
S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-1

4 SYSTEM DESIGN

OVERVIEW

The S3C44B0X, SNASUMG's 16/32-bit RISC microcontroller is cost-effective and high performance
microcontroller solution for hand-held device and general application. The integrated on-chip functions of
S3C44B0X are

• 2.5V Static ARN7TDMI CPU Core with 8KB cache (SAMBA bus architecture up to 75MHz)

• External memory controller (FP/EDO/SDRAM Control, Chip Select logic)

• LCD Controller (up to 256 color DSTN) with 1-ch LCD-dedicated DMA

• 2-ch general DMAs / 2-ch peripheral DMAs with external request pins

• 2-ch UART / 1-ch SIO (IRDA1.0, 16-byte FIFO)

• 1-ch multi-master IIC-BUS controller & 1-ch IIS-BUS controller

• 5-ch PWM Timers & 1-ch internal timer

• Watch Dog Timer

• 71-bit general purpose I/O ports / 8-ch External Interrupt Source

• Power control : Normal, Slow, Idle and Stop mode

• 8-ch 10-bit ADC

• RTC with calendar function

• On-chip clock generator with PLL

Therefore, you can use S3C44B0X as amount types of system.

APPLICABLE SYTEM WITH S3C44B0X

If your product need to be networked, the S3C44B0X, SNASUMG's 16/32-bit RISC microcontroller can be reduce
your system cost. There are sample system, it can be designed with S3C44B0X.

• GPS phone

• PDA (Personal Data Assistance)

• Fish Finder

• Portable Game Machine

• Fingerprint Identification System

• TWM (Two Way Messaging) Terminal

• Car Navigation System

• MP3 Player etc.

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-2

MEORY INTERFACE DESIGN

BOOT ROM DESIGN

When system reset, a S3C44B0X access 0x00000000 address. And S3C44B0X should be configure some
system variable after reset. Therefore this special code (BOOT ROM image) should be located on address
0x00000000. A boot ROM can have a various width of data bus, and it is controlled by OM[1:0] pins.

 Table 4-1. Data Bus Width for ROM Bank 0

OM[1:0] Data Bus Width

00 8-bit (byte)

01 16-bit (half-word)

10 32-bit (word)

11 Test Mode

ONE BYTE BOOT ROM DESIGN

A design with one byte boot ROM is shown in Figure 4-1.

OM[1]

OM[0] ADDR[24:0]

DATA[7:0]

nGCS0

nOE

nWE

S3C44B0X

A[21:0]

DATA[7:0]

nCE

nOE

nWE

EEPROM/

Flash

Figure 4-1. One Byte Boot ROM Design

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-3

MAKE AND FUSING ONE BYTE ROM IMAGE

When make one byte ROM image, you can use the binary file that made from compile and link.

HALF-WORD BOOT ROM DESIGN WITH BYTE EEPROM/FLASH

A design with half-word boot ROM with byte EEPROM/Flash is shown in Figure 4-2.

OM[1]

ADDR[24:1]
DATA[15:0]

nGCS0
nOE

nWBE[1:0]

S3C44B0X

ADDR[21:0]
DATA[7:0]

nCE
nOE
nWE

EEPROM/
Flash

ADDR[21:0]
DATA[7:0]

nCE
nOE
nWE

EEPROM/
Flash

DATA[7:0]

nWBE[0]

DATA[15:8]

nWBE[1]

OM[0]

Figure 4-2. The Half-Word Boot ROM Design with Byte EEPROM/Flash

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-4

MAKE AND FUSING HALF-WORD ROM IMAGE WITH BYTE EEPROM/FLASH

When make half-word ROM image, you can split two image files, EVEN and ODD.

. Table 4-2 Relationship ROM Image and Endian

Big Endian Little Endian

DATA[7:0] Odd Even

DATA[15:8] Even Odd

HALF-WORD BOOT ROM DESIGN WITH HALF-WORD EEPROM/FLASH

A design with half-word boot ROM with byte EEPROM/Flash is shown in Figure 4-3.

OM[1]

ADDR[24:1]

DATA[15:0]

nGCS0

nOE

S3C44B0X

A[21:0]

DQ[15:0]

nCE

nOE

nWE

EEPROM/

Flash

OM[0]

nWE

DATA[15:0]

Figure 4-3. The Half-Word Boot ROM Design with Half-Word EEPROM/Flash

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-5

WORD BOOT ROM DESIGN WITH HALF-WORD EEPROM/FLASH

A design with word boot ROM with byte EEPROM/Flash is shown in Figure 4-4.

OM[1]
ADDR[24:2]
DATA[31:0]

nGCS0
nOE

nWBE[3:0]

S3C44B0X

A[21:0]
DQ[7:0]

nCE
nOE

nWE

EEPROM/
Flash

OM[0]
A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
Flash

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
Flash

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
Flash

DATA[31:24]

DATA[23:16]

DATA[15:8]

nWBE[1]

nWBE[2]

nWBE[3]

nWBE[0]

DATA[7:0]

Figure 4-4. The Word Boot ROM Design with Byte EEPROM/Flash

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-6

MAKE AND FUSING WORD ROM IMAGE WITH BYTE EEPROM/FLASH

When you make word ROM image, you can split four image file.

A

B

C

D

E

F

G

H

I

J

K

.

.

.

1

2

3

4

5

6

7

8

9

10

0

Addr. ROM Image

size : byte

DATA[31-24]

DATA[23-16]

DATA[15-8]

DATA[7-0]

Big Endian Little Endian

A, E, I,...

B, F,...

C, G,...

D, H,...

D, H,...

C, G,...

B, F,...

A, E, I,...

Figure 4-5 Relationship ROM Image and Endian

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-7

MEMORY BANKS DESIGN AND CONTROL

The S3C44B0X has 6 ROM/SRAM banks (ROM0 bank for boot ROM) and 2 ROM/SRAM/FP/EDO/SDRAM
banks. The system manager on S3C44B0X can control access time, data bus width for each banks by S/W. The
access time of ROM/SRAM banks and FP/EDO/SDRAM banks is controlled by BANKCON0~7 and
BANKCON6~7 control register on system manager. The type memory of bank6 & 7 has to be same. (example
ROM & ROM, SDRAM & SDRAM) The data bus width for each ROM/SRAM/DRAM banks is controlled by
BWSCON control register.

The ROM bank 0 is used for boot ROM bank, therefore bank 0 is controlled by H/W, OM[1:0] is used for this
purpose.

The control of BWSCON, BANKCON0-7, REFRESH, BANKSIZE, MRSRB6/7 is performed when system reset,
by special command, LDMIA and STMIA. Sample code for special register configuration is described below.

Sample code for special register configuration

 LDR r0, =SMRDATA
LDMIA r0, {r1-r13}
LDR r0, =0x01c80000 ;BWSCON Address
STMIA r0, {r1-r13}

.

SMRDATA
DCD 0x22221210 ;BWSCON
DCD 0x00000600 ;GCS0
DCD 0x00000700 ;GCS1
DCD 0x00000700 ;GCS2
DCD 0x00000700 ;GCS3
DCD 0x00000700 ;GCS4
DCD 0x00000700 ;GCS5

 ;DCD 0x0001002a ;GCS6 EDO DRAM(Trcd=3,Tcas=2,Tcp=1,CAN=10)
 ;DCD 0x0001002a ;GCS7 EDO DRAM(Trcd=3,Tcas=2,Tcp=1,CAN=10)
 DCD 0x00018000 ;GCS6 SDRAM(Trcd=2,SCAN=8)
 DCD 0x00018000 ;GCS7 SDRAM(Trcd=2,SCAN=8)

DCD 0x00a60000+953;Refresh(REFEN=1,TREFMD=0,Trp=3.5(D)or 4(SD),
; Trc=5(S), Tchr=3(D),Ref CNT)

DCD 0x0 ;Bank size, 32MB/32MB
DCD 0x20 ;MRSR 6(CL=2)
DCD 0x20 ;MRSR 7(CL=2)

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-8

ROM/SRAM BANKS DESIGN
The ROM/SRAM banks 1-7, can have a various width of data bus, and the bus width is controlled by S/W. A
sample design for ROM/SRAM bank 1-7 is shown in Figure 4-6, Figure 4-7, Figure 4-8 and Figure 4-9.

ADDR[24:0]

DATA[7:0]

nGCS[7:1]

nOE

nWE

S3C44B0X

A[21:0]

DQ[7:0]

nCE

nOE

nWE

EEPROM/

SRAM

DATA[7:0]

nWE

Figure 4-6 One-byte EEPROM/SRAM Banks Design

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-9

ADDR[24:1]
DATA[15:0]

nGCS[7:1]
nOE

nWBE[1:0]

S3C44B0X

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

DATA[7:0]

nWBE[0]

DATA[15:8]

nWBE[1]

Figure 4-7 Half-word EEPROM/SRAM Banks Design

ADDR[24:1]

DATA[15:0]

nGCS[7:1]

nOE

nWE

S3C44B0X

A[21:0]

DQ[15:0]

nCE

nOE

nWE

SRAM

DATA[15:0]

nWE

nWBE[0]

nWBE[1]

nLB

nUB
nWBE[0]

nWBE[1]

nOE

 Figure 4-8 Half-word SRAM Banks Design with Half-word SRAM

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-10

ADDR[24:2]
DATA[31:0]

nGCS[7:1]
nOE

nWBE[3:0]

S3C44B0X

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

DATA[7:0]

nWBE[0]

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

DATA[15:8]

nWBE[1]

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

A[21:0]
DQ[7:0]

nCE
nOE
nWE

EEPROM/
SRAM

DATA[23:16]

nWBE[2]

DATA[31:24]

nWBE[3]

Figure 4-9 Word EEPROM/SRAM banks design

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-11

EDO DRAM BANKS DESIGN FOR S3C44B0X

The DRAM banks 6-7, can have a various width of data bus, and the bus width is controlled by S/W, A BWSCON
special register set. A sample design for DRAM bank 6-7 is shown in Figure 4-10 and Figure 4-11.

