S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

SYSTEM DESIGN

OVERVIEW

The S3C44B0X, SNASUMG's 16/32-bit RISC microcontroller is cost-effective and high performance
microcontroller solution for hand-held device and general application. The integrated on-chip functions of
S3C44B0X are

2.5V Static ARN7TDMI CPU Core with 8KB cache (SAMBA bus architecture up to 75MHz)

External memory controller (FP/EDO/SDRAM Control, Chip Select logic)

LCD Controller (up to 256 color DSTN) with 1-ch LCD-dedicated DMA

2-ch general DMAs / 2-ch peripheral DMAs with external request pins

2-ch UART / 1-ch SIO (IRDA1.0, 16-byte FIFO)

1-ch multi-master 11C-BUS controller & 1-ch 11IS-BUS controller

5-ch PWM Timers & 1-ch internal timer

Watch Dog Timer

71-bit general purpose 1/O ports / 8-ch External Interrupt Source

Power control : Normal, Slow, Idle and Stop mode

8-ch 10-bit ADC

RTC with calendar function

On-chip clock generator with PLL

Therefore, you can use S3C44B0X as amount types of system.

APPLICABLE SYTEM WITH S3C44B0OX

If your product need to be networked, the S3C44B0X, SNASUMG's 16/32-bit RISC microcontroller can be reduce
your system cost. There are sample system, it can be designed with S3C44B0X.

GPS phone

PDA (Personal Data Assistance)

Fish Finder

Portable Game Machine

Fingerprint Identification System

TWM (Two Way Messaging) Terminal

Car Navigation System

MP3 Player etc.

ELECTRONICS 4-1

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

MEORY INTERFACE DESIGN
BOOT ROM DESIGN

When system reset, a S3C44B0X access 0x00000000 address. And S3C44B0X should be configure some
system variable after reset. Therefore this special code (BOOT ROM image) should be located on address
0x00000000. A boot ROM can have a various width of data bus, and it is controlled by OM[1:0] pins.

Table 4-1. Data Bus Width for ROM Bank 0

OM[1:0] Data Bus Width
00 8-bit (byte)
01 16-bit (half-word)
10 32-bit (word)
11 Test Mode

ONE BYTE BOOT ROM DESIGN

A design with one byte boot ROM is shown in Figure 4-1.

S3C44B0X EEPROM/
Flash
OMI[0] ADDR[24:0] p A21:0]
OM[1] DATA[7:0] ¢ p DATA[7:0]
nGCS0 nCE
nOE nOE
- nWE nWE

Figure 4-1. One Byte Boot ROM Design

4-2 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN

MAKE AND FUSING ONE BYTE ROM IMAGE
When make one byte ROM image, you can use the binary file that made from compile and link.

HALF-WORD BOOT ROM DESIGN WITH BYTE EEPROM/FLASH

A design with half-word boot ROM with byte EEPROM/Flash is shown in Figure 4-2.

Q S3C44B0X EEPROM/
Flash

OM[0] ADDR[24:1] » ADDR[21:0]

OM[1] DATA[15:0] ¢ SATATO] » DATA[7:0]

nGCSO nCE
L nOE nOE
- NWBE[1:0] nWE
nWBE[0]

EEPROM/
Flash

ADDR[21:0]
DATA[7:0]

A A 4

DATA[15:8]

nCE
nOE
nWE

NWBE[1]

Figure 4-2. The Half-Word Boot ROM Design with Byte EEPROM/Flash

ELECTRONICS

4-3

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

MAKE AND FUSING HALF-WORD ROM IMAGE WITH BYTE EEPROM/FLASH
When make half-word ROM image, you can split two image files, EVEN and ODD.

Table 4-2 Relationship ROM Image and Endian

Big Endian Little Endian
DATA[7:0] Odd Even
DATA[15:8] Even Odd

HALF-WORD BOOT ROM DESIGN WITH HALF-WORD EEPROM/FLASH

A design with half-word boot ROM with byte EEPROM/Flash is shown in Figure 4-3.

O S3C44B0X EEPROM/
Flash
OMIO] ADDR[24:1] P A[21:0]
OM[1] DATA[15:0] « p DQ[15:0]
DATA[15:0]
nGCS0 » nCE
e nOE nOE
nWE nWE

Figure 4-3. The Half-Word Boot ROM Design with Half-Word EEPROM/Flash

4-4 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN

WORD BOOT ROM DESIGN WITH HALF-WORD EEPROM/FLASH

A design with word boot ROM with byte EEPROM/Flash is shown in Figure 4-4.

DATA[7:0]

@) S3C44B0X
OM[1]
ADDR[24:2]
OMmI0] DATA[31:0]
nGCSO0
= nOE
NWBE[3:0]

—>

NWBE[0]

EEPROM/
Flash

A[21:0]
DQ[7:0]

nCE
nOE
nWE

DATA[15:8]

NWBE[1]

EEPROM/
Flash

A[21:0]
DQ[7:0]
nCE

nOE
nWE

g

DATA[23:16]

NWBE[2]

EEPROM/
Flash

A[21:0]
DQ[7:0]
nCE

nOE
nWE

VYy

DATA[31:24]

VvVVvYyY

NWBE[3]

EEPROM/
Flash

A[21:0]
DQ[7:0]
nCE

nOE
nWE

Figure 4-4. The Word Boot ROM Design with Byte EEPROM/Flash

ELECTRONICS

4-5

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

MAKE AND FUSING WORD ROM IMAGE WITH BYTE EEPROM/FLASH

When you make word ROM image, you can split four image file.

Addr. ROM Image

0 A 4— size : byte Big Endian Little Endian
1 B DATA[31-24] A E .. D, H,...
2 C DATA[23-16] B, F,... C, G,..
3 D DATA[15-8] C,G,.. B,F,..
4 E DATA[7-0] D, H,... A E ..
5 F

6 G

7 H

8 I

9 J

10 K

Figure 4-5 Relationship ROM Image and Endian

4-6 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

MEMORY BANKS DESIGN AND CONTROL

The S3C44B0X has 6 ROM/SRAM banks (ROMO bank for boot ROM) and 2 ROM/SRAM/FP/EDO/SDRAM
banks. The system manager on S3C44B0X can control access time, data bus width for each banks by S/W. The
access time of ROM/SRAM banks and FP/EDO/SDRAM banks is controlled by BANKCONO~7 and
BANKCONG6~7 control register on system manager. The type memory of bank6 & 7 has to be same. (example
ROM & ROM, SDRAM & SDRAM) The data bus width for each ROM/SRAM/DRAM banks is controlled by
BWSCON control register.

The ROM bank 0 is used for boot ROM bank, therefore bank 0 is controlled by H/W, OM[1:0] is used for this
purpose.

The control of BWSCON, BANKCONO-7, REFRESH, BANKSIZE, MRSRB6/7 is performed when system reset,
by special command, LDMIA and STMIA. Sample code for special register configuration is described below.

Sanpl e code for special register configuration

LDR r0, =SMRDATA
LDM A ro, {r1-r13}
LDR r0, =0x01c80000 ; BWBCON Addr ess
STM A ro, {r1-r13}
SVRDATA
DCD 0x22221210 ; BWBCON
DCD 0x00000600 ; GCS0
DCD 0x00000700 ; GCS1
DCD 0x00000700 ; GCS2
DCD 0x00000700 ; GCS3
DCD 0x00000700 ; GCH4
DCD 0x00000700 ; GCS5

; DCD 0x0001002a ; GCS6 EDO DRAM Tr cd=3, Tcas=2, Tcp=1, CAN=10)

; DCD 0x0001002a ; GCS7 EDO DRAM Trcd=3, Tcas=2, Tcp=1, CAN=10)

DCD 0x00018000 ; GCS6 SDRAM Tr cd=2, SCAN=38)

DCD 0x00018000 ; GCS7 SDRAM Tr cd=2, SCAN=38)

DCD 0x00a60000+953; Ref r esh(REFEN=1, TREFVMD=0, Tr p=3. 5(D) or 4(SD),
; Trc=5(S), Tchr=3(D), Ref CNT)

DCD 0x0 : Bank size, 32MB/ 32MB
DCD 0x20 ; MRSR 6(CL=2)
DCD 0x20 ; MRSR 7(CL=2)

ELECTRONICS 4-7

SYSTEM DESIGN

S3C44B0X RISC MICROPROCESSOR

ROM/SRAM BANKS DESIGN
The ROM/SRAM banks 1-7, can have a various width of data bus, and the bus width is controlled by S/W. A

sample design for ROM/SRAM bank 1-7 is shown in Figure 4-6, Figure 4-7, Figure 4-8 and Figure 4-9.

S3C44B0OX

ADDR[24:0]
DATA[7:0]

nGCS[7:1]
nOE
nWE

DATA[7:0]

EEPROM/
SRAM

A[21:0]
DQ[7:0]

nCE
nOE
nWE

Figure 4-6 One-byte EEPROM/SRAM Banks Design

4-8

ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

S3C44B0X EEPROM/
SRAM
ADDRJ[24:1] > A[21:0]
DATA[15:0] ¢ » DQ[7:0]
DATA[7:0]
nGCSI[7:1] nCE
nOE nOE
NWBE[1:0] nWE
nWBE[O0]
EEPROM/
SRAM
> A[21:0]
DQ[7:0]
DATA[15:8]
nCE
nOE
nWE
nWBE[1]
Figure 4-7 Half-word EEPROM/SRAM Banks Design
S3C44B0OX SRAM
ADDR[24:1] » A[21:0]
DATA[15:0] ¢ » DQ[15:0]
DATA[15:0]
nGCSJ[7:1] nCE
nWE CWE » NWE
nOE nOE
nOE
nWBE[O0] > nLB
nWBE[O0]
nWBE[1] nuB
nWBE[1]

Figure 4-8 Half-word SRAM Banks Design with Half-word SRAM

ELECTRONICS 4-9

SYSTEM DESIGN

S3C44B0X RISC MICROPROCESSOR

S3C44B0OX

ADDR[24:2]
DATA[31:0]

nGCS[7:1]
nOE
nWBE[3:0]

vy

DATA[7:0]

NWBE[0]

EEPROM/
SRAM

A[21:0]
DQI[7:0]

nCE
nOE
nWE

vy

DATA[15:8]

NWBE[1]

EEPROM/
SRAM

A[21:0]
DQI[7:0]

nCE
nOE
nWE

\ A |

DATA[23:16]

NWBE[2]

EEPROM/
SRAM

A[21:0]
DQI[7:0]

nCE
nOE
nWE

DATA[31:24]

\ A |

NWBE[3]

EEPROM/
SRAM

A[21:0]
DQI[7:0]

nCE
nOE
nWE

Figure 4-9 Word EEPROM/SRAM banks design

4-10

ELECTRONICS

S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN

EDO DRAM BANKS DESIGN FOR S3C44B0X

The DRAM banks 6-7, can have a various width of data bus, and the bus width is controlled by S/W, A BWSCON
special register set. A sample design for DRAM bank 6-7 is shown in Figure 4-10 and Figure 4-11.

