
 IP4_ADDR(&gw, 10,1 , 1,254);
 /* Assign the Netmask */

IP4_ADDR(&netmask, 255,255 ,255 ,0);
 *use_dhcp = 0;
#endif /* LWIP_DHCP */

 ret_code = 1;
 }

Altera Corporation 9–9
December 2004 Nios II Software Developer’s Handbook

Ethernet & Lightweight IP

 return ret_code;
}

Calling the Sockets Interface

Once your Ethernet device has been initialized, the remainder of your
program should use the sockets API to access the IP stack.

To create a new task that talks to the IP stack using the sockets API, you
must use the function sys_thread_new(). The sys_thread_new()
function is part of the lwIP OS porting layer to create threads.
sys_thread_new() calls the MicroC/OS-II OSTaskCreate()
function and performs some other lwIP-specific actions.

The prototype for sys_thread_new() is:

sys_thread_t sys_thread_new(void (* thread)(void *arg),
void *arg,
int prio);

It is in ucosII/src/downloads/lwIP-0.7.2/src/include/lwIP/sys.h. You can
include this as #include “lwIP/sys.h”.

You can find other details of the OS porting layer in the sys_arch.c file in
the lwIP component directory,
UCOSII/src/downloads/lwip4ucosii/ucos-ii/.

Configuring lwIP
in the Nios II IDE

The lwIP protocol stack has many configuration options that are
configured using #define directives in the file lwipopts.h. The Nios II
integrated development environment (IDE) provides a graphical user
interface (GUI) that enables you to configure lwIP options (i.e. modify the
#defines in lwipopts.h) without editing source code. The most
commonly accessed options are available through the GUI. However,
there are some options that cannot be changed via the GUI, so you have
to edit the lwipopts.h file manually.

The following sections describe the features that can be configured via the
Nios II IDE. The GUI provides a default value for each feature. In general,
these values provide a good starting point, and you can later fine-tune the
values to meet the needs of your system.

9–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Configuring lwIP in the Nios II IDE

Lightweight TCP/IP Stack General Settings

The ARP and IP protocols are always enabled. Table 9–1 shows the
protocol options.

Table 9–2 shows the global options, which affect the overall behavior of
the TCP/IP stack.

IP Options

If the forward IP packets option is turned on, when there is more than one
network interface, and the IP stack for one interface receives packets not
addressed to it, it forwards the packet out of the other interface.

ARP Options

The size of ARP table is the number of entries that can be stored in the
ARP cache.

Table 9–1. Protocol Options

Option Description

UDP Enables and disables the user datagram protocol (UDP).

TCP Enables and disables the transmission control protocol
(TCP).

Table 9–2. Global Options

Option Description

Use DHCP to automatically
assign an IP address

Enables and disables DHCP. DHCP requires that the UDP protocol is enabled.

Enable statistics When this option is turned on, the stack keeps counters of packets received,
errors, etc. The counters are defined in a structure variable lwip_stats in the
UCOSII/src/downloads/lwIP-0.7.2/src/core file. The structure definition is in
UCOSII/src/downloads/lwIP-0.7.2/src/include/lwIP/stats.h.

Number of packet buffers The number of buffers for the network driver to receive packets into.

Time to live The number of seconds that a datagram can remain in the system before being
discarded.

Maximum packet size The maximum size of the packets on the network interface.

Default MAC interface If the IP stack has more than one network interface, this parameter indicates
which interface to use when sending packets to an IP address without a known
route, see “Known Limitations” on page 9–12.

Altera Corporation 9–11
December 2004 Nios II Software Developer’s Handbook

Ethernet & Lightweight IP

UDP Options

You can enter the maximum number of UDP sockets that the application
uses.

TCP Options

Table 9–3 shows the TCP options.

DHCP Options

You can specify that the ARP checks the assigned address is not in use, so
once the DHCP protocol has assigned an IP address, it send out an APR
packet to check that no-one else is using the assigned address.

Memory Options

Table 9–4 shows the memory options.

Table 9–3. TCP Options

Option Description

Max number of listening sockets Maximum number of TCP sockets that can be listening for a client to
connect.

Max number of active sockets Maximum number of TCP sockets that the program uses, excluding listening
sockets.

Max retransmissions The maximum number of times that the TCP protocol tries to retransmit a
packet which is not acknowledged.

Max retransmissions of SYN
frames

The maximum number of times that the TCP protocol tries to retransmit a
SYN packet, which is not acknowledged.

Max segment size Maximum TCP segment size.

Max send buffer space The maximum amount of data TCP buffers up for transmission.

Max window size The maximum amount of data for each receiving socket that TCP buffers up

Table 9–4. Memory Options (Part 1 of 2)

Option Description

Maximum number of buffers sent
without copying

The maximum number of buffers that the stack attempts to transmit without
copying. Only use this option for sending UDP packets and fragmented IP
packets. This option maps onto the lwIP #define memp_num_pbuf.

Maximum number of packet
buffers passed between the
application and stack threads

The maximum number of buffers that can be passed between the
application thread and the protocol stack thread (in either direction) at any
one time.This option maps onto the lwIP #define memp_num_netbuf.

9–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Known Limitations

Known
Limitations

The following limitations of Altera’s current implementation of the lwIP
stack are known:

■ lwIP does not implement the shutdown socket call correctly. The
shutdown call maps directly on to the close socket call

■ Multiple network interfaces features are present in the code, but have
not been tested.

Maximum number of pending API
calls from the application to the
stack thread

The size of the message box that sends API calls from the application thread
to the protocol thread. This option maps onto the lwIP #define
memp_num_api_msg.

Maximum number of messages
passed from the protocol stack
thread to the application

The combination of API calls passed from the application thread to the stack
thread, and packets being passed the other way. This option maps onto the
lwIP #define memp_num_tcpip_msg.

TCP/IP Heap size The size of the memory pool for copying buffers into temporary locations,
which is not the total memory size. This option maps onto the lwIP
#define mem_size.

Table 9–4. Memory Options (Part 2 of 2)

Option Description

Altera Corporation Section IV–1
Preliminary

Section IV. Appendices

This section provides appendix information.

This section includes the following chapters:

■ Chapter 10. The HAL API Reference

■ Chapter 11. Altera-Provided Development Tools

■ Chapter 12. Read-Only Zip Filing System

Revision History The table below shows the revision history for these chapters. These
version numbers track the document revisions; they have no relationship
to the version of the Nios II development kits or Nios II processor cores.

Chapter(s) Date / Version Changes Made

10 December 2004
v1.2

Updated names of DMA generic requests.

September 2004
v1.1

● Added open().
● Added ERRNO information to

alt_dma_txchan_open().
● Corrected ALT_DMA_TX_STREAM_ON

definition.
● Corrected ALT_DMA_RX_STREAM_ON

definition.
● Added information to

alt_dma_rxchan_ioctl() and
alt_dma_txchan_ioctl().

May 2004
v1.0

First publication.

11 December 2004
v1.1

Added Nios II command line tools information.

May 2004
v1.0

First publication.

12 May 2004
v1.0

First publication.

Section IV–2 Altera Corporation
Preliminary

Appendices Nios II Software Developer’s Handbook

Altera Corporation 10–1
December 2004 Preliminary

10. The HAL API Reference

Introduction This chapter provides an alphabetically ordered list of all the functions
within the hardware abstraction layer (HAL) application programming
interface (API). Each function is listed with its C prototype and a short
description. Indication is also given as to whether the function is thread
safe when running in a multi-threaded environment, and whether it can
be called from an interrupt service routine (ISR).

This appendix only lists the functionality provided by the HAL. You
should be aware that the complete newlib API is also available from
within HAL systems. For example, newlib provides printf(), and
other standard I/O functions, which are not described here.

f For more details of the newlib API, refer to the newlib documentation,
click Programs > Altera > Nios II Development Kit > Nios II
Documentation (Windows Start menu).

NII52010-1.2

10–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

_exit()

Prototype: void _exit (int exit_code)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The newlib exit() function calls the _exit() function to terminate the current
process. Typically, when main() completes. Because there is only a single
process within HAL systems, the HAL implementation blocks forever.

Note that interrupts are not disabled, so ISRs continue to execute.

The input argument, exit_code, is ignored.

Return: –

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–3
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

_rename()

Prototype: int _rename(char *existing, char* new)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <stdio.h>

Description: The _rename() function is provided for newlib compatibility.

Return: It always fails with return code –1, and with errno set to ENOSYS.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_alarm_start()

Prototype: int alt_alarm_start (alt_alarm* alarm,
alt_u32 nticks,

alt_u32 (*callback) (void* context),
void* context)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_alarm_start() function schedules an alarm callback, see “Alarms”
on page 4–9. The input argument, ntick, is the number of system clock ticks
that elapse until the call to the callback function. The input argument
context is passed as the input argument to the callback function, when the
callback occurs.

The input alarm is a pointer to a structure that represents this alarm. You must
create it, and it must have a lifetime that is at least as long as that of the alarm.
However, you are not responsible for initializing the contents of the structure
pointed to by alarm. This action is done by the call to alt_alarm_start().

Return: The return value for alt_alarm_start() is zero upon success, and negative
otherwise. This function fails if there is no system clock available.

See also: alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 10–5
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_alarm_stop()

Prototype: void alt_alarm_stop (alt_alarm* alarm)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: You can call the alt_alarm_stop() function to cancel an alarm previously
registered by a call to alt_alarm_start(). The input argument is a pointer
to the alarm structure in the previous call to alt_alarm_start().

Upon return the alarm is canceled, if it was still active.

Return: –

See also: alt_alarm_start()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

10–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dcache_flush()

Prototype: void alt_dcache_flush (void* start, alt_u32 len)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_dcache_flush() function flushes (i.e. writes back dirty data and
then invalidates) the data cache for a memory region of length len bytes, starting
at address start.

In processors without data caches, it has no effect.

Return: –

See also: alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 10–7
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dcache_flush_all()

Prototype: void alt_dcache_flush_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_dcache_flush_all() function flushes, i.e., writes back dirty data
and then invalidates, the entire contents of the data cache.

In processors without data caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

10–8 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dev_reg()

Prototype: int alt_dev_reg(alt_dev* dev)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dev.h>

Description: The alt_dev_reg() function registers a device with the system. Once
registered you can access a device using the standard I/O functions, see
“Developing Programs using the HAL” on page 4–1.

The system behavior is undefined in the event that a device is registered with a
name that conflicts with an existing device or file system.