ADDR[24:1]

DATA[15:0]

nRAS

nCAS[1]

nWE

S3C44B0X

A[11:0]

DQ[15:0]

nRAS

nUCAS

nWE

EDO

DRAM

nCAS[0] nLCAS

nOE nOE

ADDR[12:1]

Figure 4-10 Half-Word EDO/Normal DRAM Banks Design

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-12

ADDR[24:2]

DATA[31:0]

nRAS

nCAS[3:0]

nWE

S3C44B0X

A[11:0]

DQ[15:0]

nRAS

nLCAS/nUCAS

nWE

ADDR[13:2]

DATA[15:0]

nCAS[0]/nCAS[1]

A[11:0]

DQ[15:0]

nRAS

nLCAS/nUCAS

nWE

ADDR[13:2]

DATA[31:16]

nCAS[2]/nCAS[3]

EDO
DRAM

EDO
DRAM

nOE nOE

nOE

FIGURE 4-11 WORD EDO/NORMAL DRAM BANK

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-13

SDRAM BANKS DESIGN FOR S3C44B0X

The S3C44B0X Synchronous DRAM interface features are as follows :

• Maximum column address of SDRAM: 10 bit

• CAS latency: 2/3 cycle

Table 4-3 SDRAM Bank Address configuration

Bank Size Bus Width Base Component Memory Configuration Bank Address

2MByte x8 16Mbit (1M x 8 x 2Bank) x 1 A20

x16 (512K x 16 x 2B) x 1

4MB x8 16Mb (2M x 4 x 2B) x 2 A21

x16 (1M x 8 x 2B) x 2

x32 (512K x 16 x 2B) x 2

8MB x16 16Mb (2M x 4 x 2B) x 4 A22

x32 (1M x 8x 2B) x 4

x8 64Mb (4M x 8 x 2B) x 1

x8 (2M x 8 x 4B) x 1 A[22:21]

x16 (2M x 16 x 2B) x 1 A22

x16 (1M x 16 x 4B) x 1 A[22:21]

x32 (512K x 32 x 4B) x 1

16MB x32 16Mb (2M x 4 x 2B) x 8 A23

x8 64Mb (8M x 4 x 2B) x 2

x8 (4M x 4 x 4B) x 2 A[23:22]

x16 (4M x 8 x 2B) x 2 A23

x16 (2M x 8 x 4B) x 2 A[23:22]

x32 (2M x 16 x 2B) x 2 A23

x32 (1M x 16 x 4B) x 2 A[23:22]

x8 128Mb (4M x 8 x 4B) x 1

x16 (2M x 16 x 4B) x 1

32MB x16 64Mb (8M x 4 x 2B) x 4 A24

x16 (4M x 4 x 4B) x 4 A[24:23]

x32 (4M x 8 x 2B) x 4 A24

x32 (2M x 8 x 4B) x 4 A[24:23]

x16 128Mb (4M x 8 x 4B) x 2

x32 (2M x 16 x 4B) x 2

x8 256Mb (8M x 8 x 4B) x 1

x16 (4M x 16 x 4B) x 1

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-14

The required SDRAM interface pin is CKE, SCLK, nSCS[1:0], nSCAS, nSRAS, DQM[3:0], ADDR[12]/AP. The
sample design with SDRAM is shown in Figure 4-12, and Figure 4-13.

ADDR[13:1]

BA

DATA[15:0]

SCLK

nRAS[0]/nSCS[0]

nCAS3/nSRAS

nCAS2/nSCAS

nWE

nWBE[1:0]/DQM[1:0]

S3C44B0X

ADDR[13:1]

DATA[15:0]

DQM[1:0]

SYNC
DRAM

A[12:0]

BA

DQ[15:0]

CLK

nCS

nSRAS

nSCAS

nWE

LDQM/UDQM

Figure 4-12 Half-word SDRAM Design with Half-word Component

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-15

ADDR[14:2]

BA

DATA[31:0]

SCLK

nRAS[0]/nSCS[0]

nCAS3/nSRAS

nCAS2/nSCAS

nWE

nWBE[3:0]/DQM[3:0]

S3C44B0X

ADDR[14:2]

DATA[15:0]

DQM[1:0]

SYNC
DRAM

A[12:0]

BA

DQ[15:0]

CLK

nCS

nSRAS

nSCAS

nWE

LDQM/UDQM

ADDR[14:2]

DATA[31:16]

DQM[3:2]

SYNC

DRAM

A[12:0]

BA

DQ[15:0]

CLK

nCS

nSRAS

nSCAS

nWE

LDQM/UDQM

Figure 4-13 Word SDRAM Design with Half-word Component

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-16

I/O PORT CONFIGURATION

S3C44B0X has multiplexed input/output/function port pins. The SMDK41100 demo board uses only some
functions, then some pins are float or some pins have selectable function port with 0 ohm resistor, therefore
users must define the pin's configuration and attach the 0 ohm resistor on the proper place before running the
main program.

For reducing the power consumption in SMDK41100, the port state and usage of internal pull-up resistor are
decided very carefully. The followings are the sample port configuration for SMDK41100.

Port A : Memory address pins

Port H/W connection @Normal @Stop @Idle

PA0 OPEN ADDR0

PA1 ADDR16 ADDR16

PA2 ADDR17 ADDR17

PA3 ADDR18 ADDR18

PA4 ADDR19 ADDR19

PA5 ADDR20 ADDR20

PA6 BA0 ADDR21

PA7 BA1 ADDR22

PA8 OPEN ADDR23

PA9 OPEN ADDR24

PDATA - -

PCONA - 0x3ff

Port B : Memory control and output(LED) pins

Port H/W Connection @Normal @Stop(data) @Idle

PB0 SCKE SCKE

PB1 SCLK SCLK

PB2 nSCAS nSCAS

PB3 nSRAS nSRAS

PB4 DQM0 nWBE2/nBE2/DQM2

PB5 DQM1 nWBE3/nBE3/DQM3

PB6 OPEN nGCS1

PB7 OPEN nGCS2

PB8 OPEN nGCS3

PB9 LED Output Output(High) Output

PB10 LED Output Output(High) Output

PDATB - - 0x600 -

PCONB - 0x1ff

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-17

Port C : IIS, LCD data and UART control pins.
Not used function pins are defined input port with pull-up resistor enabled to reduce the power consumption. If the
UART function is not used the pins should be disabled pull-up resistor, output signal(Tx, nRTS) is defined output
port and input signal(Rx, nCTS) is defined input port avoid conflicting the signals of MAX3232.

Port H/W Connection @Normal(data, pull-up) @Stop(data, pull-up) @Idle(data, pull-up)

PC0 IISLRCK Input(pull-up enable)

PC1 IISDO Input(pull-up enable)

PC2 IISDI Input(pull-up enable)

PC3 IISCLK Input(pull-up enable)

PC4 VD7 Input(pull-up enable)

PC5 VD6 Input(pull-up enable)

PC6 VD5 Input(pull-up enable)

PC7 VD4 Input(pull-up enable)

PC8 OPEN Input(pull-up enable)

PC9 OPEN Input(pull-up enable)

PC10 nRTS1 Output(High, pull-up disable)

PC11 nCTS1 Input(pull-up disable)

PC12 TxD1 Output(High, pull-up disable)

PC13 RxD1 Input(pull-up disable)

PC14 nRTS0 Output(High, pull-up disable)

PC15 nCTS0 Input(pull-up disable)

PDATC - 0x5400

PUPC - 0xfc00

PCONC - 0x11100000

Port D : LCD data and LCD control pins.

Port H/W Connection @Normal(pull-up) @Stop(data, pull-up) @Idle(pull-up)

PD0 VD0 VD0(pull-up disable) Output(High,pull-up disable) VD0(pull-up disable)

PD1 VD1 VD1(pull-up disable) Output(High,pull-up disable) VD1(pull-up disable)

PD2 VD2 VD2(pull-up disable) Output(High,pull-up disable) VD2(pull-up disable)

PD3 VD3 VD3(pull-up disable) Output(High,pull-up disable) VD3(pull-up disable)

PD4 VCLK VCLK(pull-up disable) Output(High,pull-up disable) VCLK(pull-up disable)

PD5 VLINE VLINE(pull-up disable) Output(High,pull-up disable) VLINE(pull-up disable)

PD6 VM VM(pull-up disable) Output(High,pull-up disable) VM(pull-up disable)

PD7 VFRAME VFRAME(pull-up disable) Output(High,pull-up disable) VFRAME(pull-up disable)

PDATD - - 0xff -

PUPD - 0xff 0xff 0xff

PCOND - 0xaaaa 0x5555 0xaaaa

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-18

Port E : UART control pins and ENDIAN pin.
PE8 port should be defined input port with disabled pull-up resistor, because the PE8 pin is connected to GND for
little endian mode in SMDK41100 demo board.

Port H/W Connection @Normal(pull-up) @Stop(pull-up) @Idle(pull-up)

PE0 OPEN Input(pull-up enable)

PE1 TxD0 TxD0(pull-up disable)

PE2 RxD0 RxD0(pull-up disable)

PE3 OPEN Input(pull-up enable)

PE4 OPEN Input(pull-up enable)

PE5 OPEN Input(pull-up enable)

PE6 OPEN Input(pull-up enable)

PE7 OPEN Input(pull-up enable)

PE8 ENDIAN ENDIAN(pull-up disable)

PDATE - -

PUPE - 0x106

PCONE - 0x28

Port F : IIS and SIO control pins.
PF0 and PF1 pins should be defined disabled pull-up resistor input port, because these pins are connected pull-
up resistors by hardware.

Port H/W Connection @Normal(pull-up) @Stop(pull-up) @Idle(pull-up)

PF0 IICSCL Input(pull-up disable)

PF1 IICSDA Input(pull-up disable)

PF2 OPEN Input(pull-up enable)

PF3 OPEN Input(pull-up enable)

PF4 OPEN Input(pull-up enable)

PF5 SIOTxD Input(pull-up enable)

PF6 SIORDY Input(pull-up enable)

PF7 SIORxD Input(pull-up enable)

PF8 SIOCLK Input(pull-up enable)

PDATF - -

PUPF - 0x3

PCONF - 0x0

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-19

Port G : External interrupt pins.
The SMDK41100 demo board is using PG4 and PG5 ports as external interrupt ports with button.

Port H/W Connection @Normal(pull-up) @Stop(pull-up) @Idle(pull-up)

PG0 EINT0 Input(pull-up enable)

PG1 EINT1 Input(pull-up enable)

PG2 EINT2 Input(pull-up enable)

PG3 EINT3 Input(pull-up enable)

PG4 EINT4 Input(pull-up disable)

PG5 EINT5 Input(pull-up disable)

PG6 OPEN Input(pull-up enable)

PG7 OPEN Input(pull-up enable)

PDATG - -

PUPG - 0x30

PCONG - 0x0

Special pull-up resistor control register
In normal operation, the pull-up resistor should be disabled but in stop mode it is enabled for power consumption.