S3C44B0OX

ADDR[24:1]
DATA[15:0]

nRAS

nCAS|0]
nCAS[1]
nWE
nOE

<

ADDR[12:1]

A\ A 4

VVVvVVv VY

EDO
DRAM

A[11:0]
DQ[15:0]

nRAS

nLCAS
nUCAS
nWE
nOE

Figure 4-10 Half-Word EDO/Normal DRAM Banks Design

ELECTRONICS

4-11

SYSTEM DESIGN

S3C44B0X RISC MICROPROCESSOR

S3C44B0OX

ADDR[24:2]
DATA[31:0]

nRAS
nCAS[3:0]
nWE

nOE

EDO
DRAM
ADDR[13:2 > AlLLO)
[13:2] » DQ[15:0]
DATA[15:0]
p nRAS
p NLCAS/NUCAS
nCAS[0]/nCAS[1] > nWE
> nOE
EDO
DRAM
. .
ADDR[13:2] Al11:0]
» DQ[15:0]
DATA[31:16] ,
P nRAS
p NLCAS/NUCAS
nCAS[2]/nCASI[3] > nWE
> nOE

FIGURE 4-11 WORD EDO/NORMAL DRAM BANK

4-12

ELECTRONICS

S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN

SDRAM BANKS DESIGN FOR S3C44B0X
The S3C44B0X Synchronous DRAM interface features are as follows :

Maximum column address of SDRAM: 10 bit
CAS latency: 2/3 cycle

Table 4-3 SDRAM Bank Address configuration

Bank Size Bus Width Base Component Memory Configuration Bank Address
2MByte x8 16Mbit (AM x 8 x 2Bank) x 1 A20

x16 (512K x16 x2B) x 1

4MB x8 16Mb (2M x4 x2B) x2 A21
x16 (AMx8x2B) x2
x32 (512K x 16 x 2B) x 2

8MB x16 16Mb (2M x4 x2B) x4 A22
x32 (AM x 8x 2B) x4
x8 64Mb 4Mx8x2B) x1
x8 (2Mx8x4B) x1 Al[22:21]
x16 (2Mx 16x2B) x1 A22
x16 (IMx 16 x4B) x1 A[22:21]
x32 (512K x32x4B) x 1

16MB x32 16Mb (2M x4 x2B) x8 A23
x8 64Mb (BMx4x2B) x2
x8 (4Mx4x4B) x2 A[23:22]
x16 (4Mx8x2B) x2 A23
x16 (2M x 8 x4B) x 2 A[23:22]
x32 (2Mx 16 x2B) x 2 A23
x32 (IMx 16 x4B) x 2 A[23:22]
x8 128Mb 4Mx8x4B) x1
x16 (2Mx 16 x4B) x 1

32MB x16 64Mb (BMx4x2B) x4 A24
x16 (4M x4 x4B) x4 A[24:23]
x32 (4Mx8x2B) x4 A24
x32 (2Mx 8 x4B) x4 A[24:23]
x16 128Mb (4M x 8 x4B) x 2
x32 (2M x 16 x4B) x 2
x8 256Mb (BMx8x4B) x1
x16 (4Mx16x4B) x1

ELECTRONICS

4-13

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

The required SDRAM interface pin is CKE, SCLK, nSCS[1:0], nSCAS, nSRAS, DQM[3:0], ADDR[12]/AP. The
sample design with SDRAM is shown in Figure 4-12, and Figure 4-13.

SacaBOX sme
ADDR[13:1] ADDR[13:1] P A[12:0]
BA BA
DATA[15:0] <« » DQ[15:0]
DATA[15:0]
SCLK CLK
NRAS[0]/nSCSJ0] nCS
NCAS3/nSRAS NSRAS
NCAS2/nSCAS nSCAS
nWE nWE
nNWBE[1:0)//DQM[1:0] LDQM/UDQM
DQM[1:0]

Figure 4-12 Half-word SDRAM Design with Half-word Component

4-14 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

SYNC
S3C44B0OX DRAM
ADDR[14:2]
ADDR[14:2] P A[12:0]
BA BA
DATA[31:0] < > DQ[15:0]
DATA[15:0]
SCLK CLK
NRAS[0]/nSCS|0] nCS
NCAS3/nSRAS nSRAS
NCAS2/nSCAS nSCAS
nWE nWE
nWBE[3:0]//DQM[3:0] LDQM/UDQM
DQM[1:0]
SYNC
DRAM
ADDR[14:2]
P A[12:0]
BA
p» DQ[15:0]
DATA[31:16]
CLK
nCS
nSRAS
nSCAS
nWE
LDQM/UDQM
DQM[3:2]

Figure 4-13 Word SDRAM Design with Half-word Component

ELECTRONICS 4-15

SYSTEM DESIGN

S3C44B0X RISC MICROPROCESSOR

I/O PORT CONFIGURATION

S3C44B0X has multiplexed input/output/function port pins. The SMDK41100 demo board uses only some
functions, then some pins are float or some pins have selectable function port with 0 ohm resistor, therefore
users must define the pin's configuration and attach the 0 ohm resistor on the proper place before running the

main program.

For reducing the power consumption in SMDK41100, the port state and usage of internal pull-up resistor are

decided very carefully. The followings are the sample port configuration for SMDK41100.

Port A : Memory address pins

Port H/W connection @Normal @Stop @ldle
PAO OPEN ADDRO
PA1 ADDR16 ADDR16
PA2 ADDR17 ADDR17
PA3 ADDR18 ADDR18
PA4 ADDR19 ADDR19
PA5 ADDR20 ADDR20
PAG6 BAO ADDR21
PA7 BA1 ADDR22
PA8 OPEN ADDR23
PA9 OPEN ADDR24
PDATA - -
PCONA - Ox 3ff
Port B : Memory control and output(LED) pins
Port H/W Connection @Normal @Stop(data) @ldle
PBO SCKE SCKE
PB1 SCLK SCLK
PB2 nSCAS nSCAS
PB3 nSRAS nSRAS
PB4 DQMO nWBE2/nBE2/DQM2
PB5 DQM1 nWBES3/nBE3/DQM3
PB6 OPEN nGCS1
PB7 OPEN nGCS2
PB8 OPEN nGCS3
PB9 LED Output Output(High) Output
PB10 LED Output Output(High) Output
PDATB - - 0x600 -
PCONB - Ox 1ff

4-16

ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

Port C : IIS, LCD data and UART control pins.

Not used function pins are defined input port with pull-up resistor enabled to reduce the power consumption. If the
UART function is not used the pins should be disabled pull-up resistor, output signal(Tx, nRTS) is defined output
port and input signal(Rx, nCTS) is defined input port avoid conflicting the signals of MAX3232.

Port H/W Connection | @Normal(data, pull-up) | @Stop(data, pull-up) | @ldle(data, pull-up)
PCO IISLRCK Input(pull-up enable)
PC1 IISDO Input(pull-up enable)
PC2 [ISDI Input(pull-up enable)
PC3 IISCLK Input(pull-up enable)
PC4 VD7 Input(pull-up enable)
PC5 VD6 Input(pull-up enable)
PC6 VD5 Input(pull-up enable)
PC7 VD4 Input(pull-up enable)
PC8 OPEN Input(pull-up enable)
PC9 OPEN Input(pull-up enable)
PC10 NRTS1 Output(High, pull-up disable)
PC11 nCTS1 Input(pull-up disable)
PC12 TxD1 Output(High, pull-up disable)
PC13 RxD1 Input(pull-up disable)
PC14 NRTSO Output(High, pull-up disable)
PC15 nCTSO Input(pull-up disable)
PDATC - 0x5400
PUPC - 0xfc00
PCONC - 0x11100000

Port D : LCD data and LCD control pins.

Port |H/W Connection @Normal(pull-up) @Stop(data, pull-up) @ldle(pull-up)
PDO VDO VDO(pull-up disable) Output(High,pull-up disable) VDO(pull-up disable)
PD1 VD1 VD1 (pull-up disable) Output(High,pull-up disable) VD1 (pull-up disable)
PD2 VD2 VD2(pull-up disable) Output(High,pull-up disable) VD2(pull-up disable)
PD3 VD3 VD3(pull-up disable) Output(High,pull-up disable) VD3(pull-up disable)
PD4 VCLK VCLK(pull-up disable) | Output(High,pull-up disable) | VCLK(pull-up disable)
PD5 VLINE VLINE(pull-up disable) | Output(High,pull-up disable) | VLINE(pull-up disable)
PD6 VM VM(pull-up disable) Output(High,pull-up disable) VM(pull-up disable)
PD7 VFRAME VFRAME ((pull-up disable) | Output(High,pull-up disable) | VFRAME(pull-up disable)

PDATD - - Ox ff -

PUPD - Oxff Oxff Oxff

PCOND - Oxaaaa 0x5555 Oxaaaa

ELECTRONICS

4-17

SYSTEM DESIGN

S3C44B0X RISC MICROPROCESSOR

Port E : UART control pins and ENDIAN pin.
PES8 port should be defined input port with disabled pull-up resistor, because the PES8 pin is connected to GND for
little endian mode in SMDK41100 demo board.

Port H/W Connection | @Normal(pull-up) | @Stop(pull-up) | @ldle(pull-up)
PEO OPEN Input(pull-up enable)
PE1 TxDO TxDO(pull-up disable)
PE2 RxDO RxDO(pull-up disable)
PE3 OPEN Input(pull-up enable)
PE4 OPEN Input(pull-up enable)
PES5 OPEN Input(pull-up enable)
PEG6 OPEN Input(pull-up enable)
PE7 OPEN Input(pull-up enable)
PES8 ENDIAN ENDIAN(pull-up disable)
PDATE - -
PUPE - 0x106
PCONE - 0x28

Port F : IS and SIO control pins.

PFO and PF1 pins should be defined disabled pull-up resistor input port, because these pins are connected pull-
up resistors by hardware.

Port H/W Connection | @Normal(pull-up) | @Stop(pull-up) | @ldle(pull-up)
PFO IICSCL Input(pull-up disable)
PF1 IICSDA Input(pull-up disable)
PF2 OPEN Input(pull-up enable)
PF3 OPEN Input(pull-up enable)
PF4 OPEN Input(pull-up enable)
PF5 SIOTxD Input(pull-up enable)
PF6 SIORDY Input(pull-up enable)
PF7 SIORxD Input(pull-up enable)
PF8 SIOCLK Input(pull-up enable)
PDATF - -
PUPF - 0x3
PCONF - 0x0

4-18

ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

Port G : External interrupt pins.
The SMDK41100 demo board is using PG4 and PG5 ports as external interrupt ports with button.