The alt_dev_reg() function is not thread safe in the sense that there should
be no other thread using the device list at the time that alt_dev_reg() is
called. In practice alt_dev_reg() should only be called while operating in a
single threaded mode. The expectation is that it is only called by the device
initialization functions invoked by alt_sys_init(), which in turn should only
be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_fs_reg()

Altera Corporation 10–9
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_rxchan_close()

Prototype: int alt_dma_rxchan_close (alt_dma_rxchan rxchan)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_close() function notifies the system that the
application has finished with the DMA receive channel, rxchan. The current
implementation always succeeds.

Return: The return value is zero upon success and negative otherwise.

See also: alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–10 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dma_rxchan_depth()

Prototype: alt_u32 alt_dma_rxchan_depth(alt_dma_rxchan dma)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_depth() function returns the maximum number of
receive requests that can be posted to the specified DMA transmit channel, dma.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: Returns the maximum number of receive requests that can be posted..

See also: alt_dma_rxchan_close()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 10–11
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_rxchan_ioctl()

Prototype: int alt_dma_rxchan_ioctl (alt_dma_rxchan dma,
int req,
void* arg)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_ioctl() function performs device specific I/O
operations on the DMA receive channel, dma. For example, some drivers support
options to control the width of the transfer operations. The input argument, req,
is an enumeration of the requested operation; arg is an additional argument for
the request. The interpretation of arg is request dependent.

Table 10–1 shows generic requests defined in <sys/alt_dma.h>, which a device
may support.

Whether a call to alt_dma_rxchan_ioctl is thread safe, or can be called
from an ISR, is device dependent. In general it should be assumed it is not the
case.

The alt_dma_rxchan_ioctl()function should not be called while DMA
transfers are pending, otherwise unpredictable behavior may result.

Return: A negative return value indicates failure, otherwise the interpretation of the return
value is request specific.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–12 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Table 10–1. Generic Requests

Request Meaning

ALT_DMA_SET_MODE_8 Transfer data in units of 8 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_16 Transfer data in units of 16 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_32 Transfer data in units of 32 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_64 Transfer data in units of 64 bits. The value of arg is ignored.

ALT_DMA_SET_MODE_128 Transfer data in units of 128 bits. The value of arg is ignored.

ALT_DMA_GET_MODE Return the transfer width. The value of arg is ignored.

ALT_DMA_TX_ONLY_ON (1) The ALT_DMA_TX_ONLY_ON request causes a DMA channel to operate in
a mode where only the transmitter is under software control. The other side
writes continously from a single location. The address to write to is the
argument to this request.

ALT_DMA_TX_ONLY_OFF (1) Return to the default mode where both the receive and transmit sides of the
DMA can be under software control.

ALT_DMA_RX_ONLY_ON (1) The ALT_DMA_RX_ONLY_ON request causes a DMA channel to operate in
a mode where only the receiver is under software control. The other side
reads continously from a single location. The address to read is the
argument to this request.

ALT_DMA_RX_ONLY_OFF (1) Return to the default mode where both the receive and transmit sides of the
DMA can be under software control.

Notes to Table 10–1:
(1) These macro names changed in version 1.1 of the Nios II Development Kit. The old names

(ALT_DMA_TX_STREAM_ON, ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and
ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should use the new names.

Altera Corporation 10–13
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_rxchan_open()

Prototype: alt_dma_rxchan alt_dma_rxchan_open (const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_open() function obtains an alt_dma_rxchan
descriptor for a DMA receive channel. The input argument, name, is the name of
the associated physical device, e.g., /dev/dma_0.

Return: The return value is null on failure and non-null otherwise. If there is an error,
errno is set to ENODEV.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–14 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dma_rxchan_prepare()

Prototype: int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
void* data,
alt_u32 length,
alt_rxchan_done* done,
void* handle)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_rxchan_prepare() posts a receive request to a DMA receive
channel. The input arguments are: dma, the channel to use; data, a pointer to
the location that data is to be received to; length, the maximum length of the
data to receive in bytes; done, callback function that is called once the data has
been received; handle, an opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed it is not the case.

Return: The return value is negative if the request cannot be posted, and zero otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 10–15
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_rxchan_reg()

Prototype: int alt_dma_rxchan_reg (alt_dma_rxchan_dev* dev)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dma_dev.h>

Description: The alt_dma_rxchan_reg() function registers a DMA receive channel with
the system. Once registered a device can be accessed using the functions
described in “DMA Receive Channels” on page 4–20.

System behavior is undefined in the event that a channel is registered with a
name that conflicts with an existing channel.

The alt_dma_rxchan_reg() function is not thread safe if other threads are
using the channel list at the time that alt_dma_rxchan_reg() is called. In
practice, only call alt_dma_rxchan_reg()while operating in a single
threaded mode. Only call it by the device initialization functions invoked by
alt_sys_init(), which in turn should only be called by the single threaded
C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–16 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dma_txchan_close()

Prototype: int alt_dma_txchan_close (alt_dma_txchan txchan)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_close function notifies the system that the application
has finished with the DMA transmit channel, txchan. The current
implementation always succeeds.

Return: The return value is zero upon success and negative otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 10–17
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_txchan_ioctl()

Prototype: int alt_dma_txchan_ioctl (alt_dma_txchan dma,
int req,
void* arg)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_ioctl() function performs device specific I/O
operations on the DMA transmit channel, dma. For example, some drivers
support options to control the width of the transfer operations. The input
argument, req, is an enumeration of the requested operation; arg is an
additional argument for the request. The interpretation of arg is request
dependent.

See Table 10–1 for the generic requests a device may support.

Whether a call to alt_dma_txchan_ioctl() is thread safe, or can be called
from an ISR, is device dependent. In general it should be assumed this is not the
case.

The alt_dma_rxchan_ioctl()function should not be called while DMA
transfers are pending, otherwise unpredictable behavior may result.

Return: A negative return value indicates failure; otherwise the interpretation of the return
value is request specific.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–18 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dma_txchan_open()

Prototype: alt_dma_txchan alt_dma_txchan_open (const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_open() function obtains an alt_dma_txchan()
descriptor for a DMA transmit channel. The input argument, name, is the name
of the associated physical device, e.g., /dev/dma_0.

Return: The return value is null on failure and non-null otherwise. If there is an error,
errno is set to ENODEV.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_reg()
alt_dma_txchan_send()
alt_dma_txchan_space()

Altera Corporation 10–19
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_txchan_reg()

Prototype: int alt_dma_txchan_reg (alt_dma_txchan_dev* dev)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dma_dev.h>

Description: The alt_dma_txchan_reg() function registers a DMA transmit channel with
the system. Once registered, a device can be accessed using the functions
described in “DMA Transmit Channels” on page 4–19.

System behavior is undefined in the event that a channel is registered with a
name that conflicts with an existing channel.

The alt_dma_txchan_reg() function is not thread safe if other threads are
using the channel list at the time that alt_dma_txchan_reg() is called. Only
call alt_dma_txchan_reg()while operating in a single-threaded mode. Only
call it by the device initialization functions invoked by alt_sys_init(), which
in turn should only be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_send()
alt_dma_txchan_space()

10–20 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_dma_txchan_send()

Prototype: int alt_dma_txchan_send (alt_dma_txchan dma,
const void* from,
alt_u32 length,
alt_txchan_done* done,
void* handle)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_send() function posts a transmit request to a DMA
transmit channel. The input arguments are: dma, the channel to use; from, a
pointer to the start of the data to send; length, the length of the data to send in
bytes; done, a callback function that is called once the data has been sent; and
handle, an opaque value passed to done.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: The return value is negative if the request cannot be posted, and zero otherwise.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_space()

Altera Corporation 10–21
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_dma_txchan_space()

Prototype: int alt_dma_txchan_space (alt_dma_txchan dma)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_dma.h>

Description: The alt_dma_txchan_space() function returns the number of transmit
requests that can be posted to the specified DMA transmit channel, dma. A
negative value indicates that the value cannot be determined.

Whether this function is thread-safe, or can be called from an ISR is dependent
on the underlying device driver. In general it should be assumed this is not the
case.

Return: Returns the number of transmit requests that can be posted.

See also: alt_dma_rxchan_close()
alt_dma_rxchan_depth()
alt_dma_rxchan_ioctl()
alt_dma_rxchan_open()
alt_dma_rxchan_prepare()
alt_dma_rxchan_reg()
alt_dma_txchan_close()
alt_dma_txchan_ioctl()
alt_dma_txchan_open()
alt_dma_txchan_reg()
alt_dma_txchan_send()

10–22 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_erase_flash_block()

Prototype: int alt_erase_flash_block(alt_flash_fd* fd,
int offset,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_erase_flash_block() function erases an individual flash erase
block. The parameter fd specifies the flash device; offset is the offset within
the flash of the block to erase; length is the size of the block to erase. No error
checking is performed to check that this is a valid block, or that the length is
correct, see “Fine-Grained Flash Access” on page 4–15.

Only call the alt_erase_flash_block() function when operating in single
threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 10–23
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_flash_close_dev()

Prototype: void alt_flash_close_dev(alt_flash_fd* fd)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_flash_close_dev() function closes a flash device. All subsequent
calls to alt_write_flash(), alt_read_flash(),
alt_get_flash_info(), alt_erase_flash_block(), or
alt_write_flash_block() for this flash device fail.

Only call the alt_flash_close_dev() function when operating in single-
threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: –

See also: alt_erase_flash_block()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

10–24 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_flash_open_dev()

Prototype: alt_flash_fd* alt_flash_open_dev(const char* name)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_flash_open_dev() function opens a flash device. Once opened a
flash device can be written to using alt_write_flash(), read from using
alt_read_flash(), or you can control individual flash blocks using the
alt_get_flash_info(), alt_erase_flash_block(), or
alt_write_flash_block()function.

Only call the alt_flash_open_dev function when operating in single
threaded mode.

Return: A return value of zero indicates failure. Any other value is success.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 10–25
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_fs_reg()

Prototype: int alt_fs_reg (alt_dev* dev)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_dev.h>

Description: The alt_fs_reg() function registers a file system with the HAL. Once
registered, a file system can be accessed using the standard I/O functions, see
“Developing Programs using the HAL” on page 4–1.