Connection @Normal @Stop @Idle

SPUCR0 Pull-up disable Pull-up enable Pull-up disable

SPUCR1 Pull-up disable Pull-up enable Pull-up disable

Hz@STOP Previsous state High-impedance Previsous state

SPUCR 0x7 0x0 0x7

NOTE : To reduce power consumption users shall consider the state of pins and refer to the table below.

Usage of Pins Pull-up resistor + Data

Unused input port pins Pull-up enable

Normal output port pins Pull-up disable + Data High

Function(address, data, control) pins Pull-up disable

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-20

LCD CONNECTION WITH S3C44B0X

The S3C44B0X LCD interface example circuit is as follows :

• UG-32F04(320x240 mono STN LCD) from SAMSUNG DISPLAY DEVICES CO.,LTD (refer to Figure 4-14)

 . TL497CAN can be used to make VEE(-25V).

• UG-24U03A(320x240 mono STN LCD) from SAMSUNG DISPLAY DEVICES CO.,LTD (refer to Figure 4-15)

 . VEE is generated by the circuit on LCD module.

 . VL is 2.4V typically.

 . DISPON H : display on, L : display off

 . nEL_ON H : EL off L : EL on

• KHS038AA1AA-G24 (256 color STN LCD) from KYOCERA Co. (refer to Figure 4-16)

 . DISP signal can be made using I/O port, or power control circuit, or nRESET circuit.

 . V1-V5 can be made using the power circuit recommended by the LCD specification.

VFRAME

VSS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

VEE
V0
VDD
VSS
D3
D2
D1
D0
VSS
CL2
CL1
FLM
NC
FG

x

VDD

VEE

VEE

R
10K

VLINE
VCLK

VD0
VD1
VD2
VD3

(from S3C44B0X)

UG-32-F04-WCBN0-A

Figure 4-14 UG-32F04 connection with S3C44B0X(320x240 mono STN LCD)

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-21

D2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

D1
D0
VL

VSS4
VCC
DRDY
DOFF
VSS3
FPSHIFT
VSS2
FPLINE
FPFRAME
VSS1

VFRAME
VLINE

PORT(DISPON)
VM

(from S3C44B0X) UG24U03A

D3
VSS5

VD0
VD1
VD2
VD3

3.3V

x
x
x
x

x

VCLK

X2
Y1
X1
Y2
VSS6
EL-VCC
EL-ONPORT(nEL-ON)

VEE

3.3V

Figure 4-15 UG24U03A connection with S3C44B0X (320x240 mono STN LCD)

VFRAME

D7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

V5
V4
V3
V2
V1
V0
DF
VSS
VDD
VDD
DISP
CP
LOAD
FLM

VLINE
VCLK

VD7
VD6
VD5
VD4

(from S3C44B0X)

KHS038AA1AA-G24-95-14

D6

D3
D4
D5

D2
D1
D0

VM

VD3
VD2
VD1
VD0

DISPOFF
VDD

VM
V0
V1
V2
V3
V4

VD7
VD6
VD5

VD0

VD4
VD3
VD2
VD1

Figure 4-16 KHS038AA1AA-G24 connection with S3C44B0X (256 color STN LCD)

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-22

SYSTEM DESIGN WITH DEBUGGER SUPPORT

EmbeddedICE Macrocell and EmbeddedICE Interface

The S3C44B0X has an EmbeddedICE macrocell that provides debug support fro ARM cores. The EmbeddedICE
macrocell is programmed in serial using the TAP(Test Access Port) controller on the S3C44B0X. The
EmbeddedICE interface is a JTAG protocol conversion unit. It translates a debug protocol message generated by
the debugger into a JTAG signal which is sent to the built-in serial and parallel ports.

JTAG port for EmbeddedICE Interface

When you build a system with the S3C44B0X EmbeddedICE interface, you should design a JTAG port for
EmbeddedICE interface. Usually, the interface connector is a 14-way box header, and this plug is connected to
the EmbeddedICE interface module using 14-way IDC cable.

The JTAG port signals, nTRST,TDI,TMS,TCK have to be connected pulled-up register(10K ohm) externally.
When you operate normal mode without EmdeddedICE, nRESET signal on S3C44B0X is connected
nTRST via JP1 (jumper1). In debugger mode, nRESET signal on S3C44B0X is surely seperated nTRST
via JP1 (jumper1).

The pin configuration and a sample design are described in Figure 4-17, 4-18, respectively.

2

1

4

3

6

5

8

7 9

10

11

12 14

13

Pin Name Function

1,13 SPU Connected to VDD through 33 or 0 ohm resister*

3 nTRST Test reset, active low (connected pull-up reg.)

5 TDI Test data in (connected pull-up reg.)

7 TMS Test mode select (connected pull-up reg.)

9 TCK Test clock (connected pull-up reg.)

11 TDO Test data out

12 nICERST Connected to VDD through 10K ohm resister

2,4,6,8,10,14 VSS System Ground

* 33 ohm for EmbeddedICE, 0 ohm for Multi-ICE, pullup Reg.:10K ohm

Figure 4-17 EmbeddedICE Interface JTAG Connector

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-23

2 1

4 3

6 5

8 7

910

1112

14 13

S3C44B0X

nRESET

nTRST

TDI

TMS

TCK

TDO

GND

VCC

nRESET

(from Reset logic)

10K

JP6

Jumper in : Normal operation

Jumper out : debug mode

10K 10K 10K

Figure 4-18 EmbeddedICE Interface Design Example

SYSTEM DESIGN S3C44B0X RISC MICROPROCESSOR

4-24

CHECK LIST FOR SYSTEM DESIGN WITH S3C44B0X

When you design a system with the S3C44B0X, you should check a number of items to build a good system. The
check list is described below.

• The OM[3:0] and ENDIAN pin have to be configured.

• To run the CPU without using JTAG(ICE), connect nTRST and nRESET pin.

• If EXTCLK pin is used for MCLK, XTAL0 has to be connected to VDD. If XTAL0 pin is used for MCLK,
EXTCLK has to be connected to VDD.

• If an input pin is unused, connect the pin to VDD or GND. If the pin is float, S3C44B0X may not operate.

• nGCS6,7 do not support DRAM & SDRAM combination,

 Please configure memory type to below combination in bank6 & 7 :

 DRAM & DRAM, SDRAM & SDRAM , SRAM & SRAM, SRAM & DRAM, SRAM & SDRAM.

S3C44B0X RISC MICROPROCESSOR SYSTEM DESIGN

4-25

NOTES

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-1

5 PSOSYSTEM BOARD SUPPORT PACKAGE

OVERVIEW

The pSOSystem operating system is a modular, high-performance real-time operating system designed
specifically for embedded microprocessors. It provides a very complete, multitasking environment based on open
system standards.

The pSOSystem operating system is designed to meet three overriding objectives:

— Performance

— Reliability

— Ease-of-Use

The result is a fast, deterministic, yet accessible, system software solution.

The pSOSystem is designed as a set of software components that comprise an operating system for an
embedded application. To use pSOSystem, you write an application for the target and link the pSOSystem
software components to the application at building time. When the application is downloaded to the target,
pSOSystem executes as the operating system.

The pSOSystem is used in a cross-development environment, where you develop the application on a host
system and then download and run it on a target system. The host system is linked to the target system by a
serial line or an Ethernet connection depending on the corresponding hardware support.

This chapter provides a brief guide to develop pSOSystem application, and explains how to assemble, build,
download, and run pSOSystem application on the S3C44B0X Evaluation Board. Especially, It introduces the
pSOSystem BSP (Board Support Package) for S3C44B0X Evaluation Board, which make your pSOSystem
application to be able to run on our hardware platform.

As you read this chapter, you may also need to refer to the other manuals in standard documentation set,
provided by ISI, for more detailed information.

— pSOSystem System Concepts

— pSOSystem Getting Started

— pSOSystem Advanced Topics

— pSOSystem Programmer′s Reference

— pSOSystem System Calls

— pROBE+ User′s Guide

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-2

SYSTEM ARCHITECTURE

A pSOSystem application consists of the following main elements:

— Application codes, which you write for a particular application.

— The pSOSystem operating system components, which include, but are not limited to, the following system
libraries:

• The pSOS+ Kernel

• The pROBE+ Target-Level Debugger

• The pREPC+ Run-Time C Library

• The pHILE+ File System Manager

• The pNA+ TCP/IP and UDP Network Manager

— A board-support package (BSP), which is an additional software module to provide the interface between the
OS/Application and target hardware platform.

The system architecture is shown below:

Embedded ApplicationAPPS

Drivers

BSPS

Include

pSOSystem Directory Tree

pSOSystem Libraries

Board-Support Package

H/W Independent
Device Drivers

Hardware Platform

Sys

Configs

PSS_ROOT

pSOSystem Architcation

Figure 5-1. System Architecture

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-3

DEVELOPMENT ENVIRONMENT DIRECTORY

The pSOSystem development environment locates under a root directory, called as PSS_ROOT, in your host
after installation. The root directory consists of several sub-directories, each of which contains the source files,
include files or object libraries relative to one layer in pSOSystem architecture, as shown above.

The following table describes the sub-directories under the pSOSystem root directory.

Root Sub-directory Description

apps It has a number of application working directories where you build the
pSOSystem application executable image. Each application working
directory contains the application source codes, a pSOSystem configuration
header file (sys_conf.h) and a driver configuration file (drv_conf.c)

config A sub-directory contains the pSOSystem application startup codes and the
configuration files for various pSOSystem components.

PSS_ROOT sys A sub-directory contains the operating system components which can be
compiled into libraries (libsys.xxx and libsysxx.xxx) and then linked into any
application.

driver A sub-directory contains some hardware-independent device drivers.

bsps It contains a collection of sub-directories, each of which contains a board
support package (BSP) that corresponds to a specific hardware platform.

include A sub-directory contains the include files that serve as the interface to many
parts of pSOSystem such as device drivers and components.

STEP IN pSOSystem APPLICATION DEVELOPMENT

When you develop a pSOSystem application, you should take the following steps:

1. Install the pSOSystem in your host system and set up the host environment.

2. Build the system libraries, libsys.xxx and libsysxx.xxx (necessary only after installation or version updates).

3. Develop the BSP for the specific hardware platform on which your application will run, and build the BSP
library, libbsp.xxx, (necessary only after system updated or BSP modified).