Port H/W Connection @Normal(pull-up) | @Stop(pull-up) | @Ildle(pull-up)
PGO EINTO Input(pull-up enable)
PG1 EINT1 Input(pull-up enable)
PG2 EINT2 Input(pull-up enable)
PG3 EINT3 Input(pull-up enable)
PG4 EINT4 Input(pull-up disable)
PG5 EINT5 Input(pull-up disable)
PG6 OPEN Input(pull-up enable)
PG7 OPEN Input(pull-up enable)
PDATG - -
PUPG - 0x30
PCONG - 0x0

Special pull-up resistor control register
In normal operation, the pull-up resistor should be disabled but in stop mode it is enabled for power consumption.

Connection @Normal @sStop @ldle
SPUCRO Pull-up disable Pull-up enable Pull-up disable
SPUCR1 Pull-up disable Pull-up enable Pull-up disable

Hz@STOP Previsous state High-impedance Previsous state
SPUCR 0x7 0x0 0x7

NOTE : To reduce power consumption users shall consider the state of pins and refer to the table below.

Usage of Pins Pull-up resistor + Data
Unused input port pins Pull-up enable
Normal output port pins Pull-up disable + Data High
Function(address, data, control) pins Pull-up disable

ELECTRONICS 4-19

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

LCD CONNECTION WITH S3C44B0X
The S3C44B0X LCD interface example circuit is as follows :

UG-32F04(320x240 mono STN LCD) from SAMSUNG DISPLAY DEVICES CO.,LTD (refer to Figure 4-14)
. TL497CAN can be used to make VEE(-25V).

UG-24U03A(320x240 mono STN LCD) from SAMSUNG DISPLAY DEVICES CO.,LTD (refer to Figure 4-15)

. VEE is generated by the circuit on LCD module.
. VL is 2.4V typically.
. DISPON H : display on, L : display off
.NEL_ON H:ELoff L:ELon

KHS038AA1AA-G24 (256 color STN LCD) from KYOCERA Co. (refer to Figure 4-16)
. DISP signal can be made using I/O port, or power control circuit, or NRESET circuit.
. V1-V5 can be made using the power circuit recommended by the LCD specification.

FG

— 2 1

Lol

VFRAME »d 3
VLINE g:j rd 4
VCLK yse ¢ 2
VDO Do vl 7
VD1 B% »d 8
VD2 220 g
s
(from S3C44B0X) VEE VDD ng »d 12
13

R J VEE VEE >J 14

10K L VSS dg

= = UG-32-F04-WCBNO-A

Figure 4-14 UG-32F04 connection with S3C44B0X(320x240 mono STN LCD)

4-20 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN

_vsst Ty
VERAME FPFRAME | |
VLINE FPLINE 3
VSS2 4
FPSHIFT
VCLK VSS3 2
PORT(DISPON) DOFF »q 7
DRDY 4
VM > 8
vCcC
3.3V 9
°® VSS4 10
VEE x-q 11
VL
0o 12
VDO D1 >4 13
VD1 D2 >q 14
VD2 b »C 15
3.3V VSS5 17
) X2 x— 18
Y1 % 19
“ X1 *-C 20
Y2 % 21
— VSS6 22
EL-VCC 23
PORT(NEL-ON) | EL-ON 24
(from S3C44B0X) - UG24U03A

Figure 4-15 UG24UQ3A connection with S3C44B0X (320x240 mono STN LCD)

VFRAME FLM _,

VLINE égAD g 2

VCLK »d 3

VM — DISPOFF DISP__, o 4

Vio 7 A— VDD VDD, g

Vo R— xgg 6

VD5 — N DE 7

VD4 SN = VM VO »CG 8

VD3 - VO V1 »d 9

VD2 — V1 Vo »G 10

VD1 — V2 V3 > 11

VDO — \\//i Va . 12

(from S3C44B0X) Vs 1431

rom L

D7

us > 15

- %—Bg’ 16

vl 17

voa D4 [g

VD3 b3 »G 19

VD2 D2 »G 20

VD1 D1 »C 21

VDO DO »O 22

KHSO038AA1AA-G24-95-14

Figure 4-16 KHS038AA1AA-G24 connection with S3C44B0X (256 color STN LCD)

ELECTRONICS

4-21

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

SYSTEM DESIGN WITH DEBUGGER SUPPORT

EmbeddedICE Macrocell and EmbeddedICE Interface

The S3C44B0X has an EmbeddedICE macrocell that provides debug support fro ARM cores. The EmbeddedICE
macrocell is programmed in serial using the TAP(Test Access Port) controller on the S3C44B0X. The
EmbeddedICE interface is a JTAG protocol conversion unit. It translates a debug protocol message generated by
the debugger into a JTAG signal which is sent to the built-in serial and parallel ports.

JTAG port for EmbeddedICE Interface

When you build a system with the S3C44B0X EmbeddedICE interface, you should design a JTAG port for
EmbeddedICE interface. Usually, the interface connector is a 14-way box header, and this plug is connected to
the EmbeddedICE interface module using 14-way IDC cable.

The JTAG port signals, nTRST,TDI, TMS,TCK have to be connected pulled-up register(10K ohm) externally.
When you operate normal mode without EmdeddedICE, nRESET signal on S3C44B0X is connected
NTRST via JP1 (jumperl). In debugger mode, nRESET signal on S3C44B0X is surely seperated nTRST
via JP1 (jumperl).

The pin configuration and a sample design are described in Figure 4-17, 4-18, respectively.

@ ® ® 6 O @
ONORORUNONONE

1
Pin Name Function
1,13 SPU Connected to VDD through 33 or 0 ohm resister*
3 NTRST Test reset, active low (connected pull-up reg.)
5 TDI Test data in (connected pull-up reg.)
7 TMS Test mode select (connected pull-up reg.)
9 TCK Test clock (connected pull-up reg.)
11 TDO Test data out
12 nICERST Connected to VDD through 10K ohm resister
2,4,6,8,10,14 VSS System Ground

* 33 ohm for EmbeddedICE, 0 ohm for Multi-ICE, pullup Reg.:10K ohm

Figure 4-17 EmbeddedICE Interface JTAG Connector

4-22 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

AVCC
S3C44B0OX
10K §1OK 10K 10K
—————--= 1
@ O—
| |
4(: :) @ : NTRST
| |
:O @ ,__} TDI
|

Dn ™S

i TCK
|
|
_i'@ @ ; TDO
|
@ @——
OO
v IP6
GND | NRESET

NRESET |

(from Reset logic)
Jumper in : Normal operation

Jumper out : debug mode

Figure 4-18 EmbeddedICE Interface Design Example

ELECTRONICS

4-23

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

CHECK LIST FOR SYSTEM DESIGN WITH S3C44B0X

When you design a system with the S3C44B0X, you should check a number of items to build a good system. The
check list is described below.

The OM[3:0] and ENDIAN pin have to be configured.
To run the CPU without using JTAG(ICE), connect nTRST and nRESET pin.

If EXTCLK pin is used for MCLK, XTALO has to be connected to VDD. If XTALO pin is used for MCLK,
EXTCLK has to be connected to VDD.

If an input pin is unused, connect the pin to VDD or GND. If the pin is float, S3C44B0X may not operate.
NnGCS6,7 do not support DRAM & SDRAM combination,
Please configure memory type to below combination in bank6 & 7 :

DRAM & DRAM, SDRAM & SDRAM , SRAM & SRAM, SRAM & DRAM, SRAM & SDRAM.

4-24 ELECTRONICS

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

NOTES

ELECTRONICS 4-25

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

PSOSYSTEM BOARD SUPPORT PACKAGE

OVERVIEW

The pSOSystem operating system is a modular, high-performance real-time operating system designed
specifically for embedded microprocessors. It provides a very complete, multitasking environment based on open
system standards.

The pSOSystem operating system is designed to meet three overriding objectives:

— Performance
— Reliability
— Ease-of-Use

The result is a fast, deterministic, yet accessible, system software solution.

The pSOSystem is designed as a set of software components that comprise an operating system for an
embedded application. To use pSOSystem, you write an application for the target and link the pSOSystem
software components to the application at building time. When the application is downloaded to the target,
pSOSystem executes as the operating system.

The pSOSystem is used in a cross-development environment, where you develop the application on a host
system and then download and run it on a target system. The host system is linked to the target system by a
serial line or an Ethernet connection depending on the corresponding hardware support.

This chapter provides a brief guide to develop pSOSystem application, and explains how to assemble, build,
download, and run pSOSystem application on the S3C44B0X Evaluation Board. Especially, It introduces the
pSOSystem BSP (Board Support Package) for S3C44B0X Evaluation Board, which make your pSOSystem
application to be able to run on our hardware platform.

As you read this chapter, you may also need to refer to the other manuals in standard documentation set,
provided by ISI, for more detailed information.

— pSOSystem System Concepts

— pSOSystem Getting Started

— pSOSystem Advanced Topics

— pSOSystem Programmer® Reference

— pSOSystem System Calls

— pPROBE+ User® Guide

ELECTRONICS 5-1

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

SYSTEM ARCHITECTURE
A pSOSystem application consists of the following main elements:

— Application codes, which you write for a particular application.

— The pSOSystem operating system components, which include, but are not limited to, the following system
libraries:

The pSOS+ Kernel

The pROBE+ Target-Level Debugger

The pREPC+ Run-Time C Library

The pHILE+ File System Manager

The pNA+ TCP/IP and UDP Network Manager

— A board-support package (BSP), which is an additional software module to provide the interface between the
OS/Application and target hardware platform.

The system architecture is shown below:

pSOSystem Directory Tree pSOSystem Architcation

—— APPS - —- e - > Embedded Application
—— Configs

PSS ROOT Sys TTTTTTTTTTToTTmomoooooes > pSOSystem Libraries
| DVErSe e o 5| H/W Independent

Device Drivers

— BSPS ----------------"--"-"---——- 4 Board-Support Package
—— Include Hardware Platform

Figure 5-1. System Architecture

5-2 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER

pSOSYSTEM BOARD SUPPORT PACKAGE

DEVELOPMENT ENVIRONMENT DIRECTORY

The pSOSystem development environment locates under a root directory, called as PSS _ROOT, in your host
after installation. The root directory consists of several sub-directories, each of which contains the source files,
include files or object libraries relative to one layer in pSOSystem architecture, as shown above.