System behavior is undefined in the event that a file system is registered with a
name that conflicts with an existing device or file system.

alt_fs_reg() is not thread safe if other threads are using the device list at the
time that alt_fs_reg() is called. In practice alt_fs_reg() should only be
called while operating in a single threaded mode. The expectation is that it is only
called by the device initialization functions invoked by alt_sys_init(), which
in turn should only be called by the single threaded C startup code.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_dev_reg()

10–26 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_get_flash_info()

Prototype: int alt_get_flash_info(alt_flash_fd* fd,
flash_region** info,
int* number_of_regions)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_get_flash_info() function gets the details of the erase region of
a flash part. The flash part is specified by the descriptor fd, a pointer to the start
of the flash_region structures is returned in the info parameter, and the
number of flash regions are returned in number of regions.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: A return value of zero indicates success. A negative return value indicates failure.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_read_flash()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 10–27
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_icache_flush()

Prototype: void alt_icache_flush (void* start, alt_u32 len)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_icache_flush() function invalidates the instruction cache for a
memory region of length len bytes, starting at address start.

In processors without instruction caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush_all()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

10–28 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_icache_flush_all()

Prototype: void alt_icache_flush_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_cache.h>

Description: The alt_icache_flush_all() function invalidates the entire contents of
the instruction cache.

In processors without instruction caches, it has no effect.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 10–29
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_irq_disable_all()

Prototype: alt_irq_context alt_irq_disable_all (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_disable_all() function disables all interrupts.

Return: Pass the return value as the input argument to a subsequent call to
alt_irq_enable_all().

See also: alt_irq_enable_all()
alt_irq_enabled()
alt_irq_register()

10–30 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_irq_enable_all()

Prototype: void alt_irq_enable_all (alt_irq_context context)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_irq.h>

Description: The alt_irq_enable_all() function enables all interrupts. The input
argument, context, is the value returned by a previous call to
alt_irq_disable_all(). Interrupts are only enabled if the associated call
to alt_irq_disable_all() disable interrupts, which allows nested calls to
alt_irq_disable_all() or alt_irq_enable_all() without
surprising results.

Return: –

See also: alt_irq_disable_all()
alt_irq_enabled()
alt_irq_register()

Altera Corporation 10–31
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_irq_enabled()

Prototype: int alt_irq_enabled (void)

Commonly called by: Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_irq.h>

Description: The alt_irq_enabled() function.

Return: Returns zero if interrupts are disabled, and non-zero otherwise.

See also: alt_irq_disable_all()
alt_irq_enable_all()
alt_irq_register()

10–32 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_irq_register()

Prototype: int alt_irq_register (alt_u32 id,
void* context,
void (*isr)(void*, alt_u32))

Commonly called by: Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_irq.h>

Description: The alt_irq_register() function registers an ISR. If the function is
successful, the requested interrupt is enabled upon return.
The input argument, id is the interrupt to enable, isr is the function that is called
when the interrupt is active, context and id are the two input arguments to
isr.

Calls to alt_irq_register() replace previously registered handlers for
interrupt id.

If irq_handler is set to null, the interrupt is disabled.

Return: The alt_irq_register() function returns zero if successful, or non-zero
otherwise.

See also: alt_irq_disable_all()
alt_irq_enable_all()
alt_irq_enabled()

Altera Corporation 10–33
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_llist_insert()

Prototype: void alt_llist_insert(alt_llist* list,
alt_llist* entry)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_llist.h>

Description: The alt_llist_insert() function inserts the doubly linked list entry entry
into the list list. This operation is not re-entrant. For example, if a list can be
manipulated from different threads, or from within both application code and an
ISR, some mechanism is required to protect access to the list. Interrupts can be
locked, or in MicroC/OS-II, a mutex can be used.

Return: –

See also: alt_llist_remove()

10–34 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_llist_remove()

Prototype: void alt_llist_remove(alt_llist* entry)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_llist.h>

Description: The alt_llist_remove() function removes the doubly linked list entry
entry from the list it is currently a member of. This operation is not re-entrant.
For example if a list can be manipulated from different threads, or from within both
application code and an ISR, some mechanism is required to protect access to
the list. Interrupts can be locked, or in MicroC/OS-II, a mutex can be used.

Return: –

See also: alt_llist_insert()

Altera Corporation 10–35
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_nticks()

Prototype: alt_u32 alt_nticks (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_nticks() function.

Return: Returns the number of elapsed system clock tick since reset. It returns zero if
there is no system clock available.

See also: alt_alarm_start()
alt_alarm_stop()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

10–36 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_read_flash()

Prototype: int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_read_flash() function reads data from flash. Length bytes are read
from the flash fd, offset bytes from the beginning of the flash and are written to
the location dest_addr.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_write_flash()
alt_write_flash_block()

Altera Corporation 10–37
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_remap_cached()

Prototype: void* alt_remap_cached (volatile void* ptr,
alt_u32 len);

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_remap_cached() function remaps a region of memory for cached
access. The memory to map is len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return: The return value for this function is the remapped memory region.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_uncached()
alt_uncached_free()
alt_uncached_malloc()

10–38 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_remap_uncached()

Prototype: volatile void* alt_remap_uncached (void* ptr,
alt_u32 len);

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_remap_uncached() function remaps a region of memory for
uncached access. The memory to map is len bytes, starting at address ptr.

Processors that do not have a data cache return uncached memory.

Return: The return value for this function is the remapped memory region.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_cached()
alt_uncached_free()
alt_uncached_malloc()

Altera Corporation 10–39
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_sysclk_init()

Prototype: int alt_sysclk_init (alt_u32 nticks)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_alarm.h>

Description: The alt_sysclk_init() function registers the presence of a system clock
driver. The input argument is the number of ticks per second at which the system
clock is run.

The expectation is that this function is only called from within
alt_sys_init(), i.e., while the system is running in single-threaded mode.
Concurrent calls to this function may lead to unpredictable results.

Return: This function returns zero upon success, otherwise it returns a negative value.
The call can fail if a system clock driver has already been registered.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

10–40 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_tick()

Prototype: void alt_tick (void)

Commonly called by: Device drivers

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: Only the system clock driver should call the alt_tick() function. The driver is
responsible for making periodic calls to this function at the rate indicated in the
call to alt_sysclk_init(). This function provides notification to the system
that a system clock tick has occurred. This function runs as a part of the ISR for
the system clock driver.

Return: –

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()
usleep()

Altera Corporation 10–41
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_ticks_per_second()

Prototype: alt_u32 alt_ticks_per_second (void)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/alt_alarm.h>

Description: The alt_ticks_per_second() function returns the number of system clock
ticks that elapse per second. If there is no system clock available, the return value
is zero.

Return: Returns the number of system clock ticks that elapse per second.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
gettimeofday()
settimeofday()
times()
usleep()

10–42 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_timestamp()

Prototype: alt_u32 alt_timestamp (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp() function returns the current value of the timestamp
counter, see “High Resolution Time Measurement” on page 4–11. The
implementation of this function is provided by the timestamp driver. Therefore,
whether this function is thread-safe and or available at interrupt level is
dependent on the underlying driver.

Always call the alt_timestamp_start() function before any calls to
alt_timestamp(). Otherwise the behavior of alt_timestamp() is
undefined.

Return: Returns the current value of the timestamp counter.

See also: alt_timestamp_freq()
alt_timestamp_start()

Altera Corporation 10–43
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_timestamp_freq()

Prototype: alt_u32 alt_timestamp_freq (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp_freq() function returns the rate at which the
timestamp counter increments, see “High Resolution Time Measurement” on
page 4–11. The implementation of this function is provided by the timestamp
driver. Therefore, whether this function is thread-safe and or available at interrupt
level is dependent on the underlying driver.

Return: The returned value is the number of counter ticks per second.

See also: alt_timestamp()
alt_timestamp_start()

10–44 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_timestamp_start()

Prototype: int alt_timestamp_start (void)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: See description.

Include: <sys/alt_timestamp.h>

Description: The alt_timestamp_start() function starts the system timestamp
counter, see “High Resolution Time Measurement” on page 4–11. The
implementation of this function is provided by the timestamp driver. Therefore,
whether this function is thread-safe and or available at interrupt level is
dependent on the underlying driver.

This function resets the counter to zero, and starts the counter running.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_timestamp()
alt_timestamp_freq()

Altera Corporation 10–45
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_uncached_free()

Prototype: void alt_uncached_free (volatile void* ptr)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_uncached_free() function causes the memory pointed to by ptr
to be de-allocated, i.e., made available for future allocation through a call to
alt_uncached_malloc(). The input pointer, ptr, points to a region of
memory previously allocated through a call to alt_uncached_malloc().
Behavior is undefined if this is not the case.

Return: –

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_malloc()

10–46 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_uncached_malloc()

Prototype: volatile void* alt_uncached_malloc (size_t size)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <sys/alt_cache.h>

Description: The alt_uncached_malloc() function allocates a region of uncached
memory of length size bytes. Regions of memory allocated in this way can be
released using the alt_uncached_free() function.

Processors that do not have a data cache return uncached memory.

Return: If sufficient memory cannot be allocated, this function returns null, otherwise a
pointer to the allocated space is returned.

See also: alt_dcache_flush()
alt_dcache_flush_all()
alt_icache_flush()
alt_icache_flush_all()#
alt_remap_cached()
alt_remap_uncached()
alt_uncached_free()

Altera Corporation 10–47
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

alt_write_flash()

Prototype: int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_write_flash() function writes data into flash. The data to be
written is at src_addr address, length bytes are written into the flash fd, offset
bytes from the beginning of the flash.

Only call this function when operating in single threaded mode. This function
does not preserve any non written areas of any flash sectors affected by this write
see “Simple Flash Access” on page 4–12.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash_block()

10–48 Altera Corporation
Nios II Software Developer’s Handbook December 2004

alt_write_flash_block()

Prototype: int alt_write_flash_block(alt_flash_fd* fd,
int block_offset,
int data_offset,
const void *data,
int length)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: No.

Available from ISR: No.

Include: <sys/alt_flash.h>

Description: The alt_write_flash_block() function writes one erase block of flash.
The flash device is specified by fd, the block offset is the offset within the flash
of the start of this block, data_offset is the offset within the flash at which to
start writing data, data is the data to write, length is how much data to write.
Note, no check is made on any of the parameters see “Fine-Grained Flash
Access” on page 4–15.

Only call this function when operating in single threaded mode.

The only valid values for the fd parameter are those returned from the
alt_flash_open_dev function. If any other value is passed the behavior of
this function is undefined.

Return: The return value is zero upon success and non-zero otherwise.

See also: alt_erase_flash_block()
alt_flash_close_dev()
alt_flash_open_dev()
alt_get_flash_info()
alt_read_flash()
alt_write_flash()

Altera Corporation 10–49
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

close()

Prototype: int close (int filedes)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The close() function is the standard UNIX style close() function, which
closes the file descriptor filedes.