4. Write the application codes in a working directory, and optionally edit the following files:

• sys_conf.h

• drv_conf.c

• the makefile (If you use ARM Project Manager to build application, you may not use this file)

5. Link with the system library and BSP library to build the application executable image.

6. Download the executable image to the target platform and run it.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-4

SETTING UP THE HOST ENVIRONMENT

To configure the host system, you need to set up some environment variables. You can edit a batch file with
name, such as envarm.bat, to set the these environment variables and execute this batch file prior to starting
your pSOS-related work; or you can do it by modifying the envarm.ksh file if you has installed the pRISM+. A
sample batch file is shown below.

SET HOST=win32

rem **
rem * Set up the root path of pSOSystem and corresponding utilities *
rem **
SET PSS_ROOT=C:\isiarm\pssarm.223
SET PATH=%PSS_ROOT%\bin\win32; %PSS_ROOT%\mksnt;%PATH%

rem ***
rem * Replace the next line with the path to your target BSP. *
rem ***
SET PSS_BSP=%PSS_ROOT%\bsps\41100

rem ***
rem * Replace the next line with the token for your BSP_TYPE *
rem * Valid tokens are 32l, 32b, 16l, or 16b *
rem ***
SET BSP_TYPE=32B

rem ***
rem * Set up the ARM SDT path *
rem ***
SET ARMINC=C:\isiarm\arm211a\include
SET ARMLIB=C:\isiarm\arm211a\lib\embedded
SET PATH=C:\isiarm\arm211a\bin;%PATH%

In above settings, the PSOS environment related variables are described in the table below:

Variable Name Description

HOST Defines the name of sub-directory, which containing make utilities, under
%PSS_ROOT%\bin

PSS_ROOT Points to the top of the pSOSystem directory tree on your system.

PSS_BSP Path to the pSOSystem Board Support Package (BSP).

BSP_TYPE Execution model of your particular ARM processor. This defines ARM (32) or
Thumb (16) mode and big (b) or little (l) endian.

PATH This variable points to the pSOSystem directory of executable files specific to
building pSOSytem based application.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-5

BUILDING THE PSOS SYSTEM LIBRARIES

After you install the pSOSystem in your host system and set up the host environment, the next step is to build the
system libraries. These libraries contain all pSOSystem system components, such as the pSOS+ kernel, the
pNA+ TCP/IP manager, the pROBE+ debugger, and so on.

You must build the pSOSystem libraries when you first install the pSOSystem software, and you must rebuild the
libraries whenever you install new distribution files.

For the ARM architecture, there are several different system libraries built. Each one corresponds to one of ARM
execution modes. Separate libraries are built for C and C/C++ applications as well. The table below outlines all of
the library names and the corresponding language/execution model. When building application, the correct library
is automatically picked from the BSP_TYPE environment variable you set above.

Library Name Description

libsys.32l 32-bit ARM mode, little endian, C only

libsys.32b 32-bit ARM mode, big endian, C only

libsys.16l 16-bit Thumb mode, little endian, C only

libsys.16b 16-bit Thumb mode, big endian, C only

libsysxx.32l 32-bit ARM mode, little endian, C/C++

libsysxx.32b 32-bit ARM mode, big endian, C/C++

libsysxx.16l 16-bit Thumb mode, little endian, C/C++

libsysxx.16b 16-bit Thumb mode, big endian, C/C++

To build the system libraries, enter the following commands in MS-DOS window:

— cd %PSS_ROOT%\sys\os

— psosmake clean

— psosmake

The psosmake command automatically picks up the makefile in current directory to complete the required
system library building operations.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-6

S3C44B0X EVALUATION BOARD BSP

INTRODUCTION

The board-support package (BSP) is a software layer which provides the interface between pSOS+
kernel/application and hardware platform so as to make the pSOSystem application to be able to run on a
specific hardware platform. The BSP contains a collection of hardware-specific functions, which include:

1. Target system hardware initialization during system booting, such as

• System memory configuration

• Stack setup for each CPU operating mode, and install exception handlers

• Peripherals initialization, and so on.

2. Exception handlers

3. Lower-level device drivers.

• Tick timer driver, used by pSOS+ for task scheduling

• Serial port driver, to provide polled interface (used by pROBE+) and interrupt-driven interface (used by
pSOS+ and pREPC+) for serial port communications.

This document describes the pSOSystem Board Support Package for the Samsung S3C44B0X Evaluation
Board. The board uses the S3C44B0X microcontroller which contains an ARM7TDMI CPU core as well as a large
number of integrated peripherals such as serial port controllers, timers, interrupt related hardware, memory
interface hardware, LCD controller, and others.

The pSOSystem Board Support package for S3C44B0X Evaluation Board provides the low level startup code
and drivers necessary to adapt pSOSystem target software to the S3C44B0X Evaluation Board. It can also be
used as a basis for a custom board support package for other hardware platforms based on S3C44B0X
microcontroller.

The S3C44B0X Evaluation Board BSP supports a tick timer and two serial channels. The BSP and all of the
drivers associated with it support big-endian ARM mode execution. Application written for the S3C44B0X
Evaluation Board can be debugged using the ARM Ltd. Embedded ICE along with the ARM Debugger for
Windows (ADW) on PC. The pROBE+ debugger is also available for application debugging.

INSTALLATION

The S3C44B0X Evaluation Board BSP is delivered as an ZIP file which can be installed in the pRISM+ top
directory. To install the S3C44B0X Evaluation Board BSP, first extract the '41100_save.bat' file from the BSP zip
file and run it to back up some original files that are going to be affected. After that, unwind the ZIP file into
proper directories in pRISM+ installation.

A list of the files installed by this package is found in follows.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-7

FILE LIST

The following files are provided as main part of the S3C44B0X Evaluation Board BSP:

File Usage

PSS_ROOT\bsps\41100\bsp.h BSP definition file

PSS_ROOT\bsps\41100*.mk S3C44B0X Evaluation Board BSP specific make files for application

PSS_ROOT\bsps\41100\libbsp.32b S3C44B0X Evaluation Board BSP library to be linked with
applications

PSS_ROOT\bsps\41100\src\board.a Assembler header file for S3C44B0X Evaluation Board hardware

PSS_ROOT\bsps\41100\src\board.h C header file for S3C44B0X Evaluation Board hardware

PSS_ROOT\bsps\41100\src\board.c Provides the functions for board specific hardware initialization used
by init.s, and hardware specific information used in pSOSystem
initialization process.

PSS_ROOT\bsps\41100\src\bpdialog.c Provides the dialog functions used in pSOSystem setup.

PSS_ROOT\bsps\41100\src\bspcfg.c Delivers configuration information from application to BSP.

PSS_ROOT\bsps\41100\src\except.s Provides the low level IRQ and FIQ handlers specific for S3C44B0X
Evaluation Board

PSS_ROOT\bsps\41100\src\init.s Provides the first entry to S3C44B0X Evaluation Board BSP control
flow, and performs the hardware system initialization, including
memory mapping, peripherals initialization, stack setup, exception
handlers setup, and so on, and finally enters into pSOSystem
initialization function without return.

PSS_ROOT\bsps\41100\src\intrhndl.c Provides the functions for interrupt handler table initialization,
interrupt vector installation and a common interrupt handler for both
IRQ and FIQ to dispatch control to a particular ISR.

PSS_ROOT\bsps\41100\src\nvram.c Non-volatile RAM access routines

PSS_ROOT\bsps\41100\src\pic.h S3C44B0X interrupt controller specific definitions

PSS_ROOT\bsps\41100\src\serial.h Definitions for both DISI and non-DISI compliant serial drivers

PSS_ROOT\bsps\41100\src\serial.c Non-DISI compliant serial drivers for S3C44B0X Evaluation Board

PSS_ROOT\bsps\41100\src\disi41100.c DISI drivers for S3C44B0X Evaluation Board

PSS_ROOT\bsps\41100\src\timer.h Timer drivers definitions

PSS_ROOT\bsps\41100\src\timer.c Timer drivers

PSS_ROOT\bsps\41100\src\makefile S3C44B0X Evaluation Board BSP library makefile

PSS_ROOT\bsps\devices\arm\vector.s Provides the Samsung ARM device specific exception handlers
except for IRQ and FIQ, and exception handler installation function.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-8

MEMORY LAYOUT

The memory map for the S3C44B0X Evaluation Board BSP is shown in the following table:

Memory Type Address Range Usage

ROM 0x0000000

0x00fffff

Booting ROM area

DRAM 0xc000000

0xc02ffff

Data area for pROBE+ boot ROM.

DRAM 0xc030000

0xc7fefff

Available for downloaded image of pSOSystem and application
when using pROBE+ boot ROM.

DRAM *0xc000000

*0xc7fefff

Available for downloaded image of pSOSystem and application
if using the Samsung standard on-board boot ROM rather than
the pROBE+ boot ROM.

DRAM 0xc7ff000

0xc7ffeff

Simulated NVRAM area

DRAM 0xc7fff00

0xc7fffff

Exception vector table

When using the Samsung standard on-board boot ROM to download the pSOSystem application into DRAM,
application should be built with start execution address 0xc000000 since this boot ROM is going to jump to there
after program downloaded. If using pROBE+ boot ROM, you can modify the file bsps\41100\bsp.mk to reclaim
the memory option so that a part of DRAM area can be used by pROBE+ boot ROM.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-9

DETAILS IN S3C44B0X BSP

1. Hardware Initialization

The hardware initialization is the first step in the pSOSystem startup sequence, and the related code is contained
in the files init.s and board.c. After hardware initialization is complete, the init.s will pass control to sysinit.c.
While the files init.s and board.c initialize the hardware, the sysinit.c file initializes the system software, such as
pSOSystem components, drivers and some miscellaneous software functions. The pSOSystem startup sequence
is shown below.

Syslnit() (in sysinit.s)Main() (in begin.s)

The startup code for a
pSOSystem application.
It just performs a jump
to branch to Hdwlnit()
entry point in the BSP

Call Hdwlnit()

Hdwlnit() (in init.s)

System memory
configuration if necessary

Call SyslnitVars() to initialize
the C run time environment

Turn off all interrupts

Set SVC mode

Setup stack for each
operation mode

Call InitBoard() to initialize
H/W which can be done in C

Call InstallVector() to install
all the exception handlers.