The following table describes the sub-directories under the pSOSystem root directory.

Root Sub-directory Description
apps It has a number of application working directories where you build the
pSOSystem application executable image. Each application working
directory contains the application source codes, a pSOSystem configuration
header file (sys_conf.h) and a driver configuration file (drv_conf.c)
config A sub-directory contains the pSOSystem application startup codes and the
configuration files for various pSOSystem components.

PSS ROOT sys A sub-directory contains the operating system components which can be
compiled into libraries (libsys.xxx and libsysxx.xxx) and then linked into any
application.

driver A sub-directory contains some hardware-independent device drivers.
bsps It contains a collection of sub-directories, each of which contains a board
support package (BSP) that corresponds to a specific hardware platform.
include A sub-directory contains the include files that serve as the interface to many
parts of pSOSystem such as device drivers and components.

STEP IN pSOSystem APPLICATION DEVELOPMENT

When you develop a pSOSystem application, you should take the following steps:

Install the pSOSystem in your host system and set up the host environment.

Build the system libraries, libsys.xxx and libsysxx.xxx (necessary only after installation or version updates).

3. Develop the BSP for the specific hardware platform on which your application will run, and build the BSP
library, libbsp.xxx, (necessary only after system updated or BSP modified).

4. Write the application codes in a working directory, and optionally edit the following files:

sys_conf.h

drv_conf.c

the makefile (If you use ARM Project Manager to build application, you may not use this file)

Link with the system library and BSP library to build the application executable image.

Download the executable image to the target platform and run it.

ELECTRONICS

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

SETTING UP THE HOST ENVIRONMENT

To configure the host system, you need to set up some environment variables. You can edit a batch file with
name, such as envarm.bat, to set the these environment variables and execute this batch file prior to starting
your pSOS-related work; or you can do it by modifying the envarm.ksh file if you has installed the pRISM+. A

sample batch file is shown below.

SET HOST=win32

rem
rem * Set up the root path of pSOSystem and corresponding utilities *
rem
SET PSS_ROOT=C:\isiarm\pssarm.223

SET PATH=%PSS_ROOT%\bin\win32; %PSS_ROOT%\mksnt;%PATH%

rem
rem * Replace the next line with the path to your target BSP. *
rem
SET PSS_BSP=%PSS_ROOT%\bsps\41100

rem
rem * Replace the next line with the token for your BSP_TYPE *
rem * Valid tokens are 32I, 32b, 16, or 16b *
rem

SET BSP_TYPE=32B

rem
rem * Set up the ARM SDT path *
rem
SET ARMINC=C:\isiarm\arm211a\include

SET ARMLIB=C:\isiarm\arm211a\lib\embedded
SET PATH=C:\isiarm\arm211a\bin;%PATH%

In above settings, the PSOS environment related variables are described in the table below:

building pSOSytem based application.

Variable Name Description
HOST Defines the name of sub-directory, which containing make utilities, under
%PSS_ROOT%\bin
PSS ROOT Points to the top of the pSOSystem directory tree on your system.
PSS BSP Path to the pSOSystem Board Support Package (BSP).
BSP_TYPE Execution model of your particular ARM processor. This defines ARM (32) or
Thumb (16) mode and big (b) or little (1) endian.
PATH This variable points to the pSOSystem directory of executable files specific to

5-4

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

BUILDING THE PSOS SYSTEM LIBRARIES

After you install the pSOSystem in your host system and set up the host environment, the next step is to build the
system libraries. These libraries contain all pSOSystem system components, such as the pSOS+ kernel, the
pNA+ TCP/IP manager, the pPROBE+ debugger, and so on.

You must build the pSOSystem libraries when you first install the pSOSystem software, and you must rebuild the
libraries whenever you install new distribution files.

For the ARM architecture, there are several different system libraries built. Each one corresponds to one of ARM
execution modes. Separate libraries are built for C and C/C++ applications as well. The table below outlines all of
the library names and the corresponding language/execution model. When building application, the correct library
is automatically picked from the BSP_TYPE environment variable you set above.

Library Name Description
libsys.32l 32-bit ARM mode, little endian, C only
libsys.32b 32-bit ARM mode, big endian, C only
libsys.16l 16-bit Thumb mode, little endian, C only
libsys.16b 16-bit Thumb mode, big endian, C only

libsysxx.32l 32-bit ARM mode, little endian, C/C++
libsysxx.32b 32-bit ARM mode, big endian, C/C++
libsysxx.16l 16-bit Thumb mode, little endian, C/C++
libsysxx.16b 16-bit Thumb mode, big endian, C/C++

To build the system libraries, enter the following commands in MS-DOS window:

— cd %PSS_ROOT%\sys\os
— psosmake clean
— psosmake

The psosmake command automatically picks up the makefile in current directory to complete the required
system library building operations.

ELECTRONICS 5-5

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

S3C44B0X EVALUATION BOARD BSP

INTRODUCTION

The board-support package (BSP) is a software layer which provides the interface between pSOS+
kernel/application and hardware platform so as to make the pSOSystem application to be able to run on a
specific hardware platform. The BSP contains a collection of hardware-specific functions, which include:

1. Target system hardware initialization during system booting, such as
System memory configuration

Stack setup for each CPU operating mode, and install exception handlers
Peripherals initialization, and so on.

2. Exception handlers
3. Lower-level device drivers.
Tick timer driver, used by pSOS+ for task scheduling

Serial port driver, to provide polled interface (used by pROBE+) and interrupt-driven interface (used by
pSOS+ and pREPC+) for serial port communications.

This document describes the pSOSystem Board Support Package for the Samsung S3C44B0X Evaluation
Board. The board uses the S3C44B0X microcontroller which contains an ARM7TDMI CPU core as well as a large
number of integrated peripherals such as serial port controllers, timers, interrupt related hardware, memory
interface hardware, LCD controller, and others.

The pSOSystem Board Support package for S3C44B0X Evaluation Board provides the low level startup code
and drivers necessary to adapt pSOSystem target software to the S3C44B0X Evaluation Board. It can also be
used as a basis for a custom board support package for other hardware platforms based on S3C44B0X
microcontroller.

The S3C44B0X Evaluation Board BSP supports a tick timer and two serial channels. The BSP and all of the
drivers associated with it support big-endian ARM mode execution. Application written for the S3C44B0X
Evaluation Board can be debugged using the ARM Ltd. Embedded ICE along with the ARM Debugger for
Windows (ADW) on PC. The pROBE+ debugger is also available for application debugging.

INSTALLATION

The S3C44B0X Evaluation Board BSP is delivered as an ZIP file which can be installed in the pRISM+ top
directory. To install the S3C44B0X Evaluation Board BSP, first extract the '41100_save.bat' file from the BSP zip
file and run it to back up some original files that are going to be affected. After that, unwind the ZIP file into
proper directories in pRISM+ installation.

A list of the files installed by this package is found in follows.

5-6 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER

pSOSYSTEM BOARD SUPPORT PACKAGE

FILE LIST

The following files are provided as main part of the S3C44B0X Evaluation Board BSP:

File

Usage

PSS ROOT\bsps\41100\bsp.h

BSP definition file

PSS_ROOT\bsps\41100*.mk

S3C44B0X Evaluation Board BSP specific make files for application

PSS_ROOT\bsps\41100\ibbsp.32b

S3C44B0X Evaluation Board BSP library to be linked with
applications

PSS ROOT\bsps\41100\src\board.a

Assembler header file for S3C44B0X Evaluation Board hardware

PSS ROOT\bsps\41100\src\board.h

C header file for S3C44B0X Evaluation Board hardware

PSS ROOT\bsps\41100\src\board.c

Provides the functions for board specific hardware initialization used
by init.s, and hardware specific information used in pSOSystem
initialization process.

PSS ROOT\bsps\41100\src\bpdialog.c

Provides the dialog functions used in pSOSystem setup.

PSS ROOT\bsps\41100\src\bspcfg.c

Delivers configuration information from application to BSP.

PSS ROOT\bsps\41100\src\except.s

Provides the low level IRQ and FIQ handlers specific for S3C44B0X
Evaluation Board

PSS ROOT\bsps\41100\src\init.s

Provides the first entry to S3C44B0X Evaluation Board BSP_control
flow, and performs the hardware system initialization, including
memory mapping, peripherals initialization, stack setup, exception
handlers setup, and so on, and finally enters into pSOSystem
initialization function without return.

PSS_ROOT\bsps\41100\src\intrhndl.c

Provides the functions for interrupt handler table initialization,
interrupt vector installation and a common interrupt handler for both
IRQ and FIQ to dispatch control to a particular ISR.

PSS ROOT\bsps\41100\src\nvram.c

Non-volatile RAM access routines

PSS ROOT\bsps\41100\src\pic.h

S3C44B0X interrupt controller specific definitions

PSS ROOT\bsps\41100\src\serial.h

Definitions for both DISI and non-DISI compliant serial drivers

PSS ROOT\bsps\41100\src\serial.c

Non-DISI compliant serial drivers for S3C44B0X Evaluation Board

PSS ROOT\bsps\41100\src\disi41100.c

DISI drivers for S3C44B0X Evaluation Board

PSS ROOT\bsps\41100\src\timer.h

Timer drivers definitions

PSS ROOT\bsps\41100\src\timer.c

Timer drivers

PSS ROOT\bsps\41100\src\makefile

S3C44B0X Evaluation Board BSP library makefile

PSS ROOT\bsps\devices\arm\vector.s

Provides the Samsung ARM device specific exception handlers
except for IRQ and FIQ, and exception handler installation function.

ELECTRONICS

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

MEMORY LAYOUT

The memory map for the S3C44B0X Evaluation Board BSP is shown in the following table:

Memory Type Address Range Usage

ROM 0x0000000 Booting ROM area
OxOQOfffff

DRAM 0xc000000 Data area for pPROBE+ boot ROM.
OxcO2ffff

DRAM 0xc030000 Available for downloaded image of pSOSystem and application
Oxc7fefff when using pROBE+ boot ROM.

DRAM *0xc000000 Available for downloaded image of pSOSystem and application
*Oxc7fefff if using the Samsung standard on-board boot ROM rather than

the pROBE+ boot ROM.

DRAM 0xc7ff000 Simulated NVRAM area
Oxc7ffeff

DRAM 0xc7fff00 Exception vector table
Oxc7fffff

When using the Samsung standard on-board boot ROM to download the pSOSystem application into DRAM,
application should be built with start execution address 0xc000000 since this boot ROM is going to jump to there
after program downloaded. If using pPROBE+ boot ROM, you can modify the file bsps\41100\bsp.mk to reclaim
the memory option so that a part of DRAM area can be used by pROBE+ boot ROM.