Calls to close() are only thread-safe, if the implementation of close()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the constants: STDOUT_FILENO, STDIN_FILENO, and STDERR_FILENO.

Return: The return value is zero upon success, and –1 otherwise. If an error occurs,
errno is set to indicate the cause.

See also: fstat()
ioctl()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–50 Altera Corporation
Nios II Software Developer’s Handbook December 2004

execve()

Prototype: int execve(const char *path,
char *const argv[],
char *const envp[])

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The execve() function is only provided for compatibility with newlib.

Return: Calls to execve() always fail with the return code –1 and errno set to
ENOSYS.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–51
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

fork()

Prototype: pid_t fork (void)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: no

Include: <unistd.h>

Description: The fork() function is only provided for compatibility with newlib.

Return: Calls to fork() always fails with the return code –1 and errno set to ENOSYS.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–52 Altera Corporation
Nios II Software Developer’s Handbook December 2004

fstat()

Prototype: int fstat (int filedes, struct stat *st)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <sys/stat.h>

Description: The fstat() function obtains information about the capabilities of an open file
descriptor. The underlying device driver fills in the input st structure with a
description of its functionality. See the header file sys/stat.h provided with the
compiler for the available options.

By default file descriptors are marked as character devices, if the underlying
driver does not provide its own implementation of the fsat() function.

Calls to fstat() are only thread-safe, if the implementation of fstat()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the following constraints: STDOUT_FILENO, STDIN_FILENO, and
STDERR_FILENO.

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: close()
ioctl()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–53
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

getpid()

Prototype: pid_t getpid (void)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The getpid() function is provided for newlib compatibility and obtains the
current process id.

Return: Because HAL systems cannot contain multiple processes, getpid() always
returns the same id number.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–54 Altera Corporation
Nios II Software Developer’s Handbook December 2004

gettimeofday()

Prototype: int gettimeofday(struct timeval *ptimeval,
struct timezone *ptimezone)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: Yes.

Include: <sys/time.h>

Description: The gettimeofday() function obtains a time structure that indicates the
current wall clock time. This time is calculated using the elapsed number of
system clock ticks, and the current time value set through the last call to
settimeofday().

If this function is called concurrently with a call to settimeofday(), the value
returned by gettimeofday() is unreliable; however, concurrent calls to
gettimeofday() are legal.

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
settimeofday()
times()
usleep()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–55
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

ioctl()

Prototype: int ioctl (int file, int req, void* arg)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: No.

Include: <sys/ioctl.h>

Description: The ioctl() function allows application code to manipulate the I/O capabilities
of a device driver in driver specific ways. This function is equivalent to the
standard UNIX ioctl() function. The input argument file is an open file
descriptor for the device to manipulate, req is an enumeration defining the
operation request, and the interpretation of arg is request specific.

In general, this implementation vectors requests to the appropriate drivers
ioctl() function (as registered in the drivers alt_dev structure). However,
in the case of devices (as opposed to file subsystems), the TIOCEXCL and
TIOCNXCL requests are handled without reference to the driver. These requests
lock and release a device for exclusive access.

Calls to ioctl() are only thread-safe if the implementation of ioctl()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the constants: STDOUT_FILENO, STDIN_FILENO, and STDERR_FILENO.

Return: The interpretation of the return value is request specific. If the call fails, errno is
set to indicate the cause of the error.

See also: close()
fstat()
isatty()
lseek()
open()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–56 Altera Corporation
Nios II Software Developer’s Handbook December 2004

isatty()

Prototype: int isatty(int file)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The isatty() function determines whether the device associated with the
open file descriptor file is a terminal device. This implementation uses the
drivers fstat() function to determine its reply.

Calls to isatty() are only thread-safe, if the implementation of fstat()
provided by the driver that is manipulated is thread-safe.

Return: The return value is 1 if the device is a character device, and zero otherwise. If an
error occurs, errno is set to indicate the cause.

See also: close()
fstat()
ioctl()
lseek()
open()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–57
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

kill()

Prototype: int kill(int pid, int sig)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <signal.h>

Description: The kill() function is used by newlib to send signals to processes. The input
argument pid is the id of the process to signal, and sig is the signal to send.
As there is only a single process in the HAL, the only valid values for pid are
either the current process id, as returned by getpid(), or the broadcast
values, i.e., pid must be less than or equal to zero.

The following signals result in an immediate shutdown of the system, without call
to exit(): SIGABRT, SIGALRM, SIGFPE, SIGILL, SIGKILL, SIGPIPE,
SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGBUS, SIGPOLL,
SIGPROF, SIGSYS, SIGTRAP, SIGVTALRM, SIGXCPU, and SIGXFSZ.

The following signals are ignored: SIGCHLD and SIGURG.

All the remaining signals are treated as errors.

Return: The return value is zero upon success, or –1 otherwise. If the call fails, errno is
set to indicate the cause of the error.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–58 Altera Corporation
Nios II Software Developer’s Handbook December 2004

link()

Prototype: int link(const char *_path1,
const char *_path2)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The link() function is only provided for compatibility with newlib.

Return: Calls to link() always fails with the return code –1 and errno set to ENOSYS.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–59
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

lseek()

Prototype: off_t lseek(int file, off_t ptr, int whence)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The lseek() function moves the read/write pointer associated with the file
descriptor file. This function vectors the call to the lseek() function provided
by the driver associated with the file descriptor. If the driver does not provide an
implementation of lseek(), an error is indicated.

lseek() corresponds to the standard UNIX lseek() function.

You can use the following values for the input parameter, whence:

● Value of whence
● Interpretation
● SEEK_SET—the offset is set to ptr bytes.
● SEEK_CUR—the offset is incremented by ptr bytes.
● SEEK_END—the offset is set to the end of the file plus ptr bytes.

Calls to lseek() are only thread-safe if the implementation of lseek()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the constants: STDOUT_FILENO, STDIN_FILENO, and STDERR_FILENO.

Return: Upon success, the return value is a non-negative file pointer. The return value is
–1 in the event of an error. If the call fails, errno is set to indicate the cause of
the error.

See also: close()
fstat()
ioctl()
isatty()
open()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–60 Altera Corporation
Nios II Software Developer’s Handbook December 2004

open()

Prototype: int open (const char* pathname, int flags, mode_t mode)

Commonly called by: C/C++ programs

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The open() function opens a file or device and returns a file descriptor (a small,
non-negative integer for use in read, write, etc.)

flags is one of: O_RDONLY, O_WRONLY, or O_RDWR, which request opening
the file read-only, write-only or read/write, respectively.

You may also bitwise-OR flags with O_NONBLOCK, which causes the file to be
opened in non-blocking mode. Neither open() nor any subsequent operations
on the returned file descriptor causes the calling process to wait.

Note that not all file systems/devices recognize this option.

mode specifies the permissions to use, if a new file is created. It is unused by
current file systems, but is maintained for compatibility.

Calls to open() are only thread-safe if the implementation of open() provided
by the driver that is manipulated is thread-safe.

Return: The return value is the new file descriptor, and –1 otherwise. If an error occurs,
errno is set to indicate the cause.

See also: close()
fstat()
ioctl()
isatty()
lseek()
read()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–61
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

read()

Prototype: int read(int file, void *ptr, size_t len)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <unistd.h>

Description: The read() function reads a block of data from a file or device. This function
vectors the request to the device driver associated with the input open file
descriptor file. The input argument, ptr, is the location to place the data read
and len is the length of the data to read in bytes.

Calls to read() are only thread-safe if the implementation of read() provided
by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the constants: STDOUT_FILENO, STDIN_FILENO, and STDERR_FILENO.

Return: The return argument is the number of bytes read, which may be less than the
requested length.

A return value of –1 indicates an error. In the event of an error, errno is set to
indicate the cause.

See also: close()
fstat()
ioctl()
isatty()
lseek()
open()
stat()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–62 Altera Corporation
Nios II Software Developer’s Handbook December 2004

sbrk()

Prototype: caddr_t sbrk(int incr)

Commonly called by: Newlib C library

Thread-safe: No.

Available from ISR: No.

Include: <unistd.h>

Description: The sbrk() function dynamically extends the data segment for the application.
The input argument incr is the size of the block to allocate. Do not call sbrk()
directly–if you wish to dynamically allocate memory, use the newlib malloc()
function.

Return: –

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–63
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

settimeofday()

Prototype: int settimeofday (const struct timeval *t,
const struct timezone *tz)

Commonly called by: C/C++ programs

Thread-safe: No.

Available from ISR: Yes.

Include: <sys/time.h>

Description: If the settimeofday() function is called concurrently with a call to
gettimeofday(), the value returned by gettimeofday() is unreliable.

Return: The return value is zero upon success, or –1 otherwise. The current
implementation always succeeds.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
times()
usleep()

10–64 Altera Corporation
Nios II Software Developer’s Handbook December 2004

stat()

Prototype: int stat(const char *file_name,
struct stat *buf);

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: No.

Include: <sys/stat.h>

Description: The stat() function is similar to the fstat() function—it obtains status
information about a file. Instead of using an open file descriptor, like fstat(),
stat() takes the name of a file as an input argument.

Calls to stat() are only thread-safe, if the implementation of stat() provided
by the driver that is manipulated is thread-safe.

Internally, the stat() function is implemented as a call to fstat(), see
“fstat()” on page 10–52.

Return: –

See also: close()
fstat()
ioctl()
isatty()
lseek()
open()
read()
write()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–65
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

times()

Prototype: clock_t times (struct tms *buf)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/times.h>

Description: This times() function is provided for compatibility with newlib. It returns the
number of clock ticks since reset. It also fills in the structure pointed to by the input
parameter buf with time accounting information. The definition of the tms
structure is:

typedef struct
{

clock_t tms_utime;
clock_t tms_stime;
clock_t tms_cutime;
clock_t tms_cstime;

};
The structure has the following elements:

● tms_utime: the CPU time charged for the execution of user instructions
● tms_stime: the CPU time charged for execution by the system on behalf of

the process
● tms_cutime: the sum of all the tms_utime and tms_cutime of the child

processes
● tms_cstime: the sum of the tms_stimes and tms_cstimes of the child

processes

In practice, all elapsed time is accounted as system time. No time is ever
attributed as user time. In addition, no time is allocated to child processes, as
child processes can not be spawned by the HAL.