Call Syslnit() to configuare
and start pSOSystem

Setup SysVars structure to
initialize the system variables.

Initalize the polled serial driver
to enable messages out.

Call Dialog() to run sartup
dialot fo variable setting.

Call AdjustSysVars() to
adjust system variables.

Call BuilConfigTables() to
set up configuration tables for

configured componets

Call PROBE_INIT() or
PSOS_INIT() to pass control
to pROBE+ or pSOS+ kernel,

or to application directly.

Application
Root()

pSOS+pROBE+

Figure 5-2. pSOSystem Startup Sequence

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-10

The main files and functions related to hardware initialization include:

— init.s, this file contains routines to initialize the CPU and hardware system.

RomHdwInit Performs all necessary hardware initialization needed by the board, such as system
memory configuration, stack setup for various CPU operating modes, exception
handlers installation, and various peripherals initialization. It is used for creating
pSOSystem boot ROM.

HdwInit Performs necessary hardware initialization needed for creating RAM image.

— board.c, this file contains some routines used to initialize the board specific hardware and provide hardware
specific information.

InitBoard Initializes the board specific hardware. It is called from the init.s to perform board
initialization that can be done in C.

RamSize Returns the size of the on-board RAM in byes. This function is used by any function
that needs to know how much contiguous RAM supported on board. It is call by
system software configuration files such as sysinit.c, psoscfg.c and so on.

BspRamBase Returns the base address of a contiguous block of RAM which can be used by
pSOSystem.

BspCpuType Returns the type of ARM CPU in use on the board.

SysInitFail Reports a system initialization failure.

— nvarm.c, this file contains routines to access the simulated NVRAM area on S3C44B0X Evaluation Board. It
is used for system configuration parameter storing.

StorageRead Read data from the simulated NVRAM area.

StorageWrite Write data to the simulated NVRAM area.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-11

2. Exception Handlers and Interrupt Process Mechanism

For the eight exceptions of ARM CPU, the corresponding exception handler routines are included in two source
files. One is the file except.s which is used to handle the interrupt exceptions and contains the IRQ and FIQ
handler routines, and another is the vectors.s which locates in the directory bsps\devices\arm\ and contains the
functions to set up and maintain exception vector table, the routines to allow dynamic assignment of exception
handler vectors, and the handler routines for other six kinds of exceptions.

The interrupt process mechanism implemented in S3C44B0X Evaluation Board BSP is illustrated below.

pSOS+

IRQWrapper()

0 x 00 Reset

0 x 04 Undefined

0 x 0c Prefetch Abort

0 x 10 Data Abort

0 x 14 Reserved

0 x 18 IRQ

0 x 08 SWI

0 x 1c FIQ

TASK n

Exception Vector Table

MainIntHandler()

Check interrupt pending
bit and dispatch to ISR

ISR

Return

Push the status of interrupted
task to pSOS (SVC) stack.

Enter SVC mode

pSOS+ strartup ?

pSOS_Ienter()
 - Increase interrupt counter
 - Set internal interrupt flag

pSOS_Ireturn()
 - Decrease interrupt counter
 - Clear internal interrupt flag

Scheduler

pSOS+ strartup ?

Call interrupt handler to
dispatch to a particular
interrupt service routine

Pop the status of interrupted
code from SVC stack, and
return to interrupted code.

Interrupted
Code

Yes

No

Re-scheduling
needed?

TASK n TASK m

Yes

No

Yes
No

Interrupt

Figure 5-3. S3C44B0X Evaluation Board BSP

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-12

The main files and functions related to exception process include:

— except.s, this file contains code for IRQ an FIQ handling.

IRQWrapper Handles dispatching of IRQ requests.

FIQWrapper Handles dispatching of FIQ requests.

— vectors.s, this file contains codes for initializing and handling six ARM exceptions except for IRQ and FIQ.
This includes setting up and maintaining a vector table, wrapper code for exception handlers, and routines to
allow dynamic assignment of vectors.

EXCEPT_COMMON Common exception wrapper code.

RESERVEDWrapper RESV exception wrapper code.

ABORTWrapper Data access abort wrapper code.

PREFETCHWrapper Instruction pre-fetch abort wrapper code.

UNDEFWrapper Undefined instruction wrapper code.

SWIWrapper SWI wrapper code.

ROM_FIQ Passes control to FIQ handler installed in soft vector table when FIQ exception
occurs. It is only used by boot ROM.

ROM_IRQ Passes control to IRQ handler installed in soft vector table when IRQ exception
occurs. It is only used by boot ROM.

ROM_RESERVED Passes control to RESV handler installed in soft vector table when RESV exception
occurs. It is only used by boot ROM.

ROM_DATAABORT Passes control to data abort handler installed in soft vector table when data access
abort occurs. It is only used by boot ROM.

ROM_PREFETCH Passes control to pre-fetch handler installed in soft vector table when instruction
pre-fetch abort occurs. It is only used by boot ROM.

ROM_UNDEFINED Passes control to undefined handler installed in soft vector table when undefined
instruction appears. It is only used by boot ROM.

ROM_SWI Passes control to SWI handler installed in soft vector table when SWI exception
occurs. It is only used by boot ROM.

InstallVector Installs a default exception handler into soft vector table.

— intrhndl.c, this file contains routines for interrupt handling.

InitHandlerTable Initializes a table of pointers to interrupt handlers (ISRs).

SysSetInterrupt Sets an entry in the interrupt handler table to point to a particular handler.

MainIntHandler Dispatches control to correct interrupt handler for a particular interrupt.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-13

3. Hardware-Specific Device Drivers

Two lower-level device drivers are implemented in S3C44B0X BSP, i.e. the tick timer driver and serial port
driver.

The pSOSystem tick timer is derived by Timer 3 in S3C44B0X chip. The code to program the timer is in
bsps\41100\src\timer.c. You may use other timers in S3C44B0X for your own use.

pSOSystem can use both serial ports on the S3C44B0X Evaluation Board. The serial port 1 is mapped to
pSOSystem channel 1 and the serial port 2 to pSOSystem channel 2. Two kinds of serial drivers are provided in
S3C44B0X Evaluation Board BSP. The source code for DISI driver is found in bsps\41100\src\disi41100.c, and
the non-DISI compliant serial driver in bsps\41100\src\serial.c.

Tick Timer

Tick timer is used by pSOS+ kernel. It generates clock tick and announces passage of time to the pSOS+ kernel
for task schedule and management. On S3C44B0X Evaluation Board, we use the S3C44B0X on-chip timer
(Timer 3) as the system tick timer. The timer control functions are contained in the file timer.c.

In the file timer.c, two main functions are provided:

RtcInit Initialize the tick timer controller to provide periodic interrupts.

Delay100ms Delay execution for approximately 100ms. This function is called only during system
startup time, and used by startup dialog code to give user a chance to do serial input
(for example, to change some system configuration parameters). Here, we use a
simple delay routine to simulate this function.

BSP Serial Driver

The BSP serial driver provides two lower-level serial interfaces for upper-level serial driver:

1. led serial interface:

It is used by upper-level hardware-independent serial driver (pollio.c) to print output and prompt for input during
system booting, or used by pROBE+ debugger console driver for debugging message display or command input.
The pollio.c module contains two functions, Prompt and Print, which are used in place of two standard ANSI
functions, scanf and printf, during system startup, that is, at the time before pREPC+ is initialized.

2. Inrrupt-driven serial interface:

It is used by upper-level hardware-independent serial driver (console.c or diti.c) for use with pSOS+ and
pREPC+. The interrupt-driven interface provides a high-efficiency serial channel access for application program.

Two kinds of serial drivers are implemented in S3C44B0X Evaluation Board BSP, that is, the non-DISI compliant
serial driver and DISI driver, in which DISI is a new protocol used by pSOSystem Terminal, SLIP, PPP and
pROBE+ upper level drivers to interface with the chip dependent lower level driver. You can use either of them
for the pSOSystem application, but not in simultaneous.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-14

To determine which serial driver to be included in the BSP, you should define BSP_NEW_SERIAL parameter in
bsps\41100\bsp.h file, and select related driver objects in bsps\41100\src\ makefile file.

For example, if you intend to use the DISI driver for serial channels, you should define BSP_NEW_SERIAL as
YES in bsp.h file, and include DISI protocol related objects in makefile file, as below:

<< bsps\41100\bsp.h >>

………

/*===*/
/* S E R I A L C H A N N E L S */
/*===*/

#define BSP_SERIAL 2
#define BSP_NEW_SERIAL YES
#define BSP_SERIAL_MINBAUD 300
#define BSP_SERIAL_MAXBAUD 115200

………

<< bsps\41100\src\makefile >>

………

#*--*
#* Modules compiled into this BSP
#*--*

SRC_OBJ1 = $(OBJ_DIR)init.o $(OBJ_DIR)board.o $(OBJ_DIR)intrhndl.o
SRC_OBJ2 = $(OBJ_DIR)except.o $(OBJ_DIR)vectors.o $(OBJ_DIR)cpu.o
SRC_OBJ3 = $(OBJ_DIR)nvram.o $(OBJ_DIR)bspcfg.o
SRC_OBJ4 = $(OBJ_DIR)drv_cutl.o $(OBJ_DIR)timer.o
#SRC_OBJ5 = $(OBJ_DIR)console.o $(OBJ_DIR)serial.o
SRC_OBJ5 = $(OBJ_DIR)disi41100.o $(OBJ_DIR)dipi.o $(OBJ_DIR)diti.o $(OBJ_DIR)gsblk.o

………

Otherwise, you should define BSP_NEW_SERIAL as NO in bsp.h file, and include objects console.o and serial.o
in makefile file.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-15

The non-DISI compliant serial driver interface is shown below.

Upper-level
Serial
Driver

Application
Program

pROBE+
Console

System
Startup
Dialog

pSOS+ pREPC+

 - Print()
 - Prompt()
 (pollio.c)

 - SerialDriver()

 (probecfg.c)

 - CnslInit()
 - CnslRead()
 - CnslWrite()
 - Cnslcntrl()
 (console.c)

Lower-level Serial Driver
(Serial.c)

Polled I/F Interrupt-driven I/F

Figure 5-4. Non-DISI Compliant Serial Driver Interface

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-16

All lower-level serial routines for non-DISI compliant serial driver interface are contained in the file serial.c, which
include:

— Startup initialization routine for all serial channels :

SerialSetup Called during startup before any other serial driver calls.