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER

pSOSYSTEM BOARD SUPPORT PACKAGE

DETAILS IN S3C44B0OX BSP

1. Hardware Initialization

The hardware initialization is the first step in the pSOSystem startup sequence, and the related code is contained

in the files init.s and board.c. After hardware initialization is complete, the init.s will pass control to sysinit.c.

While the files init.s and board.c initialize the hardware, the sysinit.c file initializes the system software, such as
pSOSystem components, drivers and some miscellaneous software functions. The pSOSystem startup sequence

is shown below.

Main() (in begin.s)

The startup code for a
pSOSystem application.
It just performs a jump
to branch to Hdwinit()
entry point in the BSP

Hdwilnit() (in init.s)

v

SyslInit() (in sysinit.s)

v

System memory
configuration if necessary

Setup SysVars structure to
initialize the system variables.

A

A

Call Hdwlnit() Turn off all interrupts Initalize the polled serial driver
: to enable messages out.
] A

Set SVC mode : E
Call Dialog() to run sartup
Y dialot fo variable setting.
Call SyslnitVars() to initialize \
the C run time environment -
Call AdjustSysVars() to
X adjust system variables.
Setup stack for each \
operation mode
Call BuilConfigTables() to
Y set up configuration tables for
Call InitBoard() to initialize configured componets
H/W which can be done in C
A
A Call PROBE_INIT() or
Call InstallVector() to install PSOS_INIT() to pass control
all the exception handlers. to pPROBE+ or pSOS+ kernel,
or to application directly.
A
Call Syslnit() to configuare
and start pSOSystem v
Application
Root()
Figure 5-2. pSOSystem Startup Sequence
ELECTRONICS 5-9

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

The main files and functions related to hardware initialization include:

— init.s, this file contains routines to initialize the CPU and hardware system.

RomHdwInit

Hdwlnit

Performs all necessary hardware initialization needed by the board, such as system
memory configuration, stack setup for various CPU operating modes, exception
handlers installation, and various peripherals initialization. It is used for creating
pSOSystem boot ROM.

Performs necessary hardware initialization needed for creating RAM image.

— board.c, this file contains some routines used to initialize the board specific hardware and provide hardware

specific information.

InitBoard

RamSize

BspRamBase

BspCpuType
SyslinitFail

Initializes the board specific hardware. It is called from the init.s to perform board
initialization that can be done in C.

Returns the size of the on-board RAM in byes. This function is used by any function
that needs to know how much contiguous RAM supported on board. It is call by
system software configuration files such as sysinit.c, psoscfg.c and so on.

Returns the base address of a contiguous block of RAM which can be used by
pSOSystem.

Returns the type of ARM CPU in use on the board.
Reports a system initialization failure.

— nvarm.c, this file contains routines to access the simulated NVRAM area on S3C44B0X Evaluation Board. It
is used for system configuration parameter storing.

StorageRead
StorageWrite

Read data from the simulated NVRAM area.
Write data to the simulated NVRAM area.

5-10

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

2. Exception Handlers and Interrupt Process Mechanism

For the eight exceptions of ARM CPU, the corresponding exception handler routines are included in two source
files. One is the file except.s which is used to handle the interrupt exceptions and contains the IRQ and FIQ
handler routines, and another is the vectors.s which locates in the directory bsps\devices\arm\ and contains the
functions to set up and maintain exception vector table, the routines to allow dynamic assignment of exception
handler vectors, and the handler routines for other six kinds of exceptions.

The interrupt process mechanism implemented in S3C44B0X Evaluation Board BSP is illustrated below.

Exception Vector Table IRQWrapper()
0x 00 Reset v
@ 0 x 04 Undefined (T rp——)
0x08 Swi *
0x0c_Prefetch Abort Push the status of interrupted
0x 10 Data Abort task to pSOS (SVC) stack.
> 0x 14 Reserved (
0x 18 IRQ v
0x1lc FIQ pSOS+ strartup ? £S v
N pSOS_lenter()
0 - Increase interrupt counter
- Set internal interrupt flag
MainIntHandler
0 (Call interrupt handler to
v dispatch to a particular
L interrupt service routine pSOS+

Check interrupt pending
bit and dispatch to ISR

ISR Yes

pPSOS+ strartup ?

v
pSOS_Ireturn()
- Decrease interrupt counter
- Clear internal interrupt flag

\ 4
(Return)

No

(Scheduler)

Pop the status of interrupted
code from SVC stack, and
return to interrupted code.

\ 4
Interrupted
Code

Figure 5-3. S3C44B0X Evaluation Board BSP

ELECTRONICS 5-11

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

The main files and functions related to exception process include:

— except.s, this file contains code for IRQ an FIQ handling.

IRQWrapper
FIQWrapper

Handles dispatching of IRQ requests.
Handles dispatching of FIQ requests.

— vectors.s, this file contains codes for initializing and handling six ARM exceptions except for IRQ and FIQ.
This includes setting up and maintaining a vector table, wrapper code for exception handlers, and routines to
allow dynamic assignment of vectors.

EXCEPT_COMMON
RESERVEDWrapper
ABORTWrapper
PREFETCHWrapper
UNDEFWTrapper
SWIWrapper
ROM_FIQ

ROM_IRQ

ROM_RESERVED

ROM_DATAABORT

ROM_PREFETCH

ROM_UNDEFINED

ROM_SWI

InstallVector

Common exception wrapper code.
RESV exception wrapper code.

Data access abort wrapper code.
Instruction pre-fetch abort wrapper code.
Undefined instruction wrapper code.
SWI wrapper code.

Passes control to FIQ handler installed in soft vector table when FIQ exception
occurs. It is only used by boot ROM.

Passes control to IRQ handler installed in soft vector table when IRQ exception
occurs. Itis only used by boot ROM.

Passes control to RESV handler installed in soft vector table when RESV exception
occurs. Itis only used by boot ROM.

Passes control to data abort handler installed in soft vector table when data access
abort occurs. It is only used by boot ROM.

Passes control to pre-fetch handler installed in soft vector table when instruction
pre-fetch abort occurs. It is only used by boot ROM.

Passes control to undefined handler installed in soft vector table when undefined
instruction appears. It is only used by boot ROM.

Passes control to SWI handler installed in soft vector table when SWI exception
occurs. Itis only used by boot ROM.

Installs a default exception handler into soft vector table.

— intrhndl.c, this file contains routines for interrupt handling.

InitHandlerTable
SysSetinterrupt
MainIntHandler

Initializes a table of pointers to interrupt handlers (ISRs).
Sets an entry in the interrupt handler table to point to a particular handler.
Dispatches control to correct interrupt handler for a particular interrupt.

5-12

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

3. Hardware-Specific Device Drivers

Two lower-level device drivers are implemented in S3C44B0X BSP, i.e. the tick timer driver and serial port
driver.

The pSOSystem tick timer is derived by Timer 3 in S3C44B0X chip. The code to program the timer is in
bsps\41100\src\timer.c. You may use other timers in S3C44B0X for your own use.

pSOSystem can use both serial ports on the S3C44B0X Evaluation Board. The serial port 1 is mapped to
pSOSystem channel 1 and the serial port 2 to pSOSystem channel 2. Two kinds of serial drivers are provided in
S3C44B0X Evaluation Board BSP. The source code for DISI driver is found in bsps\41100\src\disi41100.c, and
the non-DISI compliant serial driver in bsps\41100\src\serial.c.

Tick Timer

Tick timer is used by pSOS+ kernel. It generates clock tick and announces passage of time to the pSOS+ kernel
for task schedule and management. On S3C44B0X Evaluation Board, we use the S3C44B0X on-chip timer
(Timer 3) as the system tick timer. The timer control functions are contained in the file timer.c.

In the file timer.c, two main functions are provided:

Rtclnit Initialize the tick timer controller to provide periodic interrupts.

Delay100ms Delay execution for approximately 100ms. This function is called only during system
startup time, and used by startup dialog code to give user a chance to do serial input
(for example, to change some system configuration parameters). Here, we use a
simple delay routine to simulate this function.

BSP Serial Driver
The BSP serial driver provides two lower-level serial interfaces for upper-level serial driver:

1. led serial interface:

It is used by upper-level hardware-independent serial driver (pollio.c) to print output and prompt for input during
system booting, or used by pROBE+ debugger console driver for debugging message display or command input.
The pollio.c module contains two functions, Prompt and Print, which are used in place of two standard ANSI
functions, scanf and printf, during system startup, that is, at the time before pREPC+ is initialized.

2. Inrrupt-driven serial interface:

It is used by upper-level hardware-independent serial driver (console.c or diti.c) for use with pSOS+ and
pREPC+. The interrupt-driven interface provides a high-efficiency serial channel access for application program.

Two kinds of serial drivers are implemented in S3C44B0X Evaluation Board BSP, that is, the non-DISI compliant
serial driver and DISI driver, in which DISI is a new protocol used by pSOSystem Terminal, SLIP, PPP and
pROBE+ upper level drivers to interface with the chip dependent lower level driver. You can use either of them
for the pSOSystem application, but not in simultaneous.

ELECTRONICS 5-13

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

To determine which serial driver to be included in the BSP, you should define BSP_NEW_SERIAL parameter in
bsps\41100\bsp.h file, and select related driver objects in bsps\41100\src\ makefile file.

For example, if you intend to use the DISI driver for serial channels, you should define BSP_NEW_SERIAL as
YES in bsp.h file, and include DISI protocol related objects in makefile file, as below:

<< bsps\41100\bsp.h >>

YaYaYa

I* */

I* SERIAL CHANNELS */
* *
#define BSP_SERIAL 2

#define BSP_NEW_SERIAL YES

#define BSP_SERIAL_MINBAUD 300
#define BSP_SERIAL_MAXBAUD 115200

YaYaYa
<< bsps\41100\src\makefile >>

YaYaYa

H* *
#* Modules compiled into this BSP

H* *

SRC_OBJ1 = $(OBJ_DIR)init.0 $(OBJ_DIR)board.o $(OBJ_DIR)intrhndl.o

SRC_OBJ2 = $(OBJ_DIR)except.o $(OBJ_DIR)vectors.o $(OBJ_DIR)cpu.o

SRC_OBJ3 = $(OBJ_DIR)nvram.o $(OBJ_DIR)bspcfg.o

SRC_OBJ4 = $(OBJ_DIR)drv_cutl.o $(OBJ_DIR)timer.o

#SRC_OBJ5 = $(OBJ_DIR)console.o $(OBJ_DIR)serial.o

SRC_OBJ5 = $(OBJ_DIR)disi41100.0 $(OBJ_DIR)dipi.o0 $(OBJ_DIR)diti.0 $(OBJ_DIR)gsblk.o

YaYaYa

Otherwise, you should define BSP_NEW_SERIAL as NO in bsp.h file, and include objects console.o and serial.o
in makefile file.