Return: If there is no system clock available, the return value is zero.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
usleep()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–66 Altera Corporation
Nios II Software Developer’s Handbook December 2004

unlink()

Prototype: int unlink(char *name)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <unistd.h>

Description: The unlink() function is only provided for compatibility with newlib.

Return: Calls to unlink() always fails with the return code –1 and errno set to
ENOSYS.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–67
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

usleep()

Prototype: int usleep (int us)

Commonly called by: C/C++ programs
Device drivers

Thread-safe: Yes.

Available from ISR: No.

Include: <unistd.h>

Description: The usleep() function blocks until at least us microseconds have elapsed.

Return: The usleep() function returns zero upon success, or –1 otherwise. If an error
occurs, errno is set to indicate the cause. The current implementation always
succeeds.

See also: alt_alarm_start()
alt_alarm_stop()
alt_nticks()
alt_sysclk_init()
alt_tick()
alt_ticks_per_second()
gettimeofday()
settimeofday()
times()

10–68 Altera Corporation
Nios II Software Developer’s Handbook December 2004

wait()

Prototype: int wait(int *status)

Commonly called by: Newlib C library

Thread-safe: Yes.

Available from ISR: Yes.

Include: <sys/wait.h>

Description: Newlib uses the wait() function to wait for all child processes to exit. Because
the HAL does not support spawning child processes, this function returns
immediately.

Return: Upon return, the content of status is set to zero, which indicates there is no
child processes.

The return value is always –1 and errno is set to ECHILD, which indicates that
there are no child processes to wait for.

See also: Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

Altera Corporation 10–69
December 2004 Nios II Software Developer’s Handbook

The HAL API Reference

write()

Prototype: int write(int file, const void *ptr, size_t len)

Commonly called by: C/C++ programs
Newlib C library

Thread-safe: See description.

Available from ISR: no

Include: <unistd.h>

Description: The write() function writes a block of data to a file or device. This function
vectors the request to the device driver associated with the input file descriptor
file. The input argument ptr is the data to write and len is the length of the
data in bytes.

Calls to write() are only thread-safe if the implementation of write()
provided by the driver that is manipulated is thread-safe.

Valid values for the fd parameter are: STDOUT_FILENO, STDIN_FILENO and
STDERR_FILENO, or any value returned from a call to open(). <unistd.h>
defines the constants: STDOUT_FILENO, STDIN_FILENO, and STDERR_FILENO.

Return: The return argument is the number of bytes written, which may be less than the
requested length.

A return value of –1 indicates an error. In the event of an error, errno is set to
indicate the cause.

See also: close()
fstat()
ioctl()
isatty()
lseek()
open()
read()
stat()
Newlib documentation, click Programs > Altera > Nios II Development Kit >
Nios II Documentation (Windows Start menu).

10–70 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Standard Types In the interest of portability, the HAL uses a set of standard type
definitions in place of the ANSI C built-in types. Table 10–2 describes
these types that are defined in the header alt_types.h.

Table 10–2. Standard Types

Type Description

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

Altera Corporation 11–1
December 2004 Preliminary

11. Altera-Provided
Development Tools

Introduction This chapter introduces all of the development tools that Altera provides
for the Nios® II processor. These tools fall into the following categories:

■ The Nios II integrated development environment (IDE) and
associated tools

■ Altera® command-line tools
■ GNU compiler tool-chain
■ Libraries and embedded software components

This chapter does not describe detailed usage of any of the tools, but it
refers you to the most appropriate documentation.

The Nios II IDE
Tools

Table 11–1 describes the tools provided by the Nios II IDE user interface.

Table 11–1. The Nios II IDE & Associated Tools (Part 1 of 2)

Tools Description

The Nios II IDE The Nios II IDE is the software development user interface for the Nios II processor. All
software development tasks can be accomplished within the IDE, including editing, building,
and debugging programs. For more information, refer to the Nios II IDE online help system.

Flash programmer The Nios II IDE includes a flash programmer utility that allows you to program flash memory
chips on a target board. The flash programmer supports programming flash on any board,
including Altera development boards and your own custom boards. The flash programmer
facilitates programming flash for the following purposes:

● Executable code and data
● Bootstrap code to copy code from flash to RAM, and then run from RAM.
● HAL file subsystems
● FPGA hardware configuration data

For more information, refer to the Nios II Flash Programmer User Guide.

NII520011-1.1

11–2 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Altera Command-Line Tools

Altera
Command-Line
Tools

This section describes the command-line tools provided by Altera. You
can run these tools from a Nios II Software Development Kit (SDK) Shell
command prompt, for example, to write a script to automate compilation
tasks. The Altera command-line tools are in the <Nios II kit path>/bin/
directory.

Each tool provides its own documentation in the form of help pages
accessible from the command line. To view the help, open a Nios II SDK
Shell, and type the following command:

<name of tool> --help

Table 11–2 shows command-line utilities that create and build Nios II IDE
projects without launching the Nios II IDE graphical user interface (GUI).
These utilities allow you to automate Nios II IDE operations using
command-line scripts. For example, with the help of these utilities, a
script can check out a Nios II IDE project from source control, import the
project into the Nios II IDE workspace, and build the project.

Each of these utilities launches the Nios II IDE in the background, without
displaying the GUI. You cannot use these utilities while the IDE is
running, because only one instance of the Nios II IDE can be active at a
time.

Instruction set
simulator

Altera provides an instruction set simulator (ISS) for the Nios II processor. The ISS is
available within the Nios II IDE, and the process for running and debugging programs on
the ISS is the same as for running and debugging on target hardware. For more information,
refer to the Nios II IDE online help system.

Quartus II
Programmer

The Quartus II programmer is part of the Quartus II software, however the Nios II IDE can
launch the Quartus II programmer directly. The Quartus II programmer allows you to
download new FPGA configuration files to the board. For more information, refer to the
Nios II IDE online help system, or press the F1 key while the Quartus II programmer is
open.

Table 11–1. The Nios II IDE & Associated Tools (Part 2 of 2)

Tools Description

Table 11–2. Nios II IDE Command Line Tools (Part 1 of 2)

Tool Description

nios2-create-system-library Creates a new system library project.

nios2-create-application-project Creates a new C/C++ application project.

Altera Corporation 11–3
December 2004 Nios II Software Developer’s Handbook

Altera-Provided Development Tools

Table 11–3 shows other Altera-provided command-line tools for
developing Nios II programs.

File format conversion is sometimes necessary when passing data from
one utility to another. Table 11–4 shows the Altera-provided utilities for
converting file formats.

nios2-build-project Builds a project using the Nios II IDE managed-make facilities.
Creates or updates the makefiles to build the project, and
optionally runs make. nios2-build-project operates
only on projects that exist in the current Nios II IDE workspace.

nios2-import-project Imports a previously-created Nios II IDE project into the
current workspace.

nios2-delete-project Removes a project from the Nios II IDE workspace, and
optionally deletes files from the file system.

Table 11–2. Nios II IDE Command Line Tools (Part 2 of 2)

Tool Description

Table 11–3. Altera Command-Line Tools

Tool Description

nios2-download Downloads code to a target processor for debugging or running.

nios2-flash-programmer Programs data to flash memory on the target board.

nios2-gdb-server Translates GNU debugger (GDB) remote serial protocol packets over TCP
to joint test action group (JTAG) transactions with a target Nios II
processor.

nios2-terminal Performs terminal I/O with a JTAG universal asynchronous receiver-
transmitter (UART) in a Nios II system

validate_zip Verifies if a specified zip file is compatible with Altera’s read-only zip file
system.

Table 11–4. File Conversion Utilities

Utility Description

bin2flash Converts binary files to a .flash file for programming into flash memory.

elf2dat Converts an .elf executable file format to a .dat file format appropriate for Verilog HDL
hardware simulators.

elf2flash Converts an .elf executable file to a .flash file for programming into flash memory.

elf2hex Converts an .elf executable file to the Intel .hex file format.

elf2mem Generates the memory contents for the memory devices in a specific Nios II system.

11–4 Altera Corporation
Nios II Software Developer’s Handbook December 2004

GNU Compiler Tool-chain

Table 11–5 shows the Altera-provided tools that support backward-
compatibility with the first-generation Nios processor SDK and tool flow.

f For more information, refer to AN 350: Upgrading Nios Processor Systems
to the Nios II Processor.

GNU Compiler
Tool-chain

Altera provides and supports the standard GNU compiler tool-chain for
the Nios II processor. Complete HTML documentation for the GNU tools
resides in the Nios II development kit directory. The GNU tools are in the
<Nios II kit path>/bin/nios2-gnutools directory.

GNU tools for the Nios II processor are generally named nios2-elf-<tool
name>. The following list shows some examples:

■ nios2-elf-gcc
■ make
■ nios2-elf-as
■ nios2-elf-ld
■ nios2-elf-objdump
■ nios2-elf-size

elf2mif Converts an .elf executable file to the Quartus II memory initialization file (.mif) format

flash2dat Converts a .flash file to the .dat file format appropriate for Verilog HDL hardware simulators.

mk-nios2-
signaltap-
mnemonic-
table

Takes an .elf file and an SOPC Builder system file (.ptf) and creates a .stp file containing
mnemonic tables for Nios II instructions and symbols for Altera’s SignalTap® II logic
analyzer.

sof2flash Converts an FPGA configuration file (.sof) to a .flash file for programming into flash
memory.

Table 11–4. File Conversion Utilities

Utility Description

Table 11–5. Backward Compatibility Tools

Tool Description

nios2-build Compiles and links software projects based on the legacy SDK library.

nios2-run Downloads a program to a Nios II processor and then performs terminal I/O to the program.

nios2-debug Downloads a program to a Nios II processor and launches the Insight debugger.

nios2-console Opens the FS2 command-line interface (CLI), connects to the Nios II processor, and
(optionally) downloads code.

Altera Corporation 11–5
December 2004 Nios II Software Developer’s Handbook

Altera-Provided Development Tools

f For a comprehensive list, refer to the GNU HTML documentation.

Libraries &
Embedded
Software
Components

Table 11–6 shows the Nios II development kit libraries and software
components.

Table 11–6. Development Kit Libraries & Software Components

Name Description

Hardware abstraction layer (HAL)
system library

See “Overview of the HAL System Library” on page 3–1.

MicroC/OS-II RTOS See “MicroC/OS-II Real-Time Operating System” on page 8–1.

Lightweight IP TCP/IP stack See “Ethernet & Lightweight IP” on page 9–1.

Newlib ANSI C standard library See “Overview of the HAL System Library” on page 3–1. The complete
HTML documentation for newlib resides in the Nios II development kit
directory.