— Polled serial interface routines for pROBE+ debugger console and system startup dialog:

SerialPollInit Initialize the polled serial channels.

SerialPollConsts Check the status of the pROBE+ console channel.

SerialPollConin Get a character from the pROBE+ console.

SerialPollConout Send a character to the pROBE+ console.

— Polled serial interface routines for pROBE+ debugger communication with host:

SerialPollHststs Check the status of the pROBE+ host channel.

SerialPollHstin Get a character from the pROBE+ host channel.

SerialPollHstout Send a character to the pROBE+ host channel.

— Serial channel operation-mode switching routines for the case of application program and pROBE+ sharing
one serial channel:

SerialPollOn Called by pROBE+ to turn off the interrupt enables when taking control from the
application.

SerialPollOff Called by pROBE+ to restore the interrupt status when relinquishing control to
application.

— Interrupt-driven serial interface routines for console.c:

SerialIntBaud Change the baud rate of interrupt-driven serial channel.

SerialIntInit Initialize the interrupt-driven serial channel.

SerialIntRxioff Turn off receive interrupt.

SerialIntRxion Turn on receive interrupt.

SerialIntTxioff Turn off transmit interrupt.

SerialIntTxion Turn on transmit interrupt.

SerialIntRead Read a character from serial channel.

SerialIntWrite Write a character to serial channel.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-17

The DISI interface is shown below.

Upper-level
Serial
Driver

Application
Program

pROBE+
Console

System
Startup
Dialog

pSOS+ pREPC+

 - Print()
 - Prompt()
 (pollio.c)

 - SerialDriver()

 (probecfg.c)

 - CnslInit()

 - CnslRead()

 - CnslWrite()

 - Cnslcntrl()

(diti.c)

SerialInit() SerialOpen() SerialSend() SerialIoctl() SerialClose()
DISI Lower-level Serial Driver

(disi41100.c)

Polled I/F Interrupt-driven I/F

ProbeConsts() ProbeConin() ProbeConout()
ProbeEntry() ProbeExit()

(dipi.c)

Figure 5-5. DISI Interface

The device-dependent lower-level serial routines for DISI interface are contained in the file disi41100.c, which
include:

SerialInit Initialize the driver.

SerialOpen Open a channel.

SerialSend Send data on the channel.

SerialIoctl Perform a control operation on the channel.

SerialClose Close the channel.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-18

HARDWARE JUMPER SETTINGS

Switch and jumper settings on the S3C44B0X Evaluation board are described in additional documentation. There
are no extra requirements of pSOSystem other than removing the Jumper (JP1) when using the Embedded ICE
for debugging.

BUILD THE BSP LIBRARY

The S3C44B0X Evaluation Board BSP library is supplied with the file bsps\41100\libbsp.32b. If necessary to re-
build the BSP library, two methods can be used. One is to create a BSP library generation project by the Project
Manager in ARM SDT, which needs to contain all the BSP source files and header files for S3C44B0X Evaluation
Board, and build the library in the ARM SDT environment.

Alternatively, you can use the psosmake utility to build it. To do it, you should modify the 'envarm.bat' to reflect
the BSP as '41100' and 'BSP_TYPE' as '32b' first, and then type the command lines in DOS window as below.

— cd %PSS_ROOT%\bsps\41100\src

— psosmake clean

— psosmake

The psosmake command automatically picks up the makefile in current directory to complete the required BSP
library building operations.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-19

APPLICATION EXAMPLES

Several application examples are provided along with S3C44B0X BSP to demonstrate the use of pSOSystem
and its components. They are contained in the applications directory, %PSS_ROOT%\apps. Each application is
located in its own sub-directory, and contains a makefile to be used to build the application and causes it to be
linked with the correct libraries.

The following table summarizes these examples.

Sub-directory Description

hello Simple one-task application that displays the message ″Hello, world.″ It is a starting point
to get an application up and running on target board.

proberom This application can be used to build pSOSystem Boot ROM for non-Ethernet systems. It
is also an example of how to use a system startup dialog.

demo A multitasking application in which several tasks compete for various resources.

Each sample application includes a sys_conf.h configuration file which has been properly set to match
S3C44B0X Evaluation Board. You can also use these settings as a reference for other applications.

HELLO

The Hello sample is a simple program that displays a message. The application consists of a single task named
ROOT that prints out a short message to the target′s serial port and then suspends itself.

The output for this application is the familiar:

Hello, world

The root.c file contains the macro OUTPUT_TO_DEBUGGER. Edit the root.c file to set this macro to 0 in order
to view output on the serial port (pROBE console). Setting it to 1 will cause the program to send the output
message through the pROBE+ debugger to the standard I/O window of your pRISM+ source-level debugger.

PROBEROM

The proberom application is used to build pSOSystem Boot ROM for S3C44B0X Evaluation Board. This is only
sample application that does not require the pSOS+ kernel. The only component included is the pROBE+
debugger. When used to boot the system, this code initializes the hardware and executes the pROBE+ debugger,
or allows a remote connection via the console port to a remote debugger.

A system startup dialog is also enabled in this application, which gives out some system configuration information
during system initialization and allows you to modify the configuration parameters to re-configure system before
any application runs.

This application is to be described in the section Build A pSOSystem Boot ROM later.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-20

DEMO APPLICATION

The demo application consists of a number of tasks which execute under the control of pSOS+ scheduler. In
addition to multitasking execution, task communication and synchronization are also demonstrated in this
example.

The demo program starts from the ROOT task. The ROOT creates six tasks, named as Task1 ~ Task6, and other
system objects needed, such as semaphore (TSEM) and message queue (TQUE). After the objects are created,
the ROOT suspends itself. The remaining tasks will then run.

void root(void)
{
 void *dummy;
 U32 args[4]={0};
 U32 ioretval, iopb[4];

 /*---*/
 /* Initial UART driver */
 /*---*/
 de_init((DEV_SERIAL), iopb, &ioretval, &dummy);
 UART_out("\n\rHello, welcome to use S3C44B0X Demo Board !\n\r");

 /*---*/
 /* Generate task, message queue and semaphore */
 /*---*/

 t_create("TSK1", 120, 1024, 1024, 0, &task_id1);
 t_create("TSK2", 105, 1024, 1024, 0, &task_id2);
 t_create("TSK3", 105, 1024, 1024, 0, &task_id3);
 t_create("TSK4", 110, 1024, 1024, 0, &task_id4);
 t_create("TSK5", 110, 1024, 1024, 0, &task_id5);
 t_create("TSK6", 107, 1024, 1024, 0, &task_id6);

 sm_create("TSEM", 1, SM_FIFO, &sm_id);
 q_create("TQUE", 20, Q_FIFO|Q_LIMIT, &queue_id);

 /*---*/
 /* Start tasks */
 /*---*/
 t_start(task_id1, T_NOPREEMPT|T_TSLICE|T_USER, Task1, args);

 t_start(task_id2, T_PREEMPT|T_TSLICE|T_USER, Task2, args);
 t_start(task_id3, T_PREEMPT|T_TSLICE|T_USER, Task3, args);

 t_start(task_id4, T_PREEMPT|T_TSLICE|T_USER, Task4, args);
 t_start(task_id5, T_PREEMPT|T_TSLICE|T_USER, Task5, args);

 t_start(task_id6, T_NOPREEMPT|T_TSLICE|T_USER, Task6, args);

 t_suspend(0L);
}

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-21

Task1 is the first task to execute among the six created tasks, because it is the highest priority task in them
(priority 120). Task4 executes after task 1 suspends (priority 110), and the other tasks execute in the order of
Task5 (priority 110), Task6 (priority 107), Task2 (priority 105) and Task3 (priority 105) depending on their
priorities. The reason for why Task4 executes before Task5 even though they both have the same priority is that
Task4 was created and started first in ROOT.

Like all of the tasks in this example, Task1 does some preliminary initialization and then starts execution of an
endless loop. Processing inside of Task1 endless loop includes calling a sleep function and sending event to
Task6. Because of tm_wkafter(1000) call, Task1′s loop is executed once every 1000 timer ticks. Although Task6
is made ready on each event sending, it does not execute until Task1 executes sleep call again because the
Task6 has a lower priority than Task1.

void Task1()
{
 U32 status = 0;
 char ch;

 UART_out("\n\rTask 1 starts\n\r");

 Task_Time = 0;

 while(1) {

 // Sleep 1000 timer ticks
 tm_wkafter(1000);

 // Send an event to task 6
 status = ev_send(task_id6, 1);

 if(status == SUCCESS)
 Task_Time++;
 else
 UART_out("\n\r Fail to send event in task 1 !\n\r");

 }

}

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-22

Task2 continually sends a message to queue. If Task3 is already waiting at the queue, the message is passed to
it, and the Task3 is then unblocked and made ready to run.

In another side, Task3 requests message from queue. When the queue becomes empty, Task3 is blocked, until
the next message comes.

void Task2()
{
 U32 status = 0;
 U32 msg_s[4];

 UART_out("\n\rTask 2 starts\n\r");

 Task_2_messages_sent = 0;
 msg_s[0] = Task_2_messages_sent;

 while(1) {

 // Send message to queue, which task 3 reads from
 status = q_send(queue_id, msg_s);

 if(status == SUCCESS)
 msg_s[0] = ++Task_2_messages_sent;
 else if (status != ERR_QFULL)
 UART_out("\n\r Fail to send message in task 2 !\n\r");
 }

}

void Task3()
{
 U32 status = 0;
 U32 msg_r[4];

 UART_out("\n\rTask 3 starts\n\r");

 Task_3_messages_received = 0;

 while(1) {

 // Receive message from queue, which task 2 writes to
 status = q_receive(queue_id, Q_WAIT, 0, msg_r);

 if(status == SUCCESS)
 Task_3_messages_received++;
 else
 UART_out("\n\r Fail to send message in task 3!\n\r");
 }

}

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-23

Task4 and Task5 execute the similar loop. Both of them compete for an identical semaphore. Once the
semaphore is obtained by one task, this task sleeps for 40 timer ticks before releasing the semaphore again. This
action make the another task attempting to obtain the same semaphore to be blocked, until the semaphore is
released.

void Task4()
{
 U32 status = 0;

 UART_out("\n\rTask 4 starts\n\r");

 Task_4_semaphore_obtained = 0;

 while(1) {
 // Acquire a semaphore token
 status = sm_p(sm_id, SM_WAIT, 0);

 if(status == SUCCESS) {
 Task_4_semaphore_obtained++;
 tm_wkafter(40);
 sm_v(sm_id);
 }
 }