5-14 ELECTRONICS

S3C44B0OX RISC MICR

OCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

The non-DISI compliant serial driver interface is shown below.

Application
I Program I

System

Startu PROBE+
: P Console pPSOS+ pREPC+
Dialog

A A A A
- CnslInit()
- Print() - SerialDriver() - CnslRead() Upper-level
- Prompt() - CnslWrite() Serial
(pollio.c) (probecfg.c) - Cnslentrl() Driver
(console.c)
y 4 4
A A A
Polled I/F | | Interrupt-driven I/F

Lower-level Serial Driver
(Serial.c)

Figure 5-4. Non-DISI Compliant Serial Driver Interface

ELECTRONICS

5-15

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

All lower-level serial routines for non-DISI compliant serial driver interface are contained in the file serial.c, which
include:

— Startup initialization routine for all serial channels :

SerialSetup Called during startup before any other serial driver calls.

— Polled serial interface routines for pPROBE+ debugger console and system startup dialog:

SerialPollInit Initialize the polled serial channels.
SerialPollConsts Check the status of the pPROBE+ console channel.
SerialPollConin Get a character from the pROBE+ console.
SerialPollConout Send a character to the pPROBE+ console.

— Polled serial interface routines for pPROBE+ debugger communication with host:

SerialPollHststs Check the status of the pROBE+ host channel.
SerialPollHstin Get a character from the pROBE+ host channel.
SerialPollHstout Send a character to the pPROBE+ host channel.

— Serial channel operation-mode switching routines for the case of application program and pROBE+ sharing
one serial channel:

SerialPollOn Called by pROBE+ to turn off the interrupt enables when taking control from the
application.

SerialPollOff Called by pROBE+ to restore the interrupt status when relinquishing control to
application.

— Interrupt-driven serial interface routines for console.c:

SeriallntBaud Change the baud rate of interrupt-driven serial channel.
Seriallntinit Initialize the interrupt-driven serial channel.
SeriallntRxioff Turn off receive interrupt.

SeriallntRxion Turn on receive interrupt.

SeriallntTxioff Turn off transmit interrupt.

SeriallntTxion Turn on transmit interrupt.

SeriallntRead Read a character from serial channel.

SeriallntWrite Write a character to serial channel.

5-16 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

The DISI interface is shown below.

Application
I Program I

e .
Dialog;) Console pSOS+ PREPC+
a
A A
A 4 h 4 A 4 \ 4
- Print() - SerialDriver() - Cnslinit()
- Prompt()
(pollio.c) (probecfg.c) - CnslRead()
y y Upper-level
- CnslWrite() Serial
A A .
Driver
ProbeConsts() ProbeConin() ProbeConout() - Cnslentrl()
ProbeEntry() ProbeExit()
(dipi.c) (diti.c)
y 4 4
A A A
| Polled I/F | | Interrupt-driven I/F |
Seriallnit() SerialOpen() SerialSend() Serialloctl() SerialClose()
DISI Lower-level Serial Driver
(disi41100.c)

Figure 5-5. DISI Interface

The device-dependent lower-level serial routines for DISI interface are contained in the file disi41100.c, which
include:

Seriallnit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

Serialloctl Perform a control operation on the channel.
SerialClose Close the channel.

ELECTRONICS 5-17

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

HARDWARE JUMPER SETTINGS

Switch and jumper settings on the S3C44B0X Evaluation board are described in additional documentation. There
are no extra requirements of pSOSystem other than removing the Jumper (JP1) when using the Embedded ICE
for debugging.

BUILD THE BSP LIBRARY

The S3C44B0X Evaluation Board BSP library is supplied with the file bsps\41100\libbsp.32b. If necessary to re-
build the BSP library, two methods can be used. One is to create a BSP library generation project by the Project
Manager in ARM SDT, which needs to contain all the BSP source files and header files for S3C44B0X Evaluation
Board, and build the library in the ARM SDT environment.

Alternatively, you can use the psosmake utility to build it. To do it, you should modify the ‘envarm.bat' to reflect
the BSP as '41100' and 'BSP_TYPE' as '32b’ first, and then type the command lines in DOS window as below.

— cd %PSS_ROOT%\bsps\41100\src
— psosmake clean
— psosmake

The psosmake command automatically picks up the makefile in current directory to complete the required BSP
library building operations.

5-18 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

APPLICATION EXAMPLES

Several application examples are provided along with S3C44B0X BSP to demonstrate the use of pSOSystem
and its components. They are contained in the applications directory, %PSS ROOT%\apps. Each application is
located in its own sub-directory, and contains a makefile to be used to build the application and causes it to be
linked with the correct libraries.

The following table summarizes these examples.

Sub-directory Description

hello Simple one-task application that displays the message 2Hello, world.2 It is a starting point
to get an application up and running on target board.

proberom This application can be used to build pSOSystem Boot ROM for non-Ethernet systems. It
is also an example of how to use a system startup dialog.

demo A multitasking application in which several tasks compete for various resources.

Each sample application includes a sys_conf.h configuration file which has been properly set to match
S3C44B0X Evaluation Board. You can also use these settings as a reference for other applications.
HELLO

The Hello sample is a simple program that displays a message. The application consists of a single task named
ROOT that prints out a short message to the target® serial port and then suspends itself.

The output for this application is the familiar:

Hello, world

The root.c file contains the macro OUTPUT_TO_DEBUGGER. Edit the root.c file to set this macro to 0 in order
to view output on the serial port (pPROBE console). Setting it to 1 will cause the program to send the output
message through the pROBE+ debugger to the standard 1/0 window of your pRISM+ source-level debugger.

PROBEROM

The proberom application is used to build pSOSystem Boot ROM for S3C44B0X Evaluation Board. This is only
sample application that does not require the pSOS+ kernel. The only component included is the pROBE+
debugger. When used to boot the system, this code initializes the hardware and executes the pROBE+ debugger,
or allows a remote connection via the console port to a remote debugger.

A system startup dialog is also enabled in this application, which gives out some system configuration information
during system initialization and allows you to modify the configuration parameters to re-configure system before
any application runs.

This application is to be described in the section Build A pSOSystem Boot ROM later.

ELECTRONICS 5-19

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

DEMO APPLICATION

The demo application consists of a number of tasks which execute under the control of pSOS+ scheduler. In
addition to multitasking execution, task communication and synchronization are also demonstrated in this
example.

The demo program starts from the ROOT task. The ROOT creates six tasks, named as Taskl ~ Task6, and other
system objects needed, such as semaphore (TSEM) and message queue (TQUE). After the objects are created,
the ROOT suspends itself. The remaining tasks will then run.

void root(void)
{
void *dummy;
U32 args[4]={0};
U32 ioretval, iopb[4];

/* */
/* Initial UART driver */
/* */

de_init((DEV_SERIAL), iopb, &ioretval, &dummy);
UART_out("\n\rHello, welcome to use S3C44B0X Demo Board \n\r");

I* */
/* Generate task, message queue and semaphore */
I* */

t_create("TSK1", 120, 1024, 1024, 0, &task_id1);
t_create("TSK2", 105, 1024, 1024, 0, &task_id2);
t_create("TSK3", 105, 1024, 1024, 0, &task_id3);
t_create("TSK4", 110, 1024, 1024, 0, &task_id4);
t_create("TSK5", 110, 1024, 1024, 0, &task_id5);
t_create("TSK6", 107, 1024, 1024, 0, &task_id6);

sm_create("TSEM", 1, SM_FIFO, &sm_id);

g_create("TQUE", 20, Q_FIFO|Q_LIMIT, &queue_id);

/* */

[* Start tasks */
/* */

t_start(task_id1, T_NOPREEMPT|T_TSLICE|T_USER, Task1, args);

t_start(task_id2, T_PREEMPT|T_TSLICE|T_USER, Task2, args);
t_start(task_id3, T_PREEMPT|T_TSLICE|T_USER, Task3, args);

t_start(task_id4, T_PREEMPT|T_TSLICE|T_USER, Task4, args);
t_start(task_id5, T_PREEMPT|T_TSLICE|T_USER, Task5, args);

t_start(task_id6, T_NOPREEMPT|T_TSLICE|T_USER, Task6, args);

t_suspend(OL);
}

5-20 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

Taskl is the first task to execute among the six created tasks, because it is the highest priority task in them
(priority 120). Task4 executes after task 1 suspends (priority 110), and the other tasks execute in the order of
Task5b (priority 110), Task6 (priority 107), Task2 (priority 105) and Task3 (priority 105) depending on their
priorities. The reason for why Task4 executes before Task5 even though they both have the same priority is that
Task4 was created and started first in ROOT.

Like all of the tasks in this example, Taskl does some preliminary initialization and then starts execution of an
endless loop. Processing inside of Taskl endless loop includes calling a sleep function and sending event to
Task6. Because of tm_wkafter(1000) call, Task1® loop is executed once every 1000 timer ticks. Although Task6
is made ready on each event sending, it does not execute until Taskl executes sleep call again because the
Task6 has a lower priority than Task1.

void Task1()

{
U32 status = 0;

char ch;

UART _out("\n\rTask 1 starts \n\r");
Task_Time = 0;

while(1) {

/I Sleep 1000 timer ticks
tm_wkafter(1000);

/I Send an event to task 6
status = ev_send(task_id6, 1);

if(status == SUCCESS)
Task_Time++;
else
UART_out("\n\r Fail to send event in task 1 \n\r");

ELECTRONICS 5-21

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

Task2 continually sends a message to queue. If Task3 is already waiting at the queue, the message is passed to

it, and the Task3 is then unblocked and made ready to run.