Read-only zip file system See “Read-Only Zip Filing System” on page 12–1.

Example designs The Nios II development kit provides documented software examples to
demonstrate all prominent features of the Nios II processor and the
development environment.

11–6 Altera Corporation
Nios II Software Developer’s Handbook December 2004

Libraries & Embedded Software Components

Altera Corporation 12–1
May 2004 Preliminary

12. Read-Only Zip Filing
System

Introduction Altera® provides a read-only zip file system for use with the hardware
abstraction layer (HAL) system library. The read-only zip file system
provides access to a simple file system stored in flash memory. The
drivers take advantage of the HAL generic device driver framework for
file subsystems. Therefore, you can access the zip file subsystem using the
ANSI C standard library I/O functions, such as fopen() and fread().

The Altera® read-only zip file system is provided as a software
component for use in the Nios II integrated development environment
(IDE). All source and header files for the HAL drivers are located in the
directory <Nios II kit path>/components/altera_ro_zipfs/HAL/.

Using the Zip
File System in a
Project

The read-only zip file system is supported under the Nios II IDE user
interface. You do not have to edit any source code to include and
configure the file system. To use the zip file system, you use the Nios II
IDE graphical user interface (GUI) to include it as a software component
for the system library project.

You must specify the following four parameters to configure the file
system:

■ The name of the flash device you wish to program the filing system
into

■ The offset with this flash.
■ The name of the mount point for this file subsystem within the HAL

file system. For example, if you name the mount point /mnt/zipfs,
the following code called from within a HAL-based program opens
the file hello within the zip file:
fopen(“/mnt/zipfs/hello”, “r”)

■ The name of the zip file you wish to use. Before you can specify the
zip filename, you must first import it into the Nios II IDE system
library project.

f For details on importing, see the Nios II IDE online help.

The next time you build your project after you make these settings, the
Nios II IDE includes and links the file subsystem in the project. After
rebuilding, the system.h file reflects the presence of this software
component in the system.

NII520012-1.0

12–2 Altera Corporation
Nios II Software Developer’s Handbook May 2004

Using the Zip File System in a Project

Preparing the Zip File

The zip file must be uncompressed. The Altera read-only zip file system
uses the zip format only for bundling files together; it does not provide
any file decompression features that zip utilities are famous for.

Creating a zip file with no compression is straightforward using the
WinZip GUI. Alternately, use the -e0 option to disable compression
when using either winzip or pkzip from a command line.

Programming the Zip File to Flash

For your program to access files in the zip file subsystem, you must first
program the zip data into flash. As part of the project build process, the
Nios II IDE creates a .flash file that includes the data for the zip file
system. This file is in the Release directory of your project.

You then use the Nios II IDE Flash Programmer to program the zip file
system data to flash memory on the board.

f For details on programming flash, refer to the Nios II Flash Programmer
User Guide.

Altera Corporation Index–1
Preliminary

Index

_exit() 4–27, 10–2
_irq_entry 6–2
_rename() 10–3

A
alarms 4–9
alt_alarm_start() 10–4
alt_alarm_stop() 10–5
alt_dcache_flush() 10–6
alt_dcache_flush_all() 10–7
alt_dev_reg() 10–8
alt_dma_rxchan_close() 10–9
alt_dma_rxchan_depth() 10–10
alt_dma_rxchan_ioctl() 10–11
alt_dma_rxchan_open() 10–13
alt_dma_rxchan_prepare() 10–14
alt_dma_rxchan_reg() 10–15
alt_dma_txchan_close() 10–16
alt_dma_txchan_ioctl() 10–17
alt_dma_txchan_open() 10–18
alt_dma_txchan_reg() 10–19
alt_dma_txchan_send() 10–20
alt_dma_txchan_space() 10–21
alt_erase_flash_block() 10–22
alt_flash_close_dev() 10–23
alt_flash_open_dev() 10–24
alt_fs_reg() 10–25
alt_get_flash_info() 10–26
alt_icache_flush() 10–27
alt_icache_flush_all() 10–28
alt_irg_handler() 6–3
alt_irq_disable_all() 10–29
alt_irq_enable_all() 10–30
alt_irq_enabled() 10–31
alt_irq_register() 6–6, 10–32
alt_llist_insert() 10–33
alt_llist_remove() 10–34
alt_lwip_dev_list 5–13
alt_nticks() 10–35
alt_read_flash() 10–36

alt_remap_cached() 10–37
alt_remap_uncached 10–38
alt_sysclk_init() 10–39
alt_tick() 10–40
alt_ticks_per_second() 10–41
alt_timestamp() 10–42
alt_timestamp_freq() 10–43
alt_timestamp_start() 10–44
alt_uncached_free() 10–45
alt_uncached_malloc() 10–46
alt_write_flash() 10–47
alt_write_flash_block() 10–48
Altera command-line tools

Altera-provided development tools 11–2
Altera port of MicroC/OS-II

MicroC/OS-II real-time operating
system 8–2

Altera-provided development tools
Altera command-line tools 11–2
embedded software components 11–5
GNU compiler tool chain 11–4
introduction 11–1
libraries 11–5
Nios II IDE tour 11–1

architecture
MicroC/OS-II real-time operating

system 8–2
assessing hardware

developing device drivers for the HAL 5–3
assigning code and data to memory

partitions 4–31

B
before you begin

developing device drivers for the HAL 5–2
block erasure 4–14
boot modes 4–33
boot sequence 4–29

customizing the boot sequence 4–30
developing programs using the HAL 4–28

Index–2 Altera Corporation
Preliminary

Nios II Software Developer’s Handbook

free-standing applications 4–28
hosted applications 4–28

building and managing projects
tour of the Nios II IDE 2–4

C
C example 6–9
cache implementation 7–1
cache memory

HAL API functions for managing cache 7–2
initializing cache after reset 7–2
introduction 7–1
managing cache in multi-master/multi-CPU

systems 7–6
Nios II cache implementation 7–1
writing device drivers 7–4
writing program loaders or self-modifying

code 7–5
character mode devices

access 4–7
c++ streams 4–8
dev/null 4–8
developing programs using the HAL 4–6
standard input, standard output, standard

error 4–7
character-mode device drivers 5–5

create 5–5
register 5–7

close() 10–49
code footprint

_exit() 4–27
dev/null 4–24
developing programs using the HAL 4–23
file descriptor pool 4–24
Newlib C library 4–25
small footprint device drivers 4–23
unused device drivers 4–27

configuring LWIP in the Nios II IDE
ethernet and Lightweight IP 9–9

corruption 4–14
creating a new project

tour of the Nios II IDE 2–3
creating drivers for HAL device classes

developing device drivers for the HAL 5–4
customizing the boot sequence 4–30

D
data widths

developing programs using the HAL 4–3
debugging with ISRs

exception handling 6–13
dev/null 4–24
developing device drivers for the HAL

assessing hardware 5–3
creating drivers for HAL device classes 5–4
development flow for creating device

drivers 5–2
integrating a device driver into the

HAL 5–15
introduction 5–1
namespace allocation 5–19
overriding the default device drivers 5–20
providing reduced footprint drivers 5–19
SOPC Builder concepts 5–2

developing programs using the HAL
boot sequence 4–28
character mode devices 4–6
code footprint 4–23
data widths 4–3
DMA devices 4–18
entry point 4–28
file subsystems 4–8
file system 4–5
flash devices 4–12
HAL system library files 4–33
HAL type definitions 4–3
introduction 4–1
memory usage 4–30
Nios II project structure 4–1
paths to HAL system library files 4–33
reducing code footprint 4–23
system description file 4–2
timer devices 4–8
UNIX-style interface 4–4
using character mode devices 4–6
using DMA devices 4–18
using file subsystems 4–8
using flash devices 4–12
using timer devices 4–8

developing programs using the
HALsystem.h 4–2

development environment
overview 1–1

Altera Corporation Index–3
Preliminary

development flow for creating device drivers
developing device drivers for the HAL 5–2

device driver files for the HAL 5–15
device drivers

MicroC/OS-II real-time operating
system 8–3

disabling an ISR 6–9
DMA device drivers 5–10
DMA devices

developing programs using the HAL 4–18
DMA receive channel 4–20
DMA transmit channel 4–19
memory to memory DMA transactions 4–21

DMA receive channel 4–20, 5–11
DMA transmit channel 4–19, 5–10

E
embedded software components

Altera-provided development tools 11–5
enabling an ISR 6–9
enrty point

hosted applications 4–28
entry point

customizing the boot sequence 4–30
developing programs using the HAL 4–28
free-standing applications 4–28

ethernet and Lightweight IP
configuring LWIP in the Nios II IDE 9–9
initializing the stack 9–4
introduction 9–1
known limitations 9–12
licensing 9–2
LWIP files 9–2
Nios II port of LWIP 9–1
other TCP/IP stack providers 9–3
system requirements 9–3
using the LWIP protocol stack 9–3

ethernet device driver
alt_lwip_dev_list 5–13
init_routine() 5–14
linkoutput() 5–14
output() 5–14
rx_routine() 5–14

ethernet device drivers 5–12
event flags

MicroC/OS-II real-time operating
system 8–8

exception handling
debugging with ISRs 6–13
fast ISR processing 6–11
HAL implementation 6–2
introduction 6–1
ISR performace data 6–11
ISRs 6–5
Nios II exceptions overview 6–1
writing ISRs suggestions 6–13

execve() 10–50

F
fast ISR processing

exception handling 6–11
file descriptor pool 4–24
file subsystem drivers 5–7
file subsystems

developing programs using the HAL 4–8
file subsytem drivers

create 5–7
register 5–7

file system
developing programs using the HAL 4–5

fine-grained flash access 4–15
first-generation Nios processor users

overview 1–4
flash device drivers 5–9

create 5–9
register 5–10

flash devices
block erasure 4–14
corruption 4–14
developing programs using the HAL 4–12
fine-grained flash access 4–15
simple flash access 4–12

fork() 10–51
free-standing applications 4–28
fstat() 10–52
further information

MicroC/OS-II real-time operating
system 8–1

Nios II 1–4

Index–4 Altera Corporation
Preliminary

Nios II Software Developer’s Handbook

G
general options

MicroC/OS-II real-time operating
system 8–7

get_ip_addr() 9–6
get_mac_addr() 9–6
getpid() 10–53
gettimeofday() 10–54
getting started

overview 1–1
overview of the HAL system library 3–1

GNU compiler tool chain
Altera-provided development tools 11–4

GNU tool chain
tools 1–2

H
HAL API for ISRs 6–6
HAL API functions for managing cache 7–2
HAL API integration 5–1
HAL API reference