}

void Task5()
{
 U32 status = 0;

 UART_out("\n\rTask 5 starts\n\r");

 Task_5_semaphore_obtained = 0;

 while(1) {
 // Acquire a semaphore token
 status = sm_p(sm_id, SM_WAIT, 0);

 if(status == SUCCESS) {
 Task_5_semaphore_obtained++;
 tm_wkafter(40);
 sm_v(sm_id);
 }
 }

}

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-24

Task6 executes a loop waiting for at least one event flag to be set. The event flag is set by Task1 as mentioned
before. The Task6 executes at the same frequency as Task1, and gives a status report on program execution
each time when it executes.

void Task6()
{
 U32 status = 0, events_r;

 UART_out("\n\rTask 6 starts\n\r");

 Task_6_event_received = 0;

 while(1) {

 // Send an event to task 6
 status = ev_receive((U32)0xffffffff, EV_WAIT|EV_ANY, 0, &events_r);

 if(status == SUCCESS)
 {
 Task_6_event_received++;

 // Report status
 printf("\n\r[Status Report %d]", Task_6_event_received);
 printf("\n\r Task 1 sent events: %d", Task_Time);
 printf("\n\r Task 2 sent messages: %d", Task_2_messages_sent);
 printf("\n\r Task 3 received messages: %d", Task_3_messages_received);
 printf("\n\r Task 4 obtained semaphores: %d", Task_4_semaphore_obtained);
 printf("\n\r Task 5 obtained semaphores: %d", Task_5_semaphore_obtained);
 printf("\n\r Task 6 received events: %d\n\r", Task_6_event_received);

 } else
 UART_out("\n\r Fail to receive event in task 6 !\n\r");

 }

}

The status report gives message similar to that shown below. The information includes that how many events and
messages have been sent/received, how many semaphores have been obtained by Task4 and Task5
respectively, and so on.

[Status Report 1]

Task 1 sent events: 1

Task 2 sent messages: 188

Task 3 received messages: 167

Task 4 obtained semaphores: 13

Task 5 obtained semaphores: 13

Task 6 received events: 1

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-25

BUILD A pSOSystem BOOT ROM

A pre-built pSOSystem boot ROM image for the S3C44B0X Evaluation Board, proberom.bin, is supplied along
with the BSP, which can be found in directory apps\proberom. It is built using a modified version of the standard
code in proberom application. This boot ROM image only includes the pROBE+ component, without the pSOS+
kernel. When it is executed from ROM, it initializes the platform and runs the pROBE+ debugger in stand-along
mode or allows for connection from a remote program such as the pRISM+ Manager or a source-level debugger
via a serial port.

The ROM image includes dialog code, and is set to boot into pROBE+ and wait for the host debugger via a serial
connection when it starts up. The related settings can be found in the sys_conf.h file.

/***/
/* B A S I C P A R A M E T E R S */
/***/

#define SC_SD_PARAMETERS STORAGE
#define SC_STARTUP_DIALOG YES // Enable the dialog code
#define SC_BOOT_ROM YES // Build for Boot ROM
#define SD_STARTUP_DELAY 20
#define SE_DEBUG_MODE DBG_XS // Boot into pROBE+ and wait for the
 // host debugger via a serial connection

………

/**/
/* S E R I A L C H A N N E L C O N F I G U R A T I O N */
/**/

#define SD_DEF_BAUD 115200
#define SC_APP_CONSOLE 2
#define SC_PROBE_CONSOLE 1
#define SC_RBUG_PORT 1

………

You can re-build the pSOSytem boot ROM image to be your own if necessary. To do it, you can modify code in
apps\proberom directory as you want, and use psosmake utility to build your own boot ROM image in a DOS
window as below.

— cd %PSS_ROOT%\apps\proberom

— psosmake clean

— psosmake rom.bin

The file rom.bin can then be programmed into ROM devices and inserted in the proper sockets on the board.

For more information, please refer to pSOSystem Getting Started and pSOSystem Advanced Topics.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-26

RUN DEMO ON S3C44B0X EVALUATION BOARD

The demo program can be downloaded and run on the S3C44B0X evaluation board in two ways. One is that
using the on-boad Boot ROM shipped with the board to download the demo image and run it; another way is to
use the pROBE Boot ROM to do it. Though no difference to execute the demo program in standalone mode, the
two Boot ROMs accept different format of image when downloading, which to be described later.

SETUP DEMO ENVIRONMENT

Before downloading and running the demo program, you should connect the Evaluation Board with the host PC
via an RS-232 connection. By default, the on-board boot ROM and pROBE+ boot ROM use the serial port1 (P1)
to give system startup message. You can use the same channel to download the demo program image.

Use a serial cable to connect the on-board serial port1 to one of PC COM ports, and run an ASCII terminal
emulation program, for example the Hyper Terminal, on the host. Set the terminal characteristics to the following:

— 115200 baud

— 8-bit data

— stop bit

— no parity

Then, activate a MS-DOS window to prepare for image building.

DOWNLOAD DEMO APPLICATION WITH ON-BOARD BOOT ROM

With SAMSUNG standard on-board boot ROM (without pROBE+), you can download the demo program via on-
board serial port 1.

1. Build the Image

The on-board ROM receives the download image and allocates it in DRAM from the address 0xc000000, and
after download is over ROM program automatically jump to there to start executing the downloaded image.
Therefore, you need to build your RAM image at address 0xc000000. By default, we kept this address in
bsps\41100\bsp.mk file for RAM image building like below:

#---*
Common rules for this BSP
#---*

#--
if using the on-board system boot rom
#--
RAMOPTS = -Base 0xc000000

#---
if using the pSOSystem boot rom
#---
#RAMOPTS = -Base 0xc030000

………

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-27

The on-board boot ROM accepts the AXF format image. You should create an RAM image in AXF format for
download use as below:

— cd %PSS_ROOT%\apps\demo

— psosmake clean

— psosmake ram.axf

2. Start the Boot ROM

Power up the Evaluation Board, the Boot ROM performs the system initialization and memory test, and the
terminal displays the system startup message similar to that shown below.

44BMON Ver 0.01 for S3C44B0X May, 2000

COM:115.2kbps,8Bit,NP,UART0 <n+6>(4)+(n)+CS(2)

DNADDR:c000000 ISR_ADDR:c7fff00 SYSCFG:e

E-mail:kwtark@sec.samsung.com

Memory Test(c000000h-c7f0000h):O.K.

3. Download the Image

After memory test is complete, you can give the following command in DOS window to download the image:

— wkcom2 ram.axf /1 /d:1

'wkcom2' is a tool which writes to the serial port of the PC. You may need to give proper PC COM port number
setting when using this command. Wait till the file gets downloaded, after downloading is over the boot program
jumps to the location 0xc000000 and runs the demo program.

When demo program starts running, it passes the control to pROBE debugger first because the pROBE+
component is included in the demo image, and gives a message followed by a pROBE prompt as following:

Now, Downloading... [FILESIZE:1103762(1103762)]

Download O.K.

pROBE+/ARM/BE PS V3.1.0

pROBE+/ARM/BE CE V3.1.0

pROBE+/ARM/BE RD V3.1.0

pROBE+/ARM/BE QS V3.1.0

pROBE+/ARM/BE DI V3.1.0

pROBE+>

At this point the Demo sample application can be executed.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-28

DOWNLOAD DEMO APPLICATION WITH PROBE BOOT ROM

You can also download and run the demo program with the pSOSystem boot ROM. To do it, you should burn the
pROBE+ Boot ROM image (the proberom.bin we supplied) into ROM devices and use the new ROMs to replace
the old ones in the sockets U8 and U9 on the board.

1. Build the Image

When using the pROBE Boot ROM, the DRAM area from 0xc000000 to 0xc030000 is reserved for data use of
Boot ROM. The download image should be allocated in DRAM after the address 0xc030000. Therefore, you need
to modify the base address of RAM image in bsps\41100\bsp.mk file for RAM image building. We have supplied
an RAM Base option for this case in the bsp.mk file. You only need to remark the RAMOPTS for on-board Boot
ROM, and validate the RAMOPTS for pSOSystem Boot ROM as below:

#---*
Common rules for this BSP
#---*

#--
if using the on-board system boot rom
#--
#RAMOPTS = -Base 0xc000000

#--
if using the pSOSystem boot rom
#--
RAMOPTS = -Base 0xc030000

………

Differ from the original on-board Boot ROM, the pROBE+ Boot ROM only accepts the standard Motorola S-
record file, that is the HEX format, in standalone mode. You should create an RAM image in HEX format for it.

— cd %PSS_ROOT%\apps\demo

— psosmake clean

— psosmake ram.hex

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-29

2. Start the pROBE ROM

When you power up or reset the board, the terminal displays a pSOSystem startup message as below:

pSOSystem V2.2.3 for ARM/BE

Copyright (c) 1991 - 1998, Integrated Systems, Inc.

START-UP MODE:

 Boot into pROBE+ and wait for host debugger via a serial connection

HARDWARE PARAMETERS:

 Serial channels will use a baud rate of 115200

 After board is reset, start-up code will wait 20 seconds

To change any of this, press any key within 20 seconds

The message above shows the pSOSystem Boot ROM program configuration parameters. After this message
appears, the Boot ROM program waits about 20 seconds to allow you to change the configuration parameters.

The pROBE+ debugger can operate in either standalone or remote mode. In standalone mode, the pROBE+
accepts and responds to user commands through a console port, which is normally an RS-232 line connected to
an ASCII terminal or a terminal emulator (here, we use the HyperTerminal running in PC as a terminal emulator).
In this mode, it functions as an enhanced assembly-level debugger. Commands, similar to those provided by
other firmware monitors, are provided to download image, display/modify processor registers and memory, set
breakpoints and control system execution.

In the remote mode, the pROBE+ debugger performs the low-level operations necessary to support a source-
level debugger running on host PC and communicates with the source level debugger over an RS-232
connection.

By default, we set the Boot ROM pROBE+ debugger as remote mode when it starts up. If you don′t press any
key, the ROM pROBE+ debugger will enter remote mode directly after 20 seconds and give message like:

Updating non-volatile storage. This may take a while...Done

pROBE+ is now ready to talk to the host debugger over this serial channel...

Once debugger enters the remote debugging state, it waits for communication with the source level debugger
running on host PC, and does not accept commands from the HyperTerminal any more.