In another side, Task3 requests message from queue. When the queue becomes empty, Task3 is blocked, until

the next message comes.

void Task2()

{
U32 status = 0;
U32 msg_sl[4];

UART _out("\n\rTask 2 starts \n\r");

Task_2_messages_sent = 0;
msg_s[0] = Task_2_messages_sent;

while(1) {

/I Send message to queue, which task 3 reads from
status = g_send(queue_id, msg_s);

if(status == SUCCESS)
msg_s[0] = ++Task_2_messages_sent;
else if (status != ERR_QFULL)
UART_out("\n\r Fail to send message in task 2 \n\r");

}

void Task3()

{
U32 status = 0;
U32 msg_r[4];

UART _out("\n\rTask 3 starts \n\r");
Task _3_messages_received = 0;
while(1) {

/I Receive message from queue, which task 2 writes to
status = g_receive(queue_id, Q_WAIT, 0, msg_r);

if(status == SUCCESS)
Task _3_messages_received++;
else
UART_out("\n\r Fail to send message in task 3"\n\r");

5-22

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER

pSOSYSTEM BOARD SUPPORT PACKAGE

Task4 and Task5 execute the similar loop. Both of them compete for an identical semaphore. Once the
semaphore is obtained by one task, this task sleeps for 40 timer ticks before releasing the semaphore again. This
action make the another task attempting to obtain the same semaphore to be blocked, until the semaphore is

released.

void Task4()

U32 status = 0;

UART _out("\n\rTask 4 starts \n\r");

Task_4_semaphore_obtained = 0;

while(1) {
/I Acquire a semaphore token
status = sm_p(sm_id, SM_WAIT, 0);
if(status == SUCCESS) {

Task_4_semaphore_obtained++;

tm_wkafter(40);
sm_v(sm_id);

void Task5()

U32 status = 0;

UART _out("\n\rTask 5 starts \n\r");

Task_5_semaphore_obtained = 0;

while(1) {
/I Acquire a semaphore token
status = sm_p(sm_id, SM_WAIT, 0);
if(status == SUCCESS) {

Task_5_semaphore_obtained++;

tm_wkafter(40);
sm_v(sm_id);

ELECTRONICS

5-23

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

Task6 executes a loop waiting for at least one event flag to be set. The event flag is set by Taskl as mentioned
before. The Task6 executes at the same frequency as Taskl, and gives a status report on program execution
each time when it executes.

void Task6()
{

U32 status =0, events_r;

UART _out("\n\rTask 6 starts \n\r");
Task_6_event_received = 0;

while(1) {

/I Send an event to task 6
status = ev_receive((U32)0xffffffff, EV_WAIT|EV_ANY, 0, &events_r);

if(status == SUCCESS)
{

Task_6_event_received++;

/I Report status

printf("\n\r[Status Report %d]", Task_6_event_received);

printf("\n\r Task 1 sent events: %d", Task_Time);

printf("\n\r Task 2 sent messages: %d", Task_2_messages_sent);

printf("\n\r Task 3 received messages: %d", Task_3_messages_received);
printf("\n\r Task 4 obtained semaphores: %d", Task_4_semaphore_obtained);
printf("\n\r Task 5 obtained semaphores: %d", Task_5_semaphore_obtained);
printf("\n\r Task 6 received events: %d\n\r", Task_6_event_received);

} else
UART_out("\n\r Fail to receive event in task 6 \n\r");

The status report gives message similar to that shown below. The information includes that how many events and
messages have been sent/received, how many semaphores have been obtained by Task4 and Task5
respectively, and so on.

[Status Report 1]
Task 1 sent events: 1
Task 2 sent messages: 188
Task 3 received messages: 167
Task 4 obtained semaphores: 13
Task 5 obtained semaphores: 13
Task 6 received events: 1

5-24 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

BUILD A pSOSystem BOOT ROM

A pre-built pSOSystem boot ROM image for the S3C44B0X Evaluation Board, proberom.bin, is supplied along
with the BSP, which can be found in directory apps\proberom. It is built using a modified version of the standard
code in proberom application. This boot ROM image only includes the pROBE+ component, without the pSOS+
kernel. When it is executed from ROM, it initializes the platform and runs the pROBE+ debugger in stand-along
mode or allows for connection from a remote program such as the pRISM+ Manager or a source-level debugger
via a serial port.

The ROM image includes dialog code, and is set to boot into pPROBE+ and wait for the host debugger via a serial
connection when it starts up. The related settings can be found in the sys_conf.h file.

* BASIC PARAMETERS */

#define SC_SD_PARAMETERS STORAGE

#define SC_STARTUP_DIALOG YES /l Enable the dialog code

#define SC_BOOT_ROM YES // Build for Boot ROM

#define SD_STARTUP_DELAY 20

#define SE_DEBUG_MODE DBG_XS // Boot into pROBE+ and wait for the
/I host debugger via a serial connection

YaYaYa

[FrHkiikk ik ko koo koo ook ook /

* SERIAL CHANNEL CONFIGURATION */

[Frkiikk ki ki koo ook ook ook /

#define SD_DEF_BAUD 115200

#define SC_APP_CONSOLE 2

#define SC_PROBE_CONSOLE 1

#define SC_RBUG_PORT 1

YaYaYa

You can re-build the pSOSytem boot ROM image to be your own if necessary. To do it, you can modify code in
apps\proberom directory as you want, and use psosmake utility to build your own boot ROM image in a DOS
window as below.

— cd %PSS_ROOT%\apps\proberom
— psosmake clean
— psosmake rom.bin

The file rom.bin can then be programmed into ROM devices and inserted in the proper sockets on the board.

For more information, please refer to pSOSystem Getting Started and pSOSystem Advanced Topics.

ELECTRONICS 5-25

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

RUN DEMO ON S3C44B0X EVALUATION BOARD

The demo program can be downloaded and run on the S3C44B0X evaluation board in two ways. One is that
using the on-boad Boot ROM shipped with the board to download the demo image and run it; another way is to
use the pROBE Boot ROM to do it. Though no difference to execute the demo program in standalone mode, the
two Boot ROMs accept different format of image when downloading, which to be described later.

SETUP DEMO ENVIRONMENT

Before downloading and running the demo program, you should connect the Evaluation Board with the host PC
via an RS-232 connection. By default, the on-board boot ROM and pROBE+ boot ROM use the serial portl (P1)
to give system startup message. You can use the same channel to download the demo program image.

Use a serial cable to connect the on-board serial portl to one of PC COM ports, and run an ASCII terminal
emulation program, for example the Hyper Terminal, on the host. Set the terminal characteristics to the following:
— 115200 baud

— 8-bit data

— stop bit

— no parity

Then, activate a MS-DOS window to prepare for image building.

DOWNLOAD DEMO APPLICATION WITH ON-BOARD BOOT ROM

With SAMSUNG standard on-board boot ROM (without pROBE+), you can download the demo program via on-
board serial port 1.

1. Build the Image

The on-board ROM receives the download image and allocates it in DRAM from the address 0xc000000, and
after download is over ROM program automatically jump to there to start executing the downloaded image.
Therefore, you need to build your RAM image at address 0xc000000. By default, we kept this address in
bsps\41100\bsp.mk file for RAM image building like below:

+H *
Common rules for this BSP
#H. *

ks

#H.
if using the on-board system boot rom
#H.

RAMOPTS = -Base 0xc000000

H
if using the pSOSystem boot rom
H

#RAMOPTS = -Base 0xc030000

VaYaYs

5-26 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

The on-board boot ROM accepts the AXF format image. You should create an RAM image in AXF format for
download use as below:

— cd %PSS ROOT%\apps\demo
— psosmake clean

— psosmake ram.axf

2. Start the Boot ROM

Power up the Evaluation Board, the Boot ROM performs the system initialization and memory test, and the
terminal displays the system startup message similar to that shown below.

44BMON Ver 0.01 for S3C44B0X May, 2000
COM:115.2kbps,8Bit,NP,UARTO <n+6>(4)+(n)+CS(2)
DNADDR:c000000 ISR_ADDR:c7fff00 SYSCFG:e
E-mail:kwtark@sec.samsung.com

Memory Test(c000000h-c7f0000h):0.K.

3. Download the Image

After memory test is complete, you can give the following command in DOS window to download the image:

— wkcom?2 ram.axf /1 /d:1

'‘wkcom?2' is a tool which writes to the serial port of the PC. You may need to give proper PC COM port number
setting when using this command. Wait till the file gets downloaded, after downloading is over the boot program
jumps to the location 0xc000000 and runs the demo program.

When demo program starts running, it passes the control to pROBE debugger first because the pROBE+
component is included in the demo image, and gives a message followed by a pPROBE prompt as following:

Now, Downloading... [FILESIZE:1103762(1103762)]

Download O.K.

pROBE+/ARM/BE PS V3.1.0
pROBE+/ARM/BE CE V3.1.0
pROBE+/ARM/BE RD V3.1.0
pROBE+/ARM/BE QS V3.1.0
pROBE+/ARM/BE DI V3.1.0

pROBE+>

At this point the Demo sample application can be executed.

ELECTRONICS 5-27

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

DOWNLOAD DEMO APPLICATION WITH PROBE BOOT ROM

You can also download and run the demo program with the pSOSystem boot ROM. To do it, you should burn the
pROBE+ Boot ROM image (the proberom.bin we supplied) into ROM devices and use the new ROMs to replace
the old ones in the sockets U8 and U9 on the board.

1. Build the Image

When using the pROBE Boot ROM, the DRAM area from 0xc000000 to 0xc030000 is reserved for data use of
Boot ROM. The download image should be allocated in DRAM after the address 0xc030000. Therefore, you need
to modify the base address of RAM image in bsps\41100\bsp.mk file for RAM image building. We have supplied
an RAM Base option for this case in the bsp.mk file. You only need to remark the RAMOPTS for on-board Boot
ROM, and validate the RAMOPTS for pSOSystem Boot ROM as below:

#H. *
Common rules for this BSP

+ *
#H.

if using the on-board system boot rom
#H.

#RAMOPTS -Base 0xc000000

H
if using the pSOSystem boot rom
H

RAMOPTS = -Base 0xc030000

VaYaYs

Differ from the original on-board Boot ROM, the pROBE+ Boot ROM only accepts the standard Motorola S-
record file, that is the HEX format, in standalone mode. You should create an RAM image in HEX format for it.

— cd %PSS ROOT%\apps\demo
— psosmake clean

— psosmake ram.hex

5-28 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

2. Start the pROBE ROM
When you power up or reset the board, the terminal displays a pSOSystem startup message as below:

pSOSystem V2.2.3 for ARM/BE
Copyright (c) 1991 - 1998, Integrated Systems, Inc.

START-UP MODE:

Boot into pROBE+ and wait for host debugger via a serial connection
HARDWARE PARAMETERS:

Serial channels will use a baud rate of 115200

After board is reset, start-up code will wait 20 seconds

To change any of this, press any key within 20 seconds

The message above shows the pSOSystem Boot ROM program configuration parameters. After this message
appears, the Boot ROM program waits about 20 seconds to allow you to change the configuration parameters.

The pROBE+ debugger can operate in either standalone or remote mode. In standalone mode, the pPROBE+
accepts and responds to user commands through a console port, which is normally an RS-232 line connected to
an ASCII terminal or a terminal emulator (here, we use the HyperTerminal running in PC as a terminal emulator).
In this mode, it functions as an enhanced assembly-level debugger. Commands, similar to those provided by
other firmware monitors, are provided to download image, display/modify processor registers and memory, set
breakpoints and control system execution.