_exit() 10–2
_rename() 10–3
alt_alarm_start() 10–4
alt_alarm_stop() 10–5
alt_dcache_flush() 10–6
alt_dcache_flush_all() 10–7
alt_dev_reg() 10–8
alt_dma_rxchan_close() 10–9
alt_dma_rxchan_depth() 10–10
alt_dma_rxchan_ioctl() 10–11
alt_dma_rxchan_open() 10–13
alt_dma_rxchan_prepare() 10–14
alt_dma_rxchan_reg() 10–15
alt_dma_txchan_close() 10–16
alt_dma_txchan_ioctl() 10–17
alt_dma_txchan_open() 10–18
alt_dma_txchan_reg() 10–19
alt_dma_txchan_send() 10–20
alt_dma_txchan_space() 10–21
alt_erase_flash_block() 10–22
alt_flash_close_dev() 10–23
alt_flash_open_dev() 10–24
alt_fs_reg() 10–25
alt_get_flash_info() 10–26
alt_icache_flush() 10–27

alt_icache_flush_all() 10–28
alt_irq_disable_all() 10–29
alt_irq_enable_all() 10–30
alt_irq_enabled() 10–31
alt_irq_register() 10–32
alt_llist_insert() 10–33
alt_llist_remove() 10–34
alt_nticks() 10–35
alt_read_flash() 10–36
alt_remap_cached() 10–37
alt_remap_uncached() 10–38
alt_sysclk_init 10–39
alt_tick() 10–40
alt_ticks_per_second() 10–41
alt_timestamp() 10–42
alt_timestamp_freq() 10–43
alt_timestamp_start() 10–44
alt_uncached_free() 10–45
alt_uncached_malloc() 10–46
alt_write_flash() 10–47
alt_write_flash_block() 10–48
close() 10–49
execve() 10–50
fork() 10–51
fstat() 10–52
getpid() 10–53
gettimeofday() 10–54
introduction 10–1
ioctl() 10–55
isatty() 10–56
kill() 10–57
link() 10–58
lseek() 10–59
open() 10–60
read() 10–61
sbrk() 10–62
settimeofday() 10–63
standard types 10–70
stat() 10–64
times() 10–65
unlink() 10–66
usleep() 10–67
wait() 10–68
write() 10–69

HAL architecture
newlib 3–4
overview of the HAL system library 3–2

Altera Corporation Index–5
Preliminary

services 3–2
HAL device class drivers

character-mode device drivers 5–5
DMA device drivers 5–10
ethernet device drivers 5–12
file subsystem drivers 5–7
flash device drivers 5–9
timer device drivers 5–8

HAL device driver files 5–15
HAL devices directory structure 5–15
HAL file locations 4–33
HAL functions - overriding 4–34
HAL implementation

_irq_entry 6–2
alt_irq_handler() 6–3
exception handling 6–2
software_exception 6–4

HAL standard types 10–70
HAL system clock 4–9
HAL system library files

developing programs using the HAL 4–33
HAL system library users

initializing cache after reset 7–4
managing cache in multi-master/multi-CPU

systems 7–7
writing device drivers 7–4
writing program loaders 7–6

HAL type definitions
developing programs using the HAL 4–3

HAL-based programs boot sequence 4–29
hardware abstraction layer system library

tools 1–2
heap placement 4–32
higher resolution time measurement 4–11
hosted applications 4–28

I
implementing MicroC/OS-II projects in the Nios

II IDE 8–6
init_done_func() 9–5
init_routine() 5–14
initializing cache after reset

cache memory 7–2
HAL system library users 7–4

initializing the stack
Lightweight IP 9–4

instruction set simulator
tools 1–2

integrating a device driver in the HAL
device driver files for the HAL 5–15
summary 5–19

integrating a device driver into the HAL
developing device drivers for the HAL 5–15

integration into the HAL API 5–1
introduction

Altera-provided development tools 11–1
cache memory 7–1
developing device drivers for the HAL 5–1
developing programs using the HAL 4–1
ethernet and Lightweight IP 9–1
exception handling 6–1
HAL API reference 10–1
MicroC/OS-II real-time operating

system 8–1
overview 1–1
overview of the HAL system library 3–1
read-only zip filing system 12–1
tour of the Nios II IDE 2–1

ioctl() 10–55
isatty() 10–56
ISR performance data

exception handling 6–11
ISRs

C example 6–9
disabling an ISR 6–9
enabling an ISR 6–9
exception handling 6–5
HAL API for ISRs 6–6
registering an ISR 6–6
writing an ISR 6–7

K
kill() 10–57
known limitations

ethernet and Lightweight IP 9–12

L
libraries

Altera-provided development tools 11–5
licensing

Lightweight IP 9–2

Index–6 Altera Corporation
Preliminary

Nios II Software Developer’s Handbook

MicroC/OS-II real-time operating
system 8–2

Lightweight IP
ARP Options 9–10
DHCP Options 9–11
files 9–2
IP Options 9–10
Lightweight TCP/IP Stack General

Settings 9–10
Memory Options 9–11
Nios II port 9–1
TCP Options 9–11
UDP Options 9–11

link() 10–58
linkoutput() 5–14
lseek() 10–59
lwip_devices_init() 9–6
lwip_stack_init() 9–4

M
mailboxes settings

MicroC/OS-II real-time operating
system 8–9

managing cache 7–2
managing cache in multi-master/multi-CPU

systems
cache memory 7–6
HAL system library users 7–7

memory management settings
MicroC/OS-II real-time operating

system 8–10
memory sections 4–30
memory to memory DMA transactions 4–21
memory usage

assinging code and data to memory
partitions 4–31

boot modes 4–33
developing programs using the HAL 4–30
heap placement 4–32
memory sections 4–30
stack placement 4–32

MicroC/OS-II real-time operating system
Altera port of MicroC/OS-II 8–2
architecture 8–2
device drivers 8–3
event flags 8–8

further information 8–1
general options 8–7
implementing projects in the Nios II

IDE 8–6
introduction 8–1
licensing 8–2
mailboxes settings 8–9
memory management settings 8–10
miscellaneous settings 8–10
mutex settings 8–8
Newlib ANSI C standard library 8–6
other RTOS providers 8–2
overview 8–1
queues settings 8–9
semaphores settings 8–8
task management settings 8–11
thread-aware debugging 8–3
time management settings 8–11

miscellaneous settings
MicroC/OS-II real-time operating

system 8–10
mutex settings

MicroC/OS-II real-time operating
system 8–8

N
namespace allocation

developing device drivers for the HAL 5–19
Newlib ANSI C standard library

MicroC/OS-II real-time operating
system 8–6

Newlib C library 4–25
Nios II cache implementation 7–1
Nios II exceptions overview

exception handling 6–1
Nios II IDE

tools 1–2
Nios II IDE project structure

developing programs using the HAL 4–1
Nios II IDE tour

Altera-provided development tools 11–1
Nios II IDE workbench

editors 2–2
perspectives 2–2
tour of the Nios II IDE 2–1
views 2–2

Altera Corporation Index–7
Preliminary

Nios II port of Lightweight IP 9–1

O
online help

tour of the Nios II IDE 2–10
open() 10–60
optimal hardware configuration 5–3
other RTOS providers

MicroC/OS-II real-time operating
system 8–2

other TCP/IP stack providers
ethernet and Lightweight IP 9–3

output() 5–14
overriding HAL functions 4–34
overriding the default device drivers

developing device drivers for the HAL 5–20
overview

development environment 1–1
first-generation Nios processor users 1–4
further Nios II information 1–4
getting started 1–1
introduction 1–1
MicroC/OS-II real-time operating

system 8–1
third-party support 1–3

overview of the HAL system library
getting started 3–1
HAL architecture 3–2
introduction 3–1
supported peripherals 3–5

P
paths to HAL system library files

developing programs using the HAL 4–33
HAL file locations 4–33
overriding HAL functions 4–34

peripheral-specific API 5–1
preparing the zip file

read-only zip filing system 12–2
programming flash

tour of the Nios II IDE 2–9
programming the zip file

read-only zip filing system 12–2
providing reduced footprint drivers

developing device drivers for the HAL 5–19

Q
queues settings

MicroC/OS-II real-time operating
system 8–9

R
read() 10–61
read-only zip filing system

introduction 12–1
preparing the zip file 12–2
programming the zip file 12–2
using the zip file system in a project 12–1

reducing code footprint
developing programs using the HAL 4–23

registering an ISR with alt_irq_register() 6–6
RTOS and TCP/IP stack

tools 1–2
running and debugging programs

tour of the Nios II IDE 2–5
rx_routine() 5–14

S
sbrk() 10–62
semaphores settings

MicroC/OS-II real-time operating
system 8–8

settimeofday() 10–63
simple flash access 4–12
small footprint device drivers 4–23
software_exception 6–4
SOPC Builder and system.h relationship 5–2
SOPC Builder concepts

developing device drivers for the HAL 5–2
optimal hardware configuration 5–3

SOPC concepts
components, drivers and peripherals 5–3

stack placement 4–32
standard error 4–7
standard input 4–7
standard output 4–7
stat() 10–64
stderr 4–7
stdin 4–7
stdout 4–7
supported peripherals

Index–8 Altera Corporation
Preliminary

Nios II Software Developer’s Handbook

overview of the HAL system library 3–5
system clock driver 5–8
system description file

developing programs using the HAL 4–2
system.h

developing programs using the HAL 4–2
system.h and SOPC Builder relationship 5–2
systeme requirements

Lightweight IP 9–3

T
task management settings

MicroC/OS-II real-time operating
system 8–11

third-party support
overview 1–3

thread-aware debugging
MicroC/OS-II real-time operating

system 8–3
time management settings

MicroC/OS-II real-time operating
system 8–11

timer device drivers 5–8
system clock driver 5–8
timestamp driver 5–8

timer devices
alarms 4–9
developing programs using the HAL 4–8
HAL system clock 4–9
higher resolution time measurement 4–11

times() 10–65
timestamp driver 5–8
tools 1–1

GNU tools chain 1–2
hardware abstraction layer system

library 1–2
instruction set simulator 1–2
Nios II IDE 1–2
RTOS and TCP/IP stack 1–2

tour of the Nios II IDE
building and managing projects 2–4
creating a new project 2–3
introduction 2–1

Nios II IDE workbench 2–1
online help 2–10
programming flash 2–9
running and debugging programs 2–5