However, you can change it to standalone mode by modifying the configuration. To do it, press any key within 20
seconds after the startup message appears, and do changes to enter standalone mode according to the prompt
information as follows.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-30

M)odify any of this or (C)ontinue? [M]

For each of the following questions, you can press <Return> to select the

value shown in braces, or you can enter a new value.

How should the board boot?

 1. pROBE+ stand-alone mode

 2. pROBE+ waiting for host debugger via serial connection

Which one do you want? [2] 1

HARDWARE PARAMETERS:

Baud rate for serial channels [115200]

How long (in seconds) should CPU delay before starting up? [20]

START-UP MODE:

 Boot into pROBE+ stand-alone mode

HARDWARE PARAMETERS:

 Serial channels will use a baud rate of 115200

 After board is reset, start-up code will wait 20 seconds

(M)odify any of this or (C)ontinue? [M] c

Updating non-volatile storage. This may take a while...Done

pROBE+/ARM/BE PS V3.1.0

pROBE+/ARM/BE CE V3.1.0

pROBE+/ARM/BE RD V3.1.0

pROBE+/ARM/BE QS V3.1.0

pROBE+/ARM/BE DI V3.1.0

pROBE+>

After the pROBE+ prompt appears as shown above, you can use the ROM pROBE+ debugger to download the
demo program image.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-31

3. Download the Image

To download the executable demo image, first type in the pROBE+ dl (download) command in HyperTerminal.
The pROBE+ then waits for you to download ram.hex.

So give the following command in DOS window to download the image:

— wkcom2 ram.hex /1 /g /d:1

Note that you may need to give proper PC COM port number setting depending on your serial connection. In the
above command, we assume that you are using PC COM1 for image downloading. After downloading is over,
the debugger gives a message to show the total records it received, and a prompt again. The debugger does not
pass control to the downloaded program automatically. To start the executable image, you should input the
pROBE+ go command with the image start address which is defined in the bsp.mk file as mentioned before.
This process is shown below:

pROBE+> dl

12837 records read

pROBE+>

pROBE+> go c030000

After downloaded image starts execution, a message similar to the following appears:

pROBE+/ARM/BE PS V3.1.0

pROBE+/ARM/BE CE V3.1.0

pROBE+/ARM/BE RD V3.1.0

pROBE+/ARM/BE QS V3.1.0

pROBE+/ARM/BE DI V3.1.0

pROBE+>

At this point, the demo application can run.

Note that although this message may look similar to the one that appeared when ROM debugger entered the
standalone mode, the message comes from the downloaded pROBE+ debugger included in RAM image rather
than the ROM pROBE+ debugger. Actually, the ROM pROBE+ debugger is no longer executing and can regain
control only if you reset the board.

The downloaded pROBE debugger is set to run in standalone mode.

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-32

EXECUTE THE DEMO APPLICATION

Once the downloaded RAM pROBE+ debugger gets started (that is, the pROBE+ prompt appears), you can use it
to run the demo application and monitor the program execution. Here, we only intend to show you some basic
pROBE+ debugging operations on demo application, for more information on the pROBE+ debugger operations,
please refer to pROBE+ User′s Guide.

1. Initialize pSOS+ Kernel

The pROBE+ gs (go system) command starts the pSOS+ kernel. It passes control to the pSOS+ startup entry
point and sets a pSOS+ Initialized Break. This break causes execution to halt immediately prior to execution of
the first instruction in the ROOT task. The gs command should be carried out before running any application with
pSOS+ kernel embedded.

Enter the gs command from the pROBE+ prompt, the following message appears.

pROBE+> gs

Kernel Event Break Running: 'ROOT' -#00020000

pSOS Initialized Event

CPSR = 00000013 (nzcv if ARM SVC32) SP =0C7FDBF0 LR =0C03AE60

R0 =00000000 R1 =00000000 R2 =00000000 R3 =00000000 R4 =00000000

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C06A038

R10=00000000 R11=00000000 R12=00000000 USP=0C7FCC00 ULR=00000000

SSP=0C7FDBF0 SLR=0C03AE60 SPSR_svc=40000013

PC =0C031F80-0C031F80: E92D4000 STMDB sp!,{lr}

pROBE+>

The pSOS+ kernel is now initialized, and the execution of the ROOT task is pending.

2. Set Breakpoints

The pROBE+ debugger supports the following types of breakpoints:

— Instruction Breakpoints

— pSOS+ Service Breakpoints

— Dispatch Breakpoints

— Timer Breakpoints

— Memory Access Breakpoints

Here, we set a timer breakpoint which intends to stop the application execution after 500 clock ticks have
elapsed.

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-33

pROBE+> db ti 500

TIMER_BREAK_________TICKS______TICKS_LEFT__________________________________

 00000500 00000500

--

pROBE+>

3. Start or Resume Execution

With the go command, you can start execution of demo application and resume execution after the timer break
occurs.

pROBE+> go

Hello, welcome to use S3C44B0X Demo Board !

Task 1 starts

Task 4 starts

Task 5 starts

Task 6 starts

Task 2 starts

Task 3 starts

[Status Report 1]

 Task 1 sent events: 1

 Task 2 sent messages: 188

 Task 3 received messages: 167

 Task 4 obtained semaphores: 13

 Task 5 obtained semaphores: 13

 Task 6 received events: 1

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-34

Kernel Event Break Running: 'TSK2' -#000E0000

TIMER Event

CPSR = 60000010 (nZCv if ARM User32) SP =0C7F56B0 LR =0C0322EC

R0 =00000035 R1 =00000014 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C06A06C

R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC

SSP=0C7F5B20

PC =0C062060-0C062060: E8BD8010 LDMIA sp!,{r4,pc}

pROBE+> go

[Status Report 2]

 Task 1 sent events: 2

 Task 2 sent messages: 398

 Task 3 received messages: 377

 Task 4 obtained semaphores: 26

 Task 5 obtained semaphores: 25

 Task 6 received events: 2

Kernel Event Break Running: 'TSK2' -#000E0000

--

TIMER Event

--

CPSR = 60000013 (nZCv if ARM SVC32) SP =0C7F5AD0 LR =0C7F5AF0

R0 =00140000 R1 =0C7F56B8 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C06A06C

R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC

SSP=0C7F5AD0 SLR=0C7F5AF0 SPSR_svc=40000093

PC =0C039FE8-0C039FE8: E89400F0 LDMIA r4,{r4-r7}

pROBE+>

S3C44B0X RISC MICROCONTROLLER pSOSYSTEM BOARD SUPPORT PACKAGE

5-35

4. Examine Objects

Using the query commands, you can examine user-created objects such as tasks (qt), message queues (qq),
semaphores (qs), and other key pSOS+ structures.

pROBE+> qt

 Name TID Prio Mode Status Susp? Parameters Ticks
--
 'IDLE' -#00010000 00 2000 Ready
 'ROOT' -#00020000 F0 2000 Ready YES
 'pMNG' -#00030000 F7 2001 Evwait EVENTS = 00000003 forever
 'pINP' -#00040000 F6 2001 Ready YES
 'pOUT' -#00050000 F5 2001 Ready YES
 'pROC' -#00060000 F4 2001 Ready YES
 'TSK1' -#000D0000 78 0003 Wkafter 000001BC
 'TSK2' -#000E0000 69 0002 Running
 'TSK3' -#000F0000 69 0002 Ready
 'TSK4' -#00100000 6E 0002 Swait SM = 'TSEM' -#00130000 forever
 'TSK5' -#00110000 6E 0002 Wkafter 00000006
 'TSK6' -#00120000 6B 0003 Evwait EVENTS = FFFFFFFF forever

pROBE+> qq

 Name QID TQ Len MQ Len MQ Limit Mgb Qtype Variable
--
 'RXQ1' -#00090000 00000000 00000000 none Sys-pool FIFO No
 'CNQ1' -#000A0000 00000000 00000000 none Sys-pool FIFO No
 'TQUE' -#00140000 00000000 00000014 00000014 Sys-pool FIFO No

Sys-pool total = 00000064
Sys-pool free = 00000050

pROBE+> qs

 Name SMID Count TQ Len Qtype
--
 'RDA1' -#00070000 00000001 00000000 FIFO
 'WRA1' -#00080000 00000001 00000000 FIFO
 'TXC1' -#000B0000 00000000 00000000 FIFO
 'CTL1' -#000C0000 00000000 00000000 FIFO

pROBE+>

pSOSYSTEM BOARD SUPPORT PACKAGE S3C44B0X RISC MICROCONTROLLER

5-36

5. Display Memory and Registers

To display memory and register contents, use dm and dr commands respectively.

pROBE+> dm c7fff00

0C7FFF00 0C 03 2A A8 0C 03 2A EC 0C 03 9D 60 0C 03 2A D8 ..*...*....`..*.

0C7FFF10 0C 03 2A C0 0C 03 2A A8 0C 03 2C 28 0C 03 2C D0 ..*...*...,(..,.

0C7FFF20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0C7FFF30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

pROBE+> dr

CPSR = 60000013 (nZCv if ARM SVC32) SP =0C7F5AD0 LR =0C7F5AF0

R0 =00140000 R1 =0C7F56B8 R2 =00000020 R3 =00000000 R4 =0C7F56B8

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C06A06C

R10=00000000 R11=00000000 R12=00000027 USP=0C7F56B0 ULR=0C0322EC

SSP=0C7F5AD0 SLR=0C7F5AF0 SPSR_svc=40000093

PC =0C039FE8-0C039FE8: E89400F0 LDMIA r4,{r4-r7}

pROBE+>

6. Restart Program

To restart the demo program without downloading again, enter the gs command.

pROBE+> gs

Kernel Event Break Running: 'ROOT' -#00020000

pSOS Initialized Event

CPSR = 00000013 (nzcv if ARM SVC32) SP =0C7FDBF0 LR =0C03AE60

R0 =00000000 R1 =00000000 R2 =00000000 R3 =00000000 R4 =00000000

R5 =00000000 R6 =00000000 R7 =00000000 R8 =00000000 R9 =0C06A038

R10=00000000 R11=00000000 R12=00000000 USP=0C7FCC00 ULR=00000000

SSP=0C7FDBF0 SLR=0C03AE60 SPSR_svc=40000013

PC =0C031F80-0C031F80: E92D4000 STMDB sp!,{lr}

pROBE+>

You can then repeat the previous operations as you want.