In the remote mode, the pROBE+ debugger performs the low-level operations necessary to support a source-
level debugger running on host PC and communicates with the source level debugger over an RS-232
connection.

By default, we set the Boot ROM pROBE+ debugger as remote mode when it starts up. If you dong press any
key, the ROM pROBE+ debugger will enter remote mode directly after 20 seconds and give message like:

Updating non-volatile storage. This may take a while...Done
pROBE+ is now ready to talk to the host debugger over this serial channel...

Once debugger enters the remote debugging state, it waits for communication with the source level debugger
running on host PC, and does not accept commands from the HyperTerminal any more.

However, you can change it to standalone mode by modifying the configuration. To do it, press any key within 20
seconds after the startup message appears, and do changes to enter standalone mode according to the prompt
information as follows.

ELECTRONICS 5-29

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

M)odify any of this or (C)ontinue? [M]

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
1. pPROBE+ stand-alone mode
2. pROBE+ waiting for host debugger via serial connection

Which one do you want? [2] 1

HARDWARE PARAMETERS:

Baud rate for serial channels [115200]

How long (in seconds) should CPU delay before starting up? [20]

START-UP MODE:
Boot into pROBE+ stand-alone mode
HARDWARE PARAMETERS:
Serial channels will use a baud rate of 115200
After board is reset, start-up code will wait 20 seconds

(M)odify any of this or (C)ontinue? [M] ¢
Updating non-volatile storage. This may take a while...Done

pROBE+/ARM/BE PS V3.1.0
pROBE+/ARM/BE CE V3.1.0
pROBE+/ARM/BE RD V3.1.0
pROBE+/ARM/BE QS V3.1.0
pROBE+/ARM/BE DI V3.1.0

pROBE+>

After the pROBE+ prompt appears as shown above, you can use the ROM pROBE+ debugger to download the

demo program image.

5-30

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

3. Download the Image

To download the executable demo image, first type in the pROBE+ dI (download) command in HyperTerminal.
The pROBE+ then waits for you to download ram.hex.

So give the following command in DOS window to download the image:

— wkcom2 ram.hex /1 /g /d:1

Note that you may need to give proper PC COM port number setting depending on your serial connection. In the
above command, we assume that you are using PC COM1 for image downloading. After downloading is over,
the debugger gives a message to show the total records it received, and a prompt again. The debugger does not
pass control to the downloaded program automatically. To start the executable image, you should input the
pROBE+ go command with the image start address which is defined in the bsp.mk file as mentioned before.
This process is shown below:

pROBE+> dI

12837 records read

pROBE+>

pROBE+> go c030000

After downloaded image starts execution, a message similar to the following appears:

pROBE+/ARM/BE PS V3.1.0
pROBE+/ARM/BE CE V3.1.0
pROBE+/ARM/BE RD V3.1.0
pROBE+/ARM/BE QS V3.1.0
pROBE+/ARM/BE DI V3.1.0

pROBE+>

At this point, the demo application can run.

Note that although this message may look similar to the one that appeared when ROM debugger entered the
standalone mode, the message comes from the downloaded pROBE+ debugger included in RAM image rather
than the ROM pROBE+ debugger. Actually, the ROM pROBE+ debugger is no longer executing and can regain
control only if you reset the board.

The downloaded pROBE debugger is set to run in standalone mode.

ELECTRONICS 5-31

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

EXECUTE THE DEMO APPLICATION

Once the downloaded RAM pROBE+ debugger gets started (that is, the pROBE+ prompt appears), you can use it
to run the demo application and monitor the program execution. Here, we only intend to show you some basic
pROBE+ debugging operations on demo application, for more information on the pROBE+ debugger operations,
please refer to pPROBE+ User® Guide.

1. Initialize pSOS+ Kernel

The pROBE+ gs (go system) command starts the pSOS+ kernel. It passes control to the pSOS+ startup entry
point and sets a pSOS+ Initialized Break. This break causes execution to halt immediately prior to execution of
the first instruction in the ROOT task. The gs command should be carried out before running any application with
pSOS+ kernel embedded.

Enter the gs command from the pROBE+ prompt, the following message appears.

pROBE+> gs

Kernel Event Break Running: 'ROOT' -#00020000

pSOS Initialized Event

CPSR = 00000013 (nzcv if ARM SVC32) SP =0C7FDBFO LR =0C03AEG0

RO =00000000 R1 =00000000 R2 =00000000 R3 =00000000 R4 =00000000

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C0O6A038
R10=00000000 R11=00000000 R12=00000000 USP=0C7FCCO00 ULR=00000000
SSP=0C7FDBFO0 SLR=0C03AE60 SPSR_svc=40000013

PC =0C031F80-0C031F80: E92D4000 STMDB sp!{Ir}

pROBE+>

The pSOS+ kernel is now initialized, and the execution of the ROOT task is pending.

2. Set Breakpoints
The pROBE+ debugger supports the following types of breakpoints:

— Instruction Breakpoints

— pSOS+ Service Breakpoints
— Dispatch Breakpoints

— Timer Breakpoints

— Memory Access Breakpoints

Here, we set a timer breakpoint which intends to stop the application execution after 500 clock ticks have
elapsed.

5-32 ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

pROBE+> db ti 500

TIMER_BREAK TICKS TICKS_LEFT
00000500 00000500

pROBE+>

3. Start or Resume Execution

With the go command, you can start execution of demo application and resume execution after the timer break
occurs.

PROBE+>go

Hello, welcome to use S3C44B0X Demo Board !

Task 1 starts

Task 4 starts

Task 5 starts

Task 6 starts

Task 2 starts

Task 3 starts

[Status Report 1]
Task 1 sent events: 1
Task 2 sent messages: 188
Task 3 received messages: 167
Task 4 obtained semaphores: 13

Task 5 obtained semaphores: 13
Task 6 received events: 1

ELECTRONICS 5-33

pSOSYSTEM BOARD SUPPORT PACKAGE

S3C44B0X RISC MICROCONTROLLER

Kernel Event Break Running: 'TSK2' -#000E0000

TIMER Event

CPSR = 60000010 (nZCv if ARM User32) SP =0C7F56B0 LR =0C0322EC
RO =00000035 R1 =00000014 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0COBA06C
R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC
SSP=0C7F5B20

PC =0C062060-0C062060: ESBD8010 LDMIA sp! {r4,pc}

PROBE+> go

[Status Report 2]
Task 1 sent events: 2
Task 2 sent messages: 398
Task 3 received messages: 377
Task 4 obtained semaphores: 26
Task 5 obtained semaphores: 25
Task 6 received events: 2

Kernel Event Break Running: 'TSK2' -#000E0000

TIMER Event

CPSR = 60000013 (nZCv if ARM SVC32) SP =0C7F5ADO0 LR =0C7F5AFO0

R0 =00140000 R1 =0C7F56B8 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0CO6A06C
R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC
SSP=0C7F5AD0 SLR=0C7F5AF0 SPSR_svc=40000093

PC =0CO39FE8-0C0O39FES8: E89400F0 LDMIA r4{r4-r7}

pROBE+>

5-34

ELECTRONICS

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

4. Examine Objects

Using the query commands, you can examine user-created objects such as tasks (qt), message queues (qQq),
semaphores (gs), and other key pSOS+ structures.

PROBE+> qt

Name TID Prio Mode Status Susp? Parameters Ticks

'IDLE' -#00010000 00 2000 Ready

'ROOT" -#00020000 FO 2000 Ready YES

'PMNG' -#00030000 F7 2001 Evwait EVENTS = 00000003 forever
'pINP' -#00040000 F6 2001 Ready YES

'pOUT" -#00050000 F5 2001 Ready YES

'PROC' -#00060000 F4 2001 Ready YES

'TSK1' -#000D0000 78 0003 Wkafter 000001BC
'TSK2' -#000E0O000 69 0002 Running

'TSK3' -#000F0000 69 0002 Ready

'TSK4' -#00100000 6E 0002 Swait SM = 'TSEM' -#00130000 forever
'TSK5' -#00110000 6E 0002 Wkafter 00000006
'TSK6' -#00120000 6B 0003 Evwait EVENTS = FFFFFFFF forever
PROBE+> qq

Name QID TQ Len MQ Len MQ Limit Mgb Qtype Variable

‘RXQ1" -#00090000 00000000 00000000 none Sys-pool FIFO No
‘CNQ1' -#000A0000 00000000 00000000 none Sys-pool FIFO No
'TQUE' -#00140000 00000000 00000014 00000014 Sys-pool FIFO No

Sys-pool total = 00000064
Sys-pool free = 00000050

PROBE+> gs

Name SMID Count TQ Len Qtype

‘RDA1" -#00070000 00000001 00000000 FIFO
'WRA1" -#00080000 00000001 00000000 FIFO
‘TXC1" -#000B0O000 00000000 00000000 FIFO
‘CTL1" -#000C0O000 00000000 00000000 FIFO

pROBE+>

ELECTRONICS 5-35

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5. Display Memory and Registers
To display memory and register contents, use dm and dr commands respectively.

pROBE+> dm c7fff00

OC7FFFO0 0C 03 2A A8 0C 03 2A EC 0C 03 9D 60 0C 03 2A D8 .*.*.....%.
OC7FFF10 0C 03 2A CO OC 03 2A A8 0C 03 2C 28 0C 032C DO .*..%....(....
OC7FFF20 FF FF FF FF FF FF FFFF FFFFFF FF FFFFFFFF o,
OC7FFF30 FF FF FF FF FF FF FFFF FFFFFF FF FFFFFFFF o,

pROBE+> dr

CPSR = 60000013 (nZCv if ARM SVC32) SP =0C7F5ADO0 LR =0C7F5AFO0

R0 =00140000 R1 =0C7F56B8 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0CO6A06C
R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC
SSP=0C7F5AD0 SLR=0C7F5AF0 SPSR_svc=40000093

PC =0CO39FE8-0C0O39FES8: E89400F0 LDMIA r4{r4-r7}

pROBE+>

6. Restart Program

To restart the demo program without downloading again, enter the gs command.

PROBE+> gs

Kernel Event Break Running: 'ROOT' -#00020000

pSOS Initialized Event

CPSR = 00000013 (nzcv if ARM SVC32) SP =0C7FDBFO LR =0C03AEG0

RO =00000000 R1 =00000000 R2 =00000000 R3 =00000000 R4 =00000000

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C0O6A038
R10=00000000 R11=00000000 R12=00000000 USP=0C7FCCO00 ULR=00000000
SSP=0C7FDBFO0 SLR=0C03AE60 SPSR_svc=40000013

PC =0C031F80-0C031F80: E92D4000 STMDB sp!{Ir}

pROBE+>

You can then repeat the previous operations as you want.

5-36 ELECTRONICS