U
UNIX-style interface

developing programs using the HAL 4–4
unlink() 10–66
unused device drivers 4–27
using character mode devices

developing programs using the HAL 4–6
using DMA devices

developing programs using the HAL 4–18
using file subsystems

developing programs using the HAL 4–8
using flash devices

developing programs using the HAL 4–12
using the LWIP protocol stack

ethernet and Lightweight IP 9–3
using the zip file system in a project

read-only zip filing system 12–1
using timer devices

developing programs using the HAL 4–8
usleep() 10–67

W
wait() 10–68
write() 10–69
writing an ISR 6–7
writing device drivers

cache memory 7–4
HAL system library users 7–4

writing ISRs suggestions
exception handling 6–13

writing program loaders
HAL system library users 7–6

writing program loaders or self-modifying code
cache memory 7–5

writing self-modifying code
HAL system library users 7–6

	Nios II Software Developer’s Handbook
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Nios II Software Development
	Revision History
	1. Overview
	Introduction
	Getting Started
	Development Environment
	Tools
	Nios II IDE
	GNU Tool Chain
	Instruction Set Simulator
	Hardware Abstraction Layer System Library
	RTOS and TCP/IP stack
	Example Designs

	Consistent Development Environment
	Consistent Runtime Environment

	Third-Party Support
	Migrating from the First- Generation Nios Processor
	Further Nios II Information

	2. Tour of the Nios II IDE
	Introduction
	The Nios II IDE Workbench
	Perspectives, Editors & Views

	Creating a New Project
	Building & Managing Projects
	Running & Debugging Programs
	Programming Flash
	Online Help

	Section II. The HAL System Library
	Revision History
	3. Overview of the HAL System Library
	Introduction
	Getting Started
	HAL Architecture
	Services
	Applications vs. Drivers
	Generic Device Models
	Device Model Classes
	Benefits to Application Developers
	Benefits to Device Driver Developers

	C Standard Library-Newlib

	Supported Peripherals

	4. Developing Programs using the HAL
	Introduction
	The Nios II IDE Project Structure
	The system.h System Description File
	Example: Excerpts from a system.h File

	Data Widths & the HAL Type Definitions
	UNIX-Style Interface
	File System
	Example: Reading Characters from a File Subsystem

	Using Character- Mode Devices
	Standard Input, Standard Output & Standard Error
	Example: Hello World

	General Access to Character Mode Devices
	Example: Writing Characters to a UART

	C++ Streams
	/dev/null

	Using File Subsystems
	Using Timer Devices
	The HAL System Clock
	Alarms
	Example: Using a Periodic Alarm Callback Function

	High Resolution Time Measurement
	Example: Using the Timestamp to Measure Code Execution Time

	Using Flash Devices
	Simple Flash Access
	Example: Using the Simple Flash API Functions

	Block Erasure or Corruption
	Fine-Grained Flash Access
	Example: Using the Fine-Grained Flash Access API Functions

	Using DMA Devices
	DMA Transmit Channels
	Example: Obtaining a File Handle for a DMA Device

	DMA Receive Channels
	Example: A DMA Transaction on a Receive Channel

	Memory-to-Memory DMA Transactions
	Example: Copying Data from Memory to Memory

	Reducing Code Footprint
	Enable Compiler Optimizations
	Use Small Footprint Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use UNIX not ANSI C File I/O
	Use the Small Newlib C Library
	Eliminate Unused Device Drivers
	Use _exit() for No Clean Exit
	Disable Instruction Emulation

	Boot Sequence and Entry Point
	Hosted vs. Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code & Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options
	Example: Manually Assigning C Code to a Specific Memory Section

	Placement of the Heap & Stack
	Boot Modes

	Paths to HAL System Library Files
	Finding HAL Files
	Overriding HAL Functions

	5. Developing Device Drivers for the HAL
	Introduction
	Integration into the HAL API
	Peripheral-Specific API
	Before You Begin

	Development Flow for Creating Device Drivers
	SOPC Builder Concepts
	The Relationship between system.h & SOPC Builder
	Using SOPC Builder for Optimal Hardware Configuration
	Components, Devices & Peripherals

	Accessing Hardware
	Creating Drivers for HAL Device Classes
	Character-Mode Device Drivers
	Create a Device Instance
	Register a Character Device

	File Subsystem Drivers
	Create a Device Instance
	Register a File Subsystem Device

	Timer Device Drivers
	System Clock Driver
	Timestamp Driver

	Flash Device Drivers
	Create a Flash Driver
	Register a Flash Device

	DMA Device Drivers
	DMA Transmit Channel
	DMA Receive Channel

	Ethernet Device Drivers
	Provide an Instance of alt_lwip_dev_list
	Provide init_routine()
	Provide output() & linkoutput()
	Provide rx_routine()

	Integrating a Device Driver into the HAL
	Directory Structure for HAL Devices
	Device Driver Files for the HAL
	A Device’s HAL Header File & alt_sys_init.c
	Example: Excerpt from an alt_sys_init.c File Performing Driver Initialization

	Device Driver Source Code
	Example: An Example component.mk Makefile

	Summary

	Providing Reduced Footprint Drivers
	Namespace Allocation
	Overriding the Default Device Drivers

	Section III. Advanced Programming Topics
	Revision History
	6. Exception Handling
	Introduction
	Nios II Exceptions Overview
	HAL Implementation
	_irq_entry
	Example: A pseudocode representation of _irq_entry

	alt_irq_handler()
	Example: Pseudocode Representation of alt_irq_handler()

	software_exception
	Example: Pseudo-code representation of software_exception
	Unimplemented Instructions
	Software Trap Exception Handling
	Other Exception Types

	ISRs
	HAL API for ISRs
	Registering an ISR with alt_irq_register()
	Writing an ISR
	Restricted Environment
	ISR Performance
	Slow Interrupt Handlers
	Minimize Slow Operations

	Enabling and Disabling ISRs
	C Example
	Example: An ISR to Service a Button PIO IRQ
	Example: Registering the Button PIO ISR with the HAL

	Fast ISR Processing
	ISR Performance Data
	Debugging with ISRs
	Summary of Suggestions for Writing ISRs

	7. Cache Memory
	Introduction
	Nios II Cache Implementation
	Example: An excerpt from system.h that defines the Cache Structure

	HAL API Functions for Managing Cache
	Further Information

	Initializing Cache after Reset
	Example: Assembly code to initialize the instruction cache
	Example: Assembly code to initialize the data cache
	For HAL System Library Users

	Writing Device Drivers
	For HAL System Library Users

	Writing Program Loaders or Self- Modifying Code
	Example: Assembly Code That Writes a New Instruction to Memory
	For Users of the HAL System Library

	Managing Cache in Multi- Master/Multi- CPU Systems
	Bit-31 Cache Bypass
	For HAL System Library Users

	8. MicroC/OS-II Real-Time Operating System
	Introduction
	Overview
	Further Information
	Licensing

	Other RTOS Providers
	The Altera Port of MicroC/OS-II
	MicroC/OS-II Architecture
	MicroC/OS-II Thread-Aware Debugging
	MicroC/OS-II Device Drivers
	Thread-Safe HAL Drivers
	The Newlib ANSI C Standard Library

	Implementing MicroC/OS-II Projects in the Nios II IDE
	MicroC/OS-II General Options
	Event Flags Settings
	Mutex Settings
	Semaphores Settings
	Mailboxes Settings
	Queues Settings
	Memory Management Settings
	Miscellaneous Settings
	Task Management Settings
	Time Management Settings

	9. Ethernet & Lightweight IP
	Introduction
	lwIP Port for the Nios II Processor
	lwIP Files & Directories
	Licensing

	Other TCP/IP Stack Providers
	Using the lwIP Protocol Stack
	Nios II System Requirements
	The lwIP Tasks
	Initializing the Stack
	Example: Instantiating the lwIP Stack in main()
	lwip_stack_init()
	init_done_func()
	Example: An implementation of init_done_func()

	lwip_devices_init()
	get_mac_addr() & get_ip_addr()
	Example: An implementation of get_mac_addr()
	Example: An implementation of get_ip_addr()

	Calling the Sockets Interface

	Configuring lwIP in the Nios II IDE
	Lightweight TCP/IP Stack General Settings
	IP Options
	ARP Options
	UDP Options
	TCP Options
	DHCP Options
	Memory Options

	Known Limitations

	Section IV. Appendices
	Revision History
	10. The HAL API Reference
	Introduction
	_exit()
	_rename()
	alt_alarm_start()
	alt_alarm_stop()
	alt_dcache_flush()
	alt_dcache_flush_all()
	alt_dev_reg()
	alt_dma_rxchan_close()
	alt_dma_rxchan_depth()
	alt_dma_rxchan_ioctl()
	alt_dma_rxchan_open()
	alt_dma_rxchan_prepare()
	alt_dma_rxchan_reg()
	alt_dma_txchan_close()
	alt_dma_txchan_ioctl()
	alt_dma_txchan_open()
	alt_dma_txchan_reg()
	alt_dma_txchan_send()
	alt_dma_txchan_space()
	alt_erase_flash_block()
	alt_flash_close_dev()
	alt_flash_open_dev()
	alt_fs_reg()
	alt_get_flash_info()
	alt_icache_flush()
	alt_icache_flush_all()
	alt_irq_disable_all()
	alt_irq_enable_all()
	alt_irq_enabled()
	alt_irq_register()
	alt_llist_insert()
	alt_llist_remove()
	alt_nticks()
	alt_read_flash()
	alt_remap_cached()
	alt_remap_uncached()
	alt_sysclk_init()
	alt_tick()
	alt_ticks_per_second()
	alt_timestamp()
	alt_timestamp_freq()
	alt_timestamp_start()
	alt_uncached_free()
	alt_uncached_malloc()
	alt_write_flash()
	alt_write_flash_block()
	close()
	execve()
	fork()
	fstat()
	getpid()
	gettimeofday()
	ioctl()
	isatty()
	kill()
	link()
	lseek()
	open()
	read()
	sbrk()
	settimeofday()
	stat()
	times()
	unlink()
	usleep()
	wait()
	write()
	Standard Types

	11. Altera-Provided Development Tools
	Introduction
	The Nios II IDE Tools
	Altera Command-Line Tools
	GNU Compiler Tool-chain
	Libraries & Embedded Software Components

	12. Read-Only Zip Filing System
	Introduction
	Using the Zip File System in a Project
	Preparing the Zip File
	Programming the Zip File to Flash

	Index

